JP3401993B2 - Interlayer insulating film and method of forming interlayer insulating film - Google Patents

Interlayer insulating film and method of forming interlayer insulating film

Info

Publication number
JP3401993B2
JP3401993B2 JP12765695A JP12765695A JP3401993B2 JP 3401993 B2 JP3401993 B2 JP 3401993B2 JP 12765695 A JP12765695 A JP 12765695A JP 12765695 A JP12765695 A JP 12765695A JP 3401993 B2 JP3401993 B2 JP 3401993B2
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
metal
insulating material
naphthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12765695A
Other languages
Japanese (ja)
Other versions
JPH08321217A (en
Inventor
洋一 塘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP12765695A priority Critical patent/JP3401993B2/en
Publication of JPH08321217A publication Critical patent/JPH08321217A/en
Application granted granted Critical
Publication of JP3401993B2 publication Critical patent/JP3401993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁材料と該絶縁材料
からなる半導体素子の層間絶縁膜とその形成方法とに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating material, an interlayer insulating film of a semiconductor element made of the insulating material, and a method for forming the same.

【0002】[0002]

【従来の技術】近年、半導体製造の分野では、デバイス
の微細化に伴い、配線間のILD(Inter Layer Dielect
ric ; 層間絶縁膜)の誘電率が高いことによる配線間の
容量増加や配線の信号伝播遅延等が問題となっている。
一般に用いられている層間絶縁膜、例えばBPSG(ボ
ロン−フォスフォシリケートガラス)、NSG(ノンド
ープトシリケートガラス)、P−TEOS(プラズマ−
テトラエトキシシラン)、O3 −TEOS(オゾン−テ
トラエトキシシラン)、SOG(スピンオンガラス)等
の絶縁膜は比誘電率(ε)が通常4以上あり、上記問題
を解決するには、層間絶縁膜の誘電率を低くすることが
有効である。
2. Description of the Related Art In recent years, in the field of semiconductor manufacturing, with the miniaturization of devices, ILD (Inter Layer Dielectric
ric; inter-layer insulation film) has a high dielectric constant, which causes problems such as increase in capacitance between wirings and signal propagation delay of wirings.
A commonly used interlayer insulating film, for example, BPSG (boron-phosphosilicate glass), NSG (non-doped tosilicate glass), P-TEOS (plasma-).
Insulating films such as tetraethoxysilane), O 3 -TEOS (ozone-tetraethoxysilane), and SOG (spin-on glass) usually have a relative dielectric constant (ε) of 4 or more. It is effective to lower the dielectric constant of.

【0003】そこで最近では、層間絶縁膜の誘電率を低
くするために、フッ素原子を導入した酸化膜(SiO
F)で層間絶縁膜を形成することが提案されている。ま
た有機化合物材料は比較的、誘電率を低くすることが可
能であるため、ポリパラキシリレンの蒸着膜やポリイミ
ドにフッ素原子を導入した膜で層間絶縁膜を形成するこ
とも提案されている。前者のSiOF膜を用いる場合で
は、従来のものに比べて層間絶縁膜の誘電率を低くでき
るものの比誘電率が通常3程度であるのに対し、後者の
有機化合物材料を用いた場合では、2〜3程度の比誘電
率を達成できるため注目されている。
Therefore, recently, in order to lower the dielectric constant of the interlayer insulating film, an oxide film (SiO 2) into which fluorine atoms are introduced is used.
It has been proposed to form an interlayer insulating film in F). Further, since an organic compound material can have a relatively low dielectric constant, it has been proposed to form the interlayer insulating film by a vapor deposition film of polyparaxylylene or a film obtained by introducing fluorine atoms into polyimide. When the former SiOF film is used, the relative dielectric constant of the interlayer insulating film can be made lower than that of the conventional one, but the relative dielectric constant is usually about 3, whereas when the latter organic compound material is used, it is 2 Attention has been paid because a relative dielectric constant of about 3 can be achieved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、有機化
合物を層間絶縁膜の材料に用いた場合には、有機化合物
の耐熱性が低いため、例えばポリパラキシリレン等の膜
で200〜300℃程度、ポリイミド膜でもせいぜい5
00℃程度しが耐えられないため、以降の半導体素子の
製造プロセスに制限を加えてしまうことになってしま
う。よって、耐熱性に優れしかも低誘電率の層間絶縁膜
の開発が切望されている。
However, when an organic compound is used as the material of the interlayer insulating film, the heat resistance of the organic compound is low, and therefore, for example, a film of polyparaxylylene or the like has a temperature of about 200 to 300 ° C. At best 5 with a polyimide film
Since it cannot withstand a temperature of about 00 ° C., it limits the subsequent manufacturing process of the semiconductor element. Therefore, development of an interlayer insulating film having excellent heat resistance and a low dielectric constant has been earnestly desired.

【0005】[0005]

【課題を解決するための手段】本発明の絶縁材料は、分
子内の芳香環に結合している水素の少なくとも1個がフ
ッ素原子で置換されたケイ素フタロシアニン、分子内の
芳香環に結合している水素の少なくとも1個がフッ素原
子で置換された無金属フタロシアニン、分子内の芳香環
に結合している水素の少なくとも1個がフッ素原子で置
換されたケイ素ナフタロシアニン、および分子内の芳香
環に結合している水素の少なくとも1個がフッ素原子で
置換された無金属ナフタロシアニンのうちの少なくとも
1種を主成分とするものである。
The insulating material of the present invention is a silicon phthalocyanine in which at least one hydrogen bonded to an aromatic ring in a molecule is substituted with a fluorine atom, and an insulating ring bonded to an aromatic ring in a molecule. A metal-free phthalocyanine in which at least one of the hydrogen atoms is substituted with a fluorine atom, a silicon naphthalocyanine in which at least one of the hydrogen atoms bonded to an aromatic ring in the molecule is substituted with a fluorine atom, and an aromatic ring in the molecule The main component is at least one of metal-free naphthalocyanines in which at least one of the bonded hydrogen atoms is replaced by a fluorine atom.

【0006】フタロシアニン誘導体、ナフタロシアニン
誘導体は配位能力を有するため、各種の金属原子を導入
することが可能であるが、本発明の絶縁材料では、これ
を半導体素子の層間絶縁膜の材料としても好適なよう
に、すなわち半導体素子を金属汚染させるこのないよう
に、金属原子を配位させていない無金属フタロシアニン
もしくは無金属ナフタロシアニン、または金属汚染に影
響のないケイ素原子を配位させたケイ素フタロシアニン
もしくはケイ素ナフタロシアニンを主成分としている。
Since the phthalocyanine derivative and the naphthalocyanine derivative have a coordination ability, it is possible to introduce various metal atoms. However, in the insulating material of the present invention, this can also be used as a material for an interlayer insulating film of a semiconductor element. Preferably, that is, metal-free phthalocyanine or metal-free naphthalocyanine in which metal atoms are not coordinated so as to prevent metal contamination of a semiconductor device, or silicon phthalocyanine in which silicon atoms are coordinated so as not to affect metal contamination are preferred. Alternatively, it is mainly composed of silicon naphthalocyanine.

【0007】またフッ素原子を導入していないケイ素フ
タロシアニンまたは無金属フタロシアニンは、1分子中
に4つの芳香環、すなわち4つのベンゼン環が存在しか
つこの各ベンゼン環に4つの水素が結合しているもので
ある。したがって、例えば各ベンゼン環に結合している
水素の全てがフッ素原子でそれぞれ置換された(以下、
完全フッ素置換と記す)ケイ素フタロシアニンまたは無
金属フタロシアニンは、1分子中のベンゼン環に合計1
6個のフッ素原子が結合しているものとなる。またフッ
素原子を導入していないケイ素ナフタロシアニンまたは
無金属ナフタロシアニンは、1分子中に4つの芳香環、
すなわち4つのナフタレン環が存在しかつこの各ナフタ
レン環に6つの水素が結合しているものである。したが
って、例えば各ナフタレン環に結合している水素の全て
がフッ素原子でそれぞれ置換された(以下、完全フッ素
置換と記す)ケイ素ナフタロシアニンまたは無金属ナフ
タロシアニンは、分子中のナフタレン環に合計24個の
フッ素原子が結合しているものとなる。
Silicon phthalocyanine or metal-free phthalocyanine having no fluorine atom introduced has four aromatic rings, that is, four benzene rings, in one molecule and four hydrogen atoms are bonded to each benzene ring. It is a thing. Therefore, for example, all of the hydrogens bonded to each benzene ring are each replaced with a fluorine atom (hereinafter,
Silicon phthalocyanine or metal-free phthalocyanine is referred to as completely fluorine-substituted).
Six fluorine atoms are bonded. Further, silicon naphthalocyanine or metal-free naphthalocyanine having no fluorine atom introduced has four aromatic rings in one molecule,
That is, there are four naphthalene rings and six hydrogens are bonded to each of these naphthalene rings. Therefore, for example, silicon naphthalocyanine or metal-free naphthalocyanine in which all of the hydrogens bonded to each naphthalene ring are each substituted with a fluorine atom (hereinafter referred to as complete fluorine substitution) is a total of 24 naphthalene rings in the molecule. The fluorine atom of is bonded.

【0008】なお、本発明のケイ素フタロシアニン、無
金属フタロシアニンのベンゼン環、、ケイ素ナフタロシ
アニン、無金属ナフタロシアニンのナフタレン環には1
部、アルコキシ基やアルキル基等の置換基が結合されて
いても良い。このような絶縁材料は、上記した半導体素
子における層間絶縁膜の他に、プリント配線板における
絶縁膜の絶縁材料等としても好適なものとなる。本発明
に係る層間絶縁膜は、半導体素子に形成される層間絶縁
膜であって、上記した本発明の絶縁材料を用いて形成さ
れてなるものである。例えば上記の絶縁材料をプラズマ
中で重合させることによって形成されるプラズマ重合膜
等からなる。
The silicon phthalocyanine, the metal-free phthalocyanine benzene ring, the silicon naphthalocyanine, and the metal-free naphthalocyanine naphthalene ring of the present invention have 1
And a substituent such as an alkoxy group or an alkyl group may be bonded. Such an insulating material is suitable as an insulating material for an insulating film in a printed wiring board, etc., in addition to the interlayer insulating film in the semiconductor element described above. The interlayer insulating film according to the present invention is an interlayer insulating film formed on a semiconductor element, and is formed by using the above-mentioned insulating material of the present invention. For example, it is composed of a plasma polymerized film formed by polymerizing the above insulating material in plasma.

【0009】また本発明に係る層間絶縁膜の形成方法
は、上記した本発明の絶縁材料を用いて基体表面に層間
絶縁膜を形成する方法であり、特にプラズマ重合膜から
なる層間絶縁膜を形成する方法である。すなわち、予め
容器内に基体を配置した後、上記の絶縁材料の蒸発物か
らなる雰囲気を容器内に形成するとともに、容器内にプ
ラズマを発生させ、このプラズマ中で蒸発物を重合させ
ながら基体表面に上記の絶縁材料からなる層間絶縁膜を
形成する。
The method of forming an interlayer insulating film according to the present invention is a method of forming an interlayer insulating film on the surface of a substrate by using the above-mentioned insulating material of the present invention. Particularly, an interlayer insulating film made of a plasma polymerized film is formed. Is the way to do it. That is, after arranging the substrate in the container in advance, an atmosphere consisting of the evaporation material of the above-mentioned insulating material is formed in the container, plasma is generated in the container, and the evaporation material is polymerized in the plasma while the surface of the substrate surface is being formed. Then, an interlayer insulating film made of the above insulating material is formed.

【0010】この発明における基体としては、シリコン
等からなる基板やこの基板上に形成された配線層等が挙
げられる。またこの発明は、例えば平行平板型のプラズ
マ重合装置、ECRプラズマ重合装置等のような通常の
プラズマ重合装置を用いて行うことができる。
Examples of the substrate in the present invention include a substrate made of silicon or the like, a wiring layer formed on the substrate, and the like. Further, the present invention can be carried out by using an ordinary plasma polymerization apparatus such as a parallel plate type plasma polymerization apparatus and an ECR plasma polymerization apparatus.

【0011】例えば平行平板型のプラズマ重合装置を用
いて基板表面に層間絶縁膜を形成する場合には、本発明
の容器となる真空チャンバー内に予め、基板と内部に上
記絶縁材料を配置したるつぼとを対向させて設置する。
なお、基板とるつぼとの間にはシャッターを配置してお
く。次いで真空チャンバー内をクライオポンプ等の負圧
源によって真空排気するとともに、るつぼを抵抗加熱等
の方法にて加熱する。またこのこととともに、真空チャ
ンバー内にアルゴン(Ar)、窒素(N2 )等の不活性
ガスを少量導入し、かつ真空チャンバー内に高周波を印
加して放電させることによりシャッターと基板との間に
不活性ガスのプラズマを発生させる。
For example, when an interlayer insulating film is formed on the surface of a substrate by using a parallel plate type plasma polymerization apparatus, a crucible in which the substrate and the above insulating material are arranged in advance in a vacuum chamber as a container of the present invention. And are installed facing each other.
A shutter is placed between the substrate and the crucible. Next, the inside of the vacuum chamber is evacuated by a negative pressure source such as a cryopump, and the crucible is heated by a method such as resistance heating. Along with this, a small amount of an inert gas such as argon (Ar) or nitrogen (N 2 ) is introduced into the vacuum chamber, and high frequency is applied to the vacuum chamber to discharge the gas. Inert plasma is generated.

【0012】上記るつぼの加熱により絶縁材料の真空チ
ャンバー内への蒸発が始まったら(通常、真空チャンバ
ー内の圧力が0.133×10-2〜0.133×10-3
Paにて200℃以上)、シャッターを開ける。このこ
とによって、蒸発物はプラズマ中で重合しながら基板表
面に堆積し、基板表面に上記絶縁材料からなる層間絶縁
膜が形成される。なお、この方法において蒸発の開始
は、真空チャンバーに取り付けた圧力計の圧力値が上昇
することで、蒸発が始まったことをモニタすることがで
きる。
When the evaporation of the insulating material into the vacuum chamber starts by heating the crucible (usually, the pressure in the vacuum chamber is 0.133 × 10 −2 to 0.133 × 10 −3).
At 200 ° C or higher at Pa), open the shutter. As a result, the vaporized material is deposited on the surface of the substrate while being polymerized in plasma, and an interlayer insulating film made of the above insulating material is formed on the surface of the substrate. In this method, the start of evaporation can be monitored by starting the evaporation by increasing the pressure value of the pressure gauge attached to the vacuum chamber.

【0013】この方法において、絶縁材料の主成分が上
記した本発明のケイ素フタロシアニン、無金属フタロシ
アニンからなる場合、プラズマ重合を行うと、1分子の
ケイ素フタロシアニン、無金属フタロシアニンのそれぞ
れのベンゼン環の炭素と、他のケイ素フタロシアニン、
無金属フタロシアニンのベンゼン環の炭素とが結合し
た、すなわち3次元的にマトリックスが拡がった構造を
なす層間絶縁膜が形成されると考えられる。また絶縁材
料の主成分が上記した本発明のケイ素ナフタロシアニ
ン、無金属ナフタロシアニンからなる場合にも同様に、
プラズマ重合を行うと、1分子のケイ素素ナフタロシア
ニン、無金属ナフタロシアニンのそれぞれのナフタレン
環の炭素と、他のケイ素ナフタロシアニン、無金属ナフ
タロシアニンのナフタレン環の炭素とが結合した、すな
わち3次元的にマトリックスが拡がった構造をなす層間
絶縁膜が形成されると考えられる。
In this method, when the main component of the insulating material is the above-mentioned silicon phthalocyanine or metal-free phthalocyanine of the present invention, when plasma polymerization is performed, one molecule of carbon of each benzene ring of silicon phthalocyanine and metal-free phthalocyanine is obtained. And other silicon phthalocyanines,
It is considered that the interlayer insulating film having a structure in which the carbon of the benzene ring of the metal-free phthalocyanine is bonded, that is, the structure in which the matrix is three-dimensionally expanded is formed. Similarly, when the main component of the insulating material is the above-described silicon naphthalocyanine of the present invention or metal-free naphthalocyanine,
When the plasma polymerization is performed, one molecule of silicon naphthalocyanine or carbon of each naphthalene ring of metal-free naphthalocyanine is bonded to carbon of another silicon naphthalocyanine or naphthalene ring of metal-free naphthalocyanine, that is, three-dimensional It is considered that an interlayer insulating film having a structure in which the matrix is expanded is formed.

【0014】[0014]

【作用】一般に、フタロシアニン誘導体、ナフタロシア
ニン誘導体は熱的に安定な化合物であることが知られて
いる。本発明の絶縁材料は、このようなフタロシアニン
誘導体、ナフタロシアニン誘導体を主成分としているの
で、高耐熱性の有機絶縁材料となる。また一般に、絶縁
材料では、フッ素原子が導入されると屈折率が下がるこ
とが知られており、また屈折率が下がると誘電率が低く
なることが知見されている。本発明の絶縁材料は、ケイ
素フタロシアニン、無金属フタロシアニン、ケイ素ナフ
タロシアニン、無金属ナフタロシアニンの分子内の芳香
環に結合している水素の少なくとも1個がフッ素原子で
置換されているものを主成分としているので、フッ素原
子で置換されていないものに比較して屈折率が低く、こ
の結果、誘電率の低いものとなる。
[Function] Generally, it is known that the phthalocyanine derivative and the naphthalocyanine derivative are thermally stable compounds. Since the insulating material of the present invention contains such a phthalocyanine derivative or naphthalocyanine derivative as a main component, it becomes a highly heat resistant organic insulating material. Further, it is generally known that the refractive index of an insulating material decreases when fluorine atoms are introduced, and that the dielectric constant decreases when the refractive index decreases. The insulating material of the present invention is mainly composed of silicon phthalocyanine, metal-free phthalocyanine, silicon naphthalocyanine, and metal-free naphthalocyanine in which at least one hydrogen bonded to an aromatic ring in the molecule is substituted with a fluorine atom. Therefore, the refractive index is lower than that of one not substituted with a fluorine atom, and as a result, the dielectric constant is low.

【0015】本発明の層間絶縁膜は、上記絶縁材料から
なるため、耐熱性が高い有機絶縁材料となる。よってこ
の層間絶縁膜を用いれば、層間絶縁膜の形成以降の半導
体素子の製造プロセスに制限が加わらない。また本発明
の層間絶縁膜は上記絶縁材料からなることから低誘電率
となるため、この層間絶縁膜を用いれば半導体素子にお
ける配線間の容量が低減し、また配線の信号伝播遅延等
が防止される。
Since the interlayer insulating film of the present invention is made of the above insulating material, it is an organic insulating material having high heat resistance. Therefore, if this interlayer insulating film is used, there is no restriction on the manufacturing process of the semiconductor element after the formation of the interlayer insulating film. Further, since the interlayer insulating film of the present invention has a low dielectric constant because it is made of the above insulating material, the capacitance between the wirings in the semiconductor element is reduced and the signal propagation delay of the wirings is prevented by using this interlayer insulating film. It

【0016】本発明の層間絶縁膜の形成方法では、上記
した本発明のケイ素フタロシアニン、無金属フタロシア
ニン、ケイ素ナフタロシアニン、無金属ナフタロシアニ
ンの分子が3次元的にマトリックスが拡がった構造の層
間絶縁膜が形成されるため、高耐熱性を有しかつ低誘電
率であるととも、強度的に高い層間絶縁膜が形成され
る。
In the method for forming an interlayer insulating film according to the present invention, the interlayer insulating film having a structure in which the molecules of the above-mentioned silicon phthalocyanine, metal-free phthalocyanine, silicon naphthalocyanine and metal-free naphthalocyanine are three-dimensionally spread in a matrix. Thus, an interlayer insulating film having high heat resistance and a low dielectric constant and high strength is formed.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。なお、本
発明は以下の実施例により制限を受けるものではないの
は言うまでもない。 (実施例1)予め、前焼成しかつ充分洗浄した石英るつ
ぼを備えた前述の平行平板型のプラズマ重合装置を用意
し、このるつぼ内に、完全フッ素置換無金属フタロシア
ニンをほぼ100%成分とする絶縁材料を5g配置し、
また真空チャンバー内に基板を配置した。次いで真空チ
ャンバー内を真空排気しながらるつぼを加熱し、絶縁材
料を蒸発させた。加熱温度が200℃になったところで
一旦加熱を抑えて、蒸発物に含まれている不純物をシャ
ッターに付着させた後、シャッターを開けた。また上記
絶縁材料の蒸発を行うとともに、真空チャンバー内にA
rガスを導入し、かつ周波数が13.56MHzの高周
波を印加してプラズマを発生させ、10分間程度、基板
上への層間絶縁膜の成膜を行った。なお、成膜の際、A
rガスの流量を50sccm、真空チャンバー内の圧力
を50Pa、高周波の周波数を13.56MHz、高周
波電力を30Wとした。
EXAMPLES Examples of the present invention will be described below. Needless to say, the present invention is not limited to the examples below. (Example 1) The parallel plate type plasma polymerization apparatus described above provided with a quartz crucible that was pre-fired and thoroughly washed was prepared in advance, and the completely fluorine-substituted metal-free phthalocyanine was contained in this crucible as a 100% component. Place 5g of insulating material,
The substrate was placed in the vacuum chamber. Then, the vacuum chamber was evacuated, and the crucible was heated to evaporate the insulating material. When the heating temperature reached 200 ° C., the heating was once suppressed, the impurities contained in the evaporated material were attached to the shutter, and then the shutter was opened. In addition, the insulating material is vaporized and A
An r gas was introduced, and a high frequency of 13.56 MHz was applied to generate plasma, and an interlayer insulating film was formed on the substrate for about 10 minutes. During film formation, A
The flow rate of r gas was 50 sccm, the pressure in the vacuum chamber was 50 Pa, the frequency of the high frequency was 13.56 MHz, and the high frequency power was 30 W.

【0018】この操作により形成された層間絶縁膜の比
誘電率を測定したところ、3.0であった。またDTA
(Differential Thermal Analysis;示差熱分析) により
耐熱温度を測定したところ、730℃であった。したが
って、上記のごとく形成された層間絶縁膜は、従来のも
の比較して高耐熱性を有し、かつ低誘電率であることが
確認された。
When the relative dielectric constant of the interlayer insulating film formed by this operation was measured, it was 3.0. Also DTA
The heat resistant temperature was measured by (Differential Thermal Analysis) and found to be 730 ° C. Therefore, it was confirmed that the interlayer insulating film formed as described above has higher heat resistance and lower dielectric constant than the conventional one.

【0019】(実施例2)実施例1における絶縁材料
を、完全フッ素置換無金属ナフタロシアニンをほぼ10
0%とする絶縁材料に替えた以外は実施例1と同様にし
て層間絶縁膜の形成を行った。この操作により形成され
た層間絶縁膜の比誘電率は2.7であった。また実施例
1と同様のDTAにより耐熱温度を測定したところ、8
20℃であった。この結果から、上記のごとく形成され
た層間絶縁膜も高耐熱性を有し、かつ低誘電率であるこ
とが確認された。
(Embodiment 2) The insulating material used in Embodiment 1 is approximately 10% of fluorine-free metal-free naphthalocyanine.
An interlayer insulating film was formed in the same manner as in Example 1 except that the insulating material was changed to 0%. The relative dielectric constant of the interlayer insulating film formed by this operation was 2.7. When the heat resistant temperature was measured by the same DTA as in Example 1, it was 8
It was 20 ° C. From this result, it was confirmed that the interlayer insulating film formed as described above also has high heat resistance and a low dielectric constant.

【0020】(実施例3)実施例1における絶縁材料
を、完全フッ素置換無金属フタロシアニンおよび完全フ
ッ素置換無金属ナフタロシアニン(重量比1:1)から
なる絶縁材料に替えた以外は実施例1と同様にして層間
絶縁膜の形成を行った。この操作により形成された層間
絶縁膜の比誘電率は2.9であった。また実施例1と同
様のDTAにより耐熱温度を測定したところ、780℃
であった。よって、高耐熱性を有し、かつ低誘電率の層
間絶縁膜が形成されたことが確認された。
(Example 3) Example 1 was repeated except that the insulating material in Example 1 was replaced with an insulating material composed of completely fluorine-substituted metal-free phthalocyanine and completely fluorine-substituted metal-free naphthalocyanine (weight ratio 1: 1). Similarly, an interlayer insulating film was formed. The relative dielectric constant of the interlayer insulating film formed by this operation was 2.9. Further, the heat resistant temperature was measured by the same DTA as in Example 1 and found to be 780 ° C.
Met. Therefore, it was confirmed that an interlayer insulating film having high heat resistance and a low dielectric constant was formed.

【0021】(実施例4)実施例1における絶縁材料
を、完全フッ素置換ケイ素フタロシアニンをほぼ100
%とする絶縁材料に替えた以外は実施例1と同様にして
層間絶縁膜の形成を行った。この操作により形成された
層間絶縁膜の比誘電率は3.1であった。また実施例1
と同様のDTAにより耐熱温度を測定したところ、71
0℃であった。この結果から、上記のごとく形成された
層間絶縁膜も高耐熱性を有し、かつ低誘電率であること
が確認された。
(Embodiment 4) The insulating material used in Embodiment 1 is substantially 100% fluorine-substituted silicon phthalocyanine.
The interlayer insulating film was formed in the same manner as in Example 1 except that the insulating material was changed to 100%. The relative dielectric constant of the interlayer insulating film formed by this operation was 3.1. Example 1
When the heat resistant temperature was measured by the same DTA as
It was 0 ° C. From this result, it was confirmed that the interlayer insulating film formed as described above also has high heat resistance and a low dielectric constant.

【0022】(実施例5)実施例1における絶縁材料
を、完全フッ素置換ケイ素ナフタロシアニンをほぼ10
0%とする絶縁材料に替えた以外は実施例1と同様にし
て層間絶縁膜の形成を行った。この操作により形成され
た層間絶縁膜の比誘電率は2.8であった。また実施例
1と同様のDTAにより耐熱温度を測定したところ、8
00℃であった。したがって、高耐熱性を有し、かつ低
誘電率の層間絶縁膜が形成されたことが確認された。
(Embodiment 5) The insulating material used in Embodiment 1 is approximately 10% of fluorine-substituted silicon naphthalocyanine.
An interlayer insulating film was formed in the same manner as in Example 1 except that the insulating material was changed to 0%. The relative dielectric constant of the interlayer insulating film formed by this operation was 2.8. When the heat resistant temperature was measured by the same DTA as in Example 1, it was 8
It was 00 ° C. Therefore, it was confirmed that an interlayer insulating film having high heat resistance and a low dielectric constant was formed.

【0023】(実施例6)実施例1における絶縁材料
を、完全フッ素置換テトラメトキシ無金属フタロシアニ
ンをほぼ100%とする絶縁材料に替えた以外は実施例
1と同様にして層間絶縁膜の形成を行った。この操作に
より形成された層間絶縁膜の比誘電率は3.1であっ
た。また実施例1と同様のDTAにより耐熱温度を測定
したところ、680℃であった。したがって、上記のご
とく形成された層間絶縁膜も高耐熱性を有し、かつ低誘
電率であることが確認された。
(Example 6) An interlayer insulating film was formed in the same manner as in Example 1 except that the insulating material in Example 1 was changed to an insulating material containing 100% of completely fluorine-substituted tetramethoxy metal-free phthalocyanine. went. The relative dielectric constant of the interlayer insulating film formed by this operation was 3.1. Further, the heat resistant temperature was measured by the same DTA as in Example 1, and it was 680 ° C. Therefore, it was confirmed that the interlayer insulating film formed as described above also has high heat resistance and a low dielectric constant.

【0024】(実施例7)実施例1における絶縁材料
を、部分フッ素置換無金属フタロシアニンをほぼ100
%とする絶縁材料に替えた以外は実施例1と同様にして
層間絶縁膜の形成を行った。なお、この絶縁材料は、フ
ッ素原子が無金属フタロシアニンのベンゼン環に16〜
4個結合した混合物からなるものである。この操作によ
り形成された層間絶縁膜の比誘電率は3.3であった。
また実施例1と同様のDTAにより耐熱温度を測定した
ところ、630℃であった。したがって、上記のごとく
形成された層間絶縁膜も高耐熱性を有し、かつ低誘電率
であることが確認された。
(Embodiment 7) The insulating material used in Embodiment 1 is approximately 100% of partially fluorine-substituted metal-free phthalocyanine.
The interlayer insulating film was formed in the same manner as in Example 1 except that the insulating material was changed to 100%. In addition, in this insulating material, fluorine atoms are contained in the benzene ring of metal-free phthalocyanine in an amount of 16 to
It consists of a mixture of four bonded together. The relative dielectric constant of the interlayer insulating film formed by this operation was 3.3.
Further, the heat resistant temperature was measured by the same DTA as in Example 1, and it was 630 ° C. Therefore, it was confirmed that the interlayer insulating film formed as described above also has high heat resistance and a low dielectric constant.

【0025】[0025]

【発明の効果】以上説明したように本発明の絶縁材料
は、熱的に安定なフタロシアニン誘導体、ナフタロシア
ニン誘導体を主成分としており、かつこの主成分にフッ
素原子が導入されているので、高耐熱性を有しかつ低誘
電率の有機絶縁材料となる。また本発明の層間絶縁膜は
上記絶縁材料からなることから耐熱性が高いため、この
層間絶縁膜を用いれば、層間絶縁膜の形成以降、製造プ
ロセスに制限を加えることなく半導体素子を製造するこ
とができる。また本発明の層間絶縁膜は上記絶縁材料か
らなることから低誘電率であるため、この層間絶縁を用
いれば半導体素子における配線間の容量の低減を図るこ
とができるとともに、配線の信号伝播速度を高速化する
ことができる。本発明の層間絶縁膜の形成方法では、上
記絶縁材料がプラズマにより重合することによって形成
されるので、高耐熱性を有しかつ低誘電率であるとと
も、強度的に高い層間絶縁膜を形成することができる。
したがって、この方法を用いれば、信頼性の高い配線を
有する半導体素子を製造することが可能となる。
INDUSTRIAL APPLICABILITY As described above, the insulating material of the present invention has a thermally stable phthalocyanine derivative and naphthalocyanine derivative as a main component, and a fluorine atom is introduced into this main component. It becomes an organic insulating material having properties and a low dielectric constant. Since the interlayer insulating film of the present invention is made of the above-mentioned insulating material and has high heat resistance, the use of this interlayer insulating film allows the semiconductor element to be manufactured without limiting the manufacturing process after the formation of the interlayer insulating film. You can Since the interlayer insulating film of the present invention is made of the above insulating material and has a low dielectric constant, the use of this interlayer insulating can reduce the capacitance between the wirings in the semiconductor element, and can improve the signal propagation speed of the wirings. It can speed up. In the method for forming an interlayer insulating film of the present invention, since the insulating material is formed by polymerizing with plasma, an interlayer insulating film having high heat resistance and low dielectric constant and high strength is formed. can do.
Therefore, by using this method, it is possible to manufacture a semiconductor element having highly reliable wiring.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C07D 487/22 C07D 487/22 C07F 7/10 C07F 7/10 Q (58)調査した分野(Int.Cl.7,DB名) H01B 3/16 - 3/56 CA(STN) REGISTRY(STN)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI // C07D 487/22 C07D 487/22 C07F 7/10 C07F 7/10 Q (58) Fields investigated (Int.Cl. 7 , DB name) H01B 3/16-3/56 CA (STN) REGISTRY (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体素子に形成される層間絶縁膜であ
って、 分子内の芳香環に結合している水素の少なくとも1個が
フッ素原子で置換されたケイ素フタロシアニンまたは無
金属フタロシアニンと、分子内の芳香環に結合している
水素の少なくとも1個がフッ素原子で置換されたケイ素
ナフタロシアニンまたは無金属ナフタロシアニンとのう
ちの少なくとも1種を主成分とする絶縁材料からなるこ
とを特徴とする層間絶縁膜。
1. An interlayer insulating film formed on a semiconductor device, comprising : a silicon phthalocyanine or a metal-free phthalocyanine in which at least one hydrogen bonded to an aromatic ring in the molecule is substituted with a fluorine atom; Characterized in that at least one of the hydrogens bonded to the aromatic ring is composed of an insulating material containing at least one of silicon naphthalocyanine or metal-free naphthalocyanine substituted with a fluorine atom as a main component. Insulating film.
【請求項2】 半導体素子の 基体表面に層間絶縁膜を形
成する方法であって、 予め容器内に前記基体を配置した後、分子内の芳香環に
結合している水素の少なくとも1個がフッ素原子で置換
されたケイ素フタロシアニンまたは無金属フタロシアニ
ンと、分子内の芳香環に結合している水素の少なくとも
1個がフッ素原子で置換されたケイ素ナフタロシアニン
または無金属ナフタロシアニンとのうちの少なくとも1
種を主成分とする絶縁材料の蒸発物からなる雰囲気を前
記容器内に形成するとともに、前記容器内にプラズマを
発生させ、前記蒸発物を重合させつつ前記基体表面に前
記絶縁材料からなる層間絶縁膜を形成することを特徴と
する層間絶縁膜の形成方法。
2. A method of forming an interlayer insulating film on the surface of a substrate of a semiconductor device , wherein at least one hydrogen bonded to an aromatic ring in a molecule is fluorine after the substrate is previously placed in a container. At least one of an atom-substituted silicon phthalocyanine or a metal-free phthalocyanine and a silicon naphthalocyanine or a metal-free naphthalocyanine in which at least one hydrogen bonded to an aromatic ring in the molecule is replaced by a fluorine atom.
An atmosphere composed of an evaporation material of an insulating material containing a seed as a main component is formed in the container, plasma is generated in the container, and the evaporation material is polymerized to form an interlayer insulation film composed of the insulating material on the surface of the substrate. A method for forming an interlayer insulating film, which comprises forming a film.
JP12765695A 1995-05-26 1995-05-26 Interlayer insulating film and method of forming interlayer insulating film Expired - Fee Related JP3401993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12765695A JP3401993B2 (en) 1995-05-26 1995-05-26 Interlayer insulating film and method of forming interlayer insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12765695A JP3401993B2 (en) 1995-05-26 1995-05-26 Interlayer insulating film and method of forming interlayer insulating film

Publications (2)

Publication Number Publication Date
JPH08321217A JPH08321217A (en) 1996-12-03
JP3401993B2 true JP3401993B2 (en) 2003-04-28

Family

ID=14965491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12765695A Expired - Fee Related JP3401993B2 (en) 1995-05-26 1995-05-26 Interlayer insulating film and method of forming interlayer insulating film

Country Status (1)

Country Link
JP (1) JP3401993B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942328A (en) 1996-02-29 1999-08-24 International Business Machines Corporation Low dielectric constant amorphous fluorinated carbon and method of preparation
US5989998A (en) 1996-08-29 1999-11-23 Matsushita Electric Industrial Co., Ltd. Method of forming interlayer insulating film
US6414377B1 (en) 1999-08-10 2002-07-02 International Business Machines Corporation Low k dielectric materials with inherent copper ion migration barrier

Also Published As

Publication number Publication date
JPH08321217A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP3290339B2 (en) Method for forming a fluorosilicate glass layer
KR100404536B1 (en) LOW κ DIELECTRIC INORGANIC/ORGANIC HYBRID FILMS AND METHOD OF MAKING
KR100447684B1 (en) Organosilicon precursors for interlayer dielectric films with low dielectric constants
US6162743A (en) Low dielectric constant film and method thereof
US20020142579A1 (en) Organosilicon precursors for interlayer dielectric films with low dielectric constants
TWI282124B (en) Insulating film material containing an organic silane compound, its production method and semiconductor device
TWI398446B (en) A silicon-containing film-forming material, a silicon-containing insulating film, and a method for forming the same
US7488507B2 (en) Capacitor with plasma deposited dielectric
TWI729417B (en) Silicon compounds and methods for depositing films using same
WO2001001472A1 (en) Method and apparatus for forming a film on a substrate
US7056839B2 (en) Method of forming a silica insulation film with a reduced dielectric constant
JP3401993B2 (en) Interlayer insulating film and method of forming interlayer insulating film
US20100140754A1 (en) Film-forming material, silicon-containing insulating film and method for forming the same
JPH098031A (en) Manufacture of insulation film by means of chemical vapor phase epitaxy
EP0221156A1 (en) Method of making a device comprising a patterned aluminum layer.
JPH066789B2 (en) Deposition method of borophosphosilicate glass
US6770575B2 (en) Method for improving thermal stability of fluorinated amorphous carbon low dielectric constant materials
JP4333480B2 (en) Si-containing film forming material and use thereof
KR20070111443A (en) Deposition of polymeric materials and precursors therefor
WO2004090019A1 (en) Organo-silsesquioxane polymers for forming low-k dielectrics
KR20190047646A (en) Silacyclic compounds and methods for depositing silicon-containing films using same
CN101124351A (en) Deposition of polymeric materials and precursors therefor
US20100003835A1 (en) Low-K Precursors Based on Silicon Cryptands, Crown Ethers and Podands
US6656855B2 (en) Deposition method of dielectric films having a low dielectric constant
JP4341560B2 (en) Si-containing film forming material, Si-containing film, method for producing Si-containing film, and semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees