JP3396906B2 - Flow measurement device - Google Patents

Flow measurement device

Info

Publication number
JP3396906B2
JP3396906B2 JP6853493A JP6853493A JP3396906B2 JP 3396906 B2 JP3396906 B2 JP 3396906B2 JP 6853493 A JP6853493 A JP 6853493A JP 6853493 A JP6853493 A JP 6853493A JP 3396906 B2 JP3396906 B2 JP 3396906B2
Authority
JP
Japan
Prior art keywords
signal
frequency
receiving
reception
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6853493A
Other languages
Japanese (ja)
Other versions
JPH06282788A (en
Inventor
良雄 堀池
雅弘 山本
康男 ▲よし▼村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP6853493A priority Critical patent/JP3396906B2/en
Publication of JPH06282788A publication Critical patent/JPH06282788A/en
Application granted granted Critical
Publication of JP3396906B2 publication Critical patent/JP3396906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスメータや水道メー
タ、電力メータ等によりガス、水道、電気等の使用量の
積算値を計測し、データ収集装置に前記積算値を吸い上
げるための流量計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring an integrated value of the amount of gas, water, electricity, etc. used by a gas meter, a water meter, an electric power meter or the like and sucking the integrated value into a data collecting device. It is about.

【0002】[0002]

【従来の技術】近年、電話回線等を利用して遠隔よりメ
ータで計測した積算値を吸い上げるいわゆる自動検針シ
ステムが導入されてきている。さらに電話回線とメータ
との間を無線回線により接続するこころみもなされてい
る。図6A及び図6Bに従来の流量計測装置を用いた自
動検針システムのブロック図を示し説明する。図6Aに
おいて1は家庭に配管されたガス配管、2はガス配管1
の途中に設けられ対象家庭でのガスの使用量を計測する
ガス流量計(いわゆるガスメータとよばれる)、3は記
憶手段、4は電圧制御発振器(以下VCO:Voltage Co
ntroled Oscillatorと呼ぶ)、5は送信手段、6は制御
手段、7は受信手段、8はアンテナである。受信手段7
は増幅手段8、ミキシング手段9、発振手段10、増幅
手段11、ミキシング手段12、発振手段13、増幅手
段14、復調手段15より構成されている。図6Bにお
いて16は公衆電話回線、17は公衆電話回線16に接
続されるノーリンギング網制御手段(以下T−NCU:
Terminal-Network Control Unitと呼ぶ)、18はイン
ターフェース手段、19は電圧制御発振器(以下VC
O:Voltage Controled Oscillatorと呼ぶ)、20は送
信手段、21は制御手段、22は受信手段、23はアン
テナである。受信手段22は増幅手段24、ミキシング
手段25、発振手段26、増幅手段27、ミキシング手
段28、発振手段29、増幅手段30、復調手段31よ
り構成されている。電話回線16には検針データを管理
する管理装置(図6には図示せず)が接続され電話回線
16を介してT−NCU17を呼び出す。呼び出された
T−NCU17はインターフェース手段18に検針デー
タ要求信号を出力する。インターフェース手段18は入
力した検針データ要求信号をレベル及び波形変換してV
CO19に出力する。VCO19では検針データ要求信
号により発振信号が周波数変調される。VCO19によ
り周波数変調された信号は送信手段20により増幅され
アンテナ23より空間に電波として放射される。放射さ
れる電波は、例えば近年小電力無線として利用が認めら
れている400MHz帯の電波である。アンテナ23より
放射された電波はアンテナ8で受信され増幅手段8に導
かれる。増幅手段8では400MHz帯の受信信号を増幅
し、ミキシング手段9で発振手段10からの信号とかけ
算を行い20MHz帯の信号に周波数変換する。周波数変
換された受信信号は増幅手段11で希望信号付近の信号
だけが選択増幅され、さらにミキシング手段12におい
て発振手段13からの信号とかけ算を行い455kHzの
信号に周波数変換される。455kHzに周波数変換され
た受信信号は、増幅手段14において455kHzを中心
とした帯域の狭いフィルタを通した後増幅される。そし
て復調手段15で周波数検波され検針データ要求信号が
復調手段15より出力する。記憶手段3にはガス流量計
2において計測したガス流量の積算値が記憶されてい
る。そして制御手段6は検針データ要求信号を受信する
と記憶手段3及び送信手段5を起動する。すると記憶手
段3に記憶されている積算データによりVCO4の発振
信号は周波数変調され、送信手段5で周波数変調された
信号が増幅されアンテナ8より空間に電波として放射さ
れる。アンテナ8より放射される電波の周波数はアンテ
ナ23より放射される電波の周波数と同じ周波数であ
る。この積算データにより周波数変調された電波はアン
テナ23で受信され増幅手段24に導かれる。増幅手段
24では400MHz帯の受信信号を増幅し、ミキシング
手段25で発振手段26からの信号とかけ算を行い20
MHz帯の信号に周波数変換する。周波数変換された受信
信号は増幅手段27で希望信号付近の信号だけが選択増
幅され、さらにミキシング手段28において発振手段2
9からの信号とかけ算を行い455kHzの信号に周波数
変換される。455kHzに周波数変換された受信信号
は、増幅手段30において455kHzを中心とした帯域
の狭いフィルタを通した後増幅される。そして復調手段
31で周波数検波され積算データが復調手段31より出
力する。制御手段21では積算データを受信すると送信
手段20を起動してガス流量計に対して積算データを受
信したことを知らせる応答信号をアンテナ23を介して
送信すると同時に、インターフェース18を介してT−
NCU17を起動し、電話回線16に積算データを送出
する。
2. Description of the Related Art In recent years, a so-called automatic meter reading system has been introduced which absorbs an integrated value measured by a meter from a remote place using a telephone line or the like. In addition, it has been attempted to connect the telephone line and the meter by a wireless line. 6A and 6B are block diagrams of an automatic meter-reading system using a conventional flow rate measuring device, which will be described. In FIG. 6A, 1 is a gas pipe connected to a home, 2 is a gas pipe 1
A gas flow meter (so-called gas meter) that is provided on the way to measure the amount of gas used in the target household, 3 is a storage means, and 4 is a voltage controlled oscillator (hereinafter referred to as VCO: Voltage Co).
(referred to as "ntrolled oscillator"), 5 is a transmitting means, 6 is a controlling means, 7 is a receiving means, and 8 is an antenna. Receiving means 7
Is composed of amplification means 8, mixing means 9, oscillation means 10, amplification means 11, mixing means 12, oscillation means 13, amplification means 14, and demodulation means 15. In FIG. 6B, reference numeral 16 is a public telephone line, and 17 is a no-ringing network control means (hereinafter T-NCU :) connected to the public telephone line 16.
Terminal-Network Control Unit), 18 is an interface means, 19 is a voltage controlled oscillator (hereinafter VC)
O: Voltage Controlled Oscillator), 20 is transmitting means, 21 is control means, 22 is receiving means, and 23 is an antenna. The receiving means 22 comprises an amplifying means 24, a mixing means 25, an oscillating means 26, an amplifying means 27, a mixing means 28, an oscillating means 29, an amplifying means 30, and a demodulating means 31. A management device (not shown in FIG. 6) for managing the meter reading data is connected to the telephone line 16 and calls the T-NCU 17 via the telephone line 16. The called T-NCU 17 outputs a meter reading data request signal to the interface unit 18. The interface unit 18 converts the input meter reading data request signal into a level and a waveform and outputs V.
Output to CO19. In the VCO 19, the oscillation signal is frequency-modulated by the meter reading data request signal. The signal frequency-modulated by the VCO 19 is amplified by the transmitting means 20 and radiated as a radio wave from the antenna 23 into the space. The radiated radio wave is, for example, a radio wave in the 400 MHz band, which has been approved for use as a low power radio in recent years. The radio wave radiated from the antenna 23 is received by the antenna 8 and guided to the amplification means 8. The amplifying means 8 amplifies the received signal in the 400 MHz band, and the mixing means 9 multiplies the signal from the oscillating means 10 to frequency-convert it into a signal in the 20 MHz band. Of the frequency-converted received signal, only the signal in the vicinity of the desired signal is selectively amplified by the amplifying means 11, and further mixed with the signal from the oscillating means 13 in the mixing means 12 to be frequency-converted into a 455 kHz signal. The reception signal frequency-converted to 455 kHz is amplified by the amplifying means 14 after passing through a filter having a narrow band centering on 455 kHz. Then, the demodulation means 15 detects the frequency and outputs a meter reading data request signal from the demodulation means 15. The storage unit 3 stores the integrated value of the gas flow rate measured by the gas flow meter 2. When the control means 6 receives the meter reading data request signal, the control means 6 activates the storage means 3 and the transmission means 5. Then, the oscillation signal of the VCO 4 is frequency-modulated by the integrated data stored in the storage means 3, and the frequency-modulated signal is amplified by the transmission means 5 and is radiated as a radio wave into the space from the antenna 8. The frequency of the radio wave radiated from the antenna 8 is the same as the frequency of the radio wave radiated from the antenna 23. The radio wave frequency-modulated by the integrated data is received by the antenna 23 and guided to the amplification means 24. The amplifying means 24 amplifies the received signal in the 400 MHz band, and the mixing means 25 multiplies it with the signal from the oscillating means 26.
Converts frequency to MHz band signal. In the frequency-converted received signal, only the signal in the vicinity of the desired signal is selectively amplified by the amplification means 27, and the mixing means 28 further oscillates the oscillation means 2.
The signal from 9 is multiplied and the frequency is converted to a signal of 455 kHz. The reception signal frequency-converted to 455 kHz is amplified by the amplifying means 30 after passing through a filter having a narrow band centering on 455 kHz. Then, the demodulation means 31 frequency-detects and the integrated data is output from the demodulation means 31. When the control means 21 receives the integrated data, it activates the transmitting means 20 to send a response signal to the gas flow meter indicating that the integrated data has been received via the antenna 23, and at the same time, via the interface 18, T-.
The NCU 17 is activated and the integrated data is sent to the telephone line 16.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、下記する問題点があった。
However, the above conventional structure has the following problems.

【0004】(1)外部に設置される流量計測装置は温
度等の環境状況がきびしく、−30℃〜70℃の温度変
化に対して高い信頼性を要求される。特に検針データに
基づきガス利用者より料金を徴収することになるため確
実に検針データを収集する必要がある。しかしながらV
CO4または19、発振手段10または26、発振手段
13または29と多くの発振器を有しており、そのため
すべての発振器の温度による発振周波数の変動をある値
以下に押えなければならない困難さがあった。
(1) The flow rate measuring device installed outside has severe environmental conditions such as temperature, and is required to have high reliability against a temperature change of -30 ° C to 70 ° C. In particular, it is necessary to collect the meter-reading data without fail because a fee is collected from the gas user based on the meter-reading data. However V
Since it has many oscillators such as CO4 or 19, oscillating means 10 or 26, oscillating means 13 or 29, it is difficult to suppress the fluctuation of the oscillating frequency due to the temperature of all the oscillators to a certain value or less. .

【0005】(2)流量計は流量を流量を計測するため
の流路部分が大きな体積上のウエイトを占めており電気
回路部分を実装するには構成上の工夫が必要である。し
かしながら400MHz帯の増幅手段8及び24、20MHz
帯の増幅手段11及び27、455kHzの増幅手段14
及び30にそれぞれ帯域の狭い急峻な減衰特性を持つ帯
域フィルタが必要であり、前記帯域フィルタとして水晶
やセラミックの機械的振動特性を利用したメカニカルフ
ィルタが用いられている。そのため電気回路部分の形状
が大きくなり実装するのが大変であった。
(2) In the flow meter, the flow path portion for measuring the flow rate occupies a large volume weight, and therefore a device for construction is required to mount the electric circuit portion. However, 400MHz band amplification means 8 and 24, 20MHz
Band amplification means 11 and 27, 455 kHz amplification means 14
And 30 each require a band-pass filter having a narrow band and steep attenuation characteristics. As the band-pass filter, a mechanical filter utilizing the mechanical vibration characteristics of crystal or ceramic is used. Therefore, the shape of the electric circuit portion becomes large and it is difficult to mount.

【0006】さらに20MHz帯の増幅手段11または2
7、や455kHzの増幅手段14または30により小さ
なレベルの高周波信号を大きなレベルの高周波信号にな
るよう大きな増幅度で増幅しなければならない。そのた
め高周波回路の実装に大きな注意を払わなければなら
ず、高周波回路になれない流量計の組み立て者にとって
は非常に困難な作業であった。
Further, the amplification means 11 or 2 for the 20 MHz band
The high-frequency signal of a small level must be amplified with a large amplification degree by the amplifying means 14 or 30 of 7, or 455 kHz. Therefore, great care must be taken in mounting the high-frequency circuit, which is a very difficult task for the assembler of the flow meter that cannot be a high-frequency circuit.

【0007】本発明は上記課題を解決するもので、過酷
な使用環境下であっても信頼性高く検針データの収集を
行うことができ、かつ製造のしやすい流量計測装置を実
現することを目的としたものである。
The present invention solves the above problems, and an object of the present invention is to realize a flow rate measuring device which can collect meter reading data with high reliability even in a severe environment of use and is easy to manufacture. It is what

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の流量計測装置は、流量計での計測データを
計測記憶する記憶手段と、前記記憶手段からの計測デー
タを搬送波信号に乗せて送信する送信手段と、前記記憶
手段からの計測データの送信を要求する要求信号あるい
は前記計測データに対する応答信号を受信する受信手段
と、前記受信手段で受信する受信信号のレベルを検出す
る受信レベル検出手段と、前記受信手段で受信する受信
信号レベルを調整する受信レベル調整手段と、前記受信
レベル検出手段からの受信レベルに対応してあらかじめ
定めた複数個の出力信号のうちの一つを前記受信レベル
調整手段に出力し受信レベルを制御する受信レベル制御
手段と、前記受信レベル制御手段を起動するための起動
端子とを有し、前記受信手段は受信すべき搬送波信号周
波数に近い周波数で発振する発振手段と、前記発振手段
からの信号と受信信号の差信号を取り出す第一のミキシ
ング手段と、前記発振手段からの信号を位相推移させた
信号と受信信号の差信号を取り出す第二のミキシング手
段と、前記第一のミキシング手段からの信号と前記第二
のミキシング手段からの信号の間の位相差を検出する位
相差検出手段と、前記受信すべき搬送波信号周波数と前
記発振手段からの信号周波数の差を検出し、前記周波数
差をなくす方向に前記発振手段の発振周波数を制御する
周波数補正手段を備えたものである。
In order to achieve the above object, a flow rate measuring device of the present invention comprises a storage means for measuring and storing measurement data of a flow meter, and the measurement data from the storage means into a carrier signal. Transmission means for carrying and transmitting, reception means for receiving a request signal requesting transmission of measurement data from the storage means or a response signal to the measurement data, and reception for detecting the level of a reception signal received by the reception means Level detection means, reception level adjustment means for adjusting the reception signal level received by the reception means, and one of a plurality of predetermined output signals corresponding to the reception level from the reception level detection means A reception level control means for outputting to the reception level adjustment means to control the reception level; and an activation terminal for activating the reception level control means, The receiving means includes an oscillating means that oscillates at a frequency close to a carrier signal frequency to be received, a first mixing means that extracts a difference signal between the signal from the oscillating means and the received signal, and a phase shift of the signal from the oscillating means. Second mixing means for extracting a difference signal between the received signal and the received signal, and a phase difference detecting means for detecting a phase difference between the signal from the first mixing means and the signal from the second mixing means, A frequency correction means is provided for detecting a difference between the frequency of the carrier signal to be received and the signal frequency from the oscillating means, and controlling the oscillating frequency of the oscillating means in the direction of eliminating the frequency difference.

【0009】[0009]

【作用】本発明は上記構成によって、発振器の数を減ら
しかつ高周波増幅段を少なくすることができるため、過
酷な使用環境下であっても信頼性高く検針データの収集
を行うことができ、かつ製造のしやすい流量計測装置を
実現できることとなる。
According to the present invention, since the number of oscillators can be reduced and the number of high frequency amplification stages can be reduced by the above configuration, meter reading data can be collected with high reliability even in a harsh operating environment, and A flow rate measuring device that is easy to manufacture can be realized.

【0010】[0010]

【実施例】以下本発明の実施例を図1、図2を参照して
説明する。なお図6の従来例と同一の機能ブロックには
同一の番号を付与している。図1において1は家庭に配
管されたガス配管、2はガス配管1の途中に設けられ対
象家庭でのガスの使用量を計測するガス流量計(いわゆ
るガスメータとよばれる)、3は記憶手段、32はVC
O、5は送信手段、6は制御手段、7は受信手段、8は
アンテナ、43は受信レベル検出手段、44は受信レベ
ル制御手段である。受信手段7は、受信レベル調整手段
33、ミキシング手段34および35、90゜位相シフ
ター36、隣接チャンネル信号を除去するための低域フ
ィルタ37及び38、低周波増幅手段39及び40、位
相差検出手段41、周波数補正手段42で構成されてい
る。なおVCO32は受信手段7の一部でもある。図2
において16は公衆電話回線、17は公衆電話回線16
に接続されるT−NCU、18はインターフェース手
段、45はVCO、20は送信手段、21は制御手段、
22は受信手段、23はアンテナ、56は受信レベル検
出手段、57は受信レベル制御手段である。受信手段2
2は、受信レベル調整手段46、ミキシング手段48お
よび49、90゜位相シフター47、隣接チャンネル信
号を除去するための低域フィルタ50及び51、低周波
増幅手段52及び53、位相差検出手段54、周波数補
正手段55で構成されている。なおVCO45は受信手
段22の一部でもある。電話回線16には検針データを
管理する管理装置(図2には図示せず)が接続され電話
回線16を介してT−NCU17を呼び出す。呼び出さ
れたT−NCU17はインターフェース手段18に検針
データ要求信号を出力する。インターフェース手段18
は入力した検針データ要求信号をレベル及び波形変換し
てVCO45に出力する。VCO45では検針データ要
求信号により発振信号が周波数変調される。VCO45
により周波数変調された信号は送信手段20により増幅
されアンテナ23より空間に電波として放射される。放
射される電波は、例えば近年小電力無線として利用が認
められている400MHz帯の電波である。アンテナ23
より放射された電波はアンテナ8で受信され受信レベル
調整手段33に導かれる。受信レベル調整手段33では
400MHz帯の受信信号を増幅あるいは減衰させる。さ
てアンテナ8に S=cos{ω+p(t)*△ω}*t p(t):1またはー1
の符号列 ω:搬送波角周波数 △ω:角周波数偏移 で表わされるFSK信号Sが入力した場合について考え
る。FSK信号Sはミキシング手段34、35に入力す
る。VCO32では Q=COS{ω+x}*t x:搬送波角周波数ωからの
発振角周波数誤差 で表わされる信号Qを発生する。90゜位相シフター3
6ではVCO32からの信号Qが90゜位相シフトされ
Q’=SIN{ω+x}tとなる。ミキシング手段34ではVC
O32からの信号QとFSK信号Sのかけ算が行なわれ
る。ミキシング手段35では90゜位相シフター36ら
の信号Q’とFSK信号のかけ算が行なわれる。そして
低域フィルタ37、38により希望信号以外の高周波成
分が除去され、低周波増幅手段39、40により希望信
号が増幅される。従って端子a及び端子bには次の信号
が出力する。
Embodiments of the present invention will be described below with reference to FIGS. The same functional blocks as those in the conventional example of FIG. 6 are given the same numbers. In FIG. 1, 1 is a gas pipe connected to a home, 2 is a gas flow meter (so-called gas meter) provided in the middle of the gas pipe 1 for measuring the amount of gas used in the target home, 3 is a storage means, 32 is VC
Reference numerals O and 5 are transmission means, 6 is control means, 7 is reception means, 8 is an antenna, 43 is reception level detection means, and 44 is reception level control means. The reception means 7 includes reception level adjustment means 33, mixing means 34 and 35, 90 ° phase shifter 36, low pass filters 37 and 38 for removing adjacent channel signals, low frequency amplification means 39 and 40, phase difference detection means. 41 and frequency correction means 42. The VCO 32 is also a part of the receiving means 7. Figure 2
16 is a public telephone line, 17 is a public telephone line 16
Connected to the T-NCU, 18 is interface means, 45 is VCO, 20 is transmission means, 21 is control means,
22 is a receiving means, 23 is an antenna, 56 is a receiving level detecting means, and 57 is a receiving level control means. Receiving means 2
2 is a reception level adjusting means 46, mixing means 48 and 49, 90 ° phase shifter 47, low pass filters 50 and 51 for removing adjacent channel signals, low frequency amplifying means 52 and 53, phase difference detecting means 54, It is composed of frequency correction means 55. The VCO 45 is also a part of the receiving means 22. A management device (not shown in FIG. 2) for managing the meter reading data is connected to the telephone line 16 and calls the T-NCU 17 via the telephone line 16. The called T-NCU 17 outputs a meter reading data request signal to the interface unit 18. Interface means 18
Converts the level and the waveform of the input meter reading data request signal and outputs the converted signal to the VCO 45. In the VCO 45, the oscillation signal is frequency-modulated by the meter reading data request signal. VCO45
The signal frequency-modulated by is amplified by the transmitting means 20 and is radiated into the space as a radio wave from the antenna 23. The radiated radio wave is, for example, a radio wave in the 400 MHz band, which has been approved for use as a low power radio in recent years. Antenna 23
The radiated radio wave is received by the antenna 8 and guided to the reception level adjusting means 33. The reception level adjusting means 33 amplifies or attenuates the reception signal in the 400 MHz band. Now, S = cos {ω + p (t) * △ ω} * tp (t): 1 or -1 on the antenna 8.
Consider the case where the FSK signal S represented by the code sequence ω: Carrier wave angular frequency Δω: Angular frequency deviation is input. The FSK signal S is input to the mixing means 34 and 35. The VCO 32 generates a signal Q represented by Q = COS {ω + x} * tx: oscillation angular frequency error from the carrier angular frequency ω. 90 ° phase shifter 3
In 6, the signal Q from the VCO 32 is phase-shifted by 90 ° and Q ′ = SIN {ω + x} t. In the mixing means 34, VC
The signal Q from O32 and the FSK signal S are multiplied. In the mixing means 35, the signal Q ′ from the 90 ° phase shifter 36 and the FSK signal are multiplied. Then, high-frequency components other than the desired signal are removed by the low-pass filters 37 and 38, and the desired signal is amplified by the low-frequency amplification means 39 and 40. Therefore, the following signals are output to the terminals a and b.

【0011】 端子a : S*Q =COS{p(t)*△ωーx}*t 端子b : S*Q’=SIN{p(t)*△ωーx}*t 周波数補正手段39では情報を有する符号列に先だって
伝送される付加信号を受信すると、上記角周波数誤差x
を零にする方向にVCO32を制御する信号を出力す
る。x=0として以下説明する。符号列p(t)と各端子
a、b、cの信号波形の関係を図3に示し、図3を参照
しながら説明する。図3から明かなように符号列p(t)が
−1の時には端子aの信号に比べ端子bの信号は位相が
90゜進んでいる。一方符号列p(t)が1の時には端子a
の信号に比べ端子bの信号は位相が90゜遅れている。
従って位相差検出手段41において端子aの信号と端子
bの信号の位相差を検出することによりもとの符号列p
(t)を再生し、端子cよりもとの符号列p(t)を出力する
ことができる。そして端子cより出力される符号列p(t)
は検針データ要求信号である。記憶手段3にはガス流量
計2において計測したガス流量の積算値が記憶されてい
る。そして制御手段6は検針データ要求信号を受信する
と記憶手段3及び送信手段5を起動する。すると記憶手
段3に記憶されている積算データによりVCO32の発
振信号は周波数変調され、送信手段5で周波数変調され
た信号が増幅されアンテナ8より空間に電波として放射
される。なお受信レベル検出手段43ではアンテナ8よ
り入力した受信信号の大きさを検出して、受信レベル制
御手段44を介して受信レベル調整手段33の増幅度が
大きな信号を受信した時には小さくなるように制御す
る。受信レベル制御手段44には起動端子Aが設けられ
ている。起動端子Aに信号が入力した時、受信レベル制
御手段44は受信レベル検出手段43からの信号を取り
込み、受信レベル検出手段43からの取り込み信号に応
じた制御信号を受信レベル調整手段33に出力する。以
後再び起動端子Aに入力があるまで受信レベル検出手段
43からの信号に関係なく前記制御信号を受信レベル調
整手段33に出力し続ける。即ち受信レベル調整手段3
3の増幅度を一定に保つ。起動端子Aへの入力は流量計
測装置をガス配管に取付時に行われる。
Terminal a: S * Q = COS {p (t) * Δω−x} * t Terminal b: S * Q ′ = SIN {p (t) * Δω−x} * t Frequency correction means 39 Then, when an additional signal transmitted prior to the code string having information is received, the above-mentioned angular frequency error x
A signal for controlling the VCO 32 is output in the direction of zero. The following description will be given assuming x = 0. The relationship between the code sequence p (t) and the signal waveforms of the terminals a, b and c is shown in FIG. 3 and will be described with reference to FIG. As is apparent from FIG. 3, when the code string p (t) is -1, the signal at the terminal b leads the signal at the terminal a by 90 ° in phase. On the other hand, when the code string p (t) is 1, the terminal a
The phase of the signal at the terminal b is delayed by 90 ° with respect to the signal of.
Therefore, by detecting the phase difference between the signal at the terminal a and the signal at the terminal b in the phase difference detecting means 41, the original code string p
(t) can be reproduced and the original code string p (t) can be output from the terminal c. The code string p (t) output from the terminal c
Is a meter reading data request signal. The storage unit 3 stores the integrated value of the gas flow rate measured by the gas flow meter 2. When the control means 6 receives the meter reading data request signal, the control means 6 activates the storage means 3 and the transmission means 5. Then, the oscillation signal of the VCO 32 is frequency-modulated by the integrated data stored in the storage means 3, the frequency-modulated signal is amplified by the transmission means 5, and is radiated as a radio wave from the antenna 8 into space. The reception level detection means 43 detects the magnitude of the reception signal input from the antenna 8 and controls the reception level control means 44 so that it decreases when the reception level adjustment means 33 receives a signal with a large amplification degree. To do. The reception level control means 44 is provided with a starting terminal A. When a signal is input to the activation terminal A, the reception level control means 44 takes in the signal from the reception level detection means 43 and outputs a control signal corresponding to the taken-in signal from the reception level detection means 43 to the reception level adjustment means 33. . After that, the control signal is continuously output to the reception level adjusting means 33 regardless of the signal from the reception level detecting means 43 until the activation terminal A is input again. That is, the reception level adjusting means 3
Keep the amplification of 3 constant. The input to the starting terminal A is performed when the flow rate measuring device is attached to the gas pipe.

【0012】アンテナ8より放射される電波の周波数は
アンテナ23より放射される電波の周波数と同じ周波数
である。積算データにより周波数変調された電波はアン
テナ23で受信され受信レベル調整手段46に導かれ
る。受信レベル調整手段46では400MHz帯の受信信
号を増幅あるいは減衰させる。さてアンテナ23を介し
て S=cos{ω+p(t)*△ω}*t p(t):1または-1の
符号列 ω:搬送波角周波数 △ω:角周波数偏移 で表わされるFSK信号Sがミキシング手段48、49
に入力する。VCO45では Q=COS{ω+x}*t x:搬送波角周波数ωから
の発振角周波数誤差 で表わされる信号Qを発生する。90゜位相シフター4
7ではVCO45からの信号Qが90゜位相シフトされ
Q’=SIN{ω+x}tとなる。ミキシング手段48ではVC
O45からの信号QとFSK信号Sのかけ算が行なわれ
る。ミキシング手段49では90゜位相シフター47ら
の信号Q’とFSK信号のかけ算が行なわれる。そして
低域フィルタ50、51により希望信号以外の高周波成
分が除去され、低周波増幅手段52、53により希望信
号が増幅される。従って端子d及び端子eには次の信号
が出力する。
The frequency of the radio wave radiated from the antenna 8 is the same as the frequency of the radio wave radiated from the antenna 23. The radio wave frequency-modulated by the integrated data is received by the antenna 23 and guided to the reception level adjusting means 46. The reception level adjusting means 46 amplifies or attenuates the reception signal in the 400 MHz band. Now, through the antenna 23, S = cos {ω + p (t) * Δω} * tp (t): 1 or −1 code string ω: carrier angular frequency Δω: FSK signal represented by angular frequency deviation S is mixing means 48, 49
To enter. The VCO 45 generates a signal Q represented by Q = COS {ω + x} * tx: oscillation angular frequency error from the carrier angular frequency ω. 90 ° phase shifter 4
At 7, the signal Q from the VCO 45 is phase-shifted by 90 ° and Q ′ = SIN {ω + x} t. In the mixing means 48, VC
The signal Q from O45 and the FSK signal S are multiplied. In the mixing means 49, the signal Q ′ from the 90 ° phase shifter 47 and the FSK signal are multiplied. Then, high-frequency components other than the desired signal are removed by the low-pass filters 50 and 51, and the desired signal is amplified by the low-frequency amplification means 52 and 53. Therefore, the following signals are output to the terminals d and e.

【0013】 端子d : S*Q =COS{p(t)*△ω−x}*t 端子e : S*Q’=SIN{p(t)*△ω−x}*t 周波数補正手段55では情報を有する符号列に先だって
伝送される付加信号を受信すると、上記角周波数誤差x
を零にする方向にVCO45を制御する信号を出力す
る。x=0として以下説明する。符号列p(t)と各端子
d、e、fの信号波形の関係を図3に示し、図3を参照
しながら説明する。図3から明かなように符号列p(t)が
−1の時には端子dの信号に比べ端子eの信号は位相が
90゜進んでいる。一方符号列p(t)が1の時には端子d
の信号に比べ端子eの信号は位相が90゜遅れている。
従って位相差検出手段54において端子dの信号と端子
eの信号の位相差を検出することによりもとの符号列p
(t)を再生し、端子fよりもとの符号列p(t)を出力する
ことができる。そして端子fより出力される符号列p(t)
は積算データである。制御手段21では積算データを受
信すると送信手段20を起動してガス流量計に対して積
算データを受信したことを知らせる応答信号をアンテナ
23を介して送信すると同時に、インターフェース18
を介してT−NCU17を起動し、電話回線16に積算
データを送出する。なお受信レベル検出手段56ではア
ンテナ23より入力した受信信号の大きさを検出して、
受信レベル制御手段57を介して受信レベル調整手段4
6の増幅度が大きな信号を受信した時には小さくなるよ
うに制御する。受信レベル制御手段57には起動端子B
が設けられている。起動端子Bに信号が入力した時、受
信レベル制御手段57は受信レベル検出手段56からの
信号を取り込み、受信レベル検出手段56からの取り込
み信号に応じた制御信号を受信レベル調整手段46に出
力する。以後再び起動端子Bに入力があるまで受信レベ
ル検出手段56からの信号に関係なく前記制御信号を受
信レベル調整手段46に出力し続ける。即ち受信レベル
調整手段46の増幅度を一定に保つ。起動端子Bへの入
力は流量計測装置をガス配管に取付時に行われる。
Terminal d: S * Q = COS {p (t) * Δω−x} * t Terminal e: S * Q ′ = SIN {p (t) * Δω−x} * t Frequency correction means 55 Then, when an additional signal transmitted prior to the code string having information is received, the above-mentioned angular frequency error x
A signal for controlling the VCO 45 is output in the direction of zero. The following description will be given assuming x = 0. The relationship between the code sequence p (t) and the signal waveforms of the terminals d, e, and f is shown in FIG. 3 and will be described with reference to FIG. As apparent from FIG. 3, when the code string p (t) is -1, the phase of the signal at the terminal e is advanced by 90 ° compared to the signal at the terminal d. On the other hand, when the code string p (t) is 1, the terminal d
The phase of the signal at the terminal e is delayed by 90.degree.
Therefore, by detecting the phase difference between the signal at the terminal d and the signal at the terminal e in the phase difference detecting means 54, the original code string p
(t) can be reproduced and the original code string p (t) can be output from the terminal f. The code string p (t) output from the terminal f
Is integrated data. When the control means 21 receives the integrated data, it activates the transmitting means 20 to send a response signal to the gas flow meter indicating that the integrated data has been received via the antenna 23, and at the same time, the interface 18
The T-NCU 17 is activated via the and the integrated data is sent to the telephone line 16. The reception level detecting means 56 detects the magnitude of the reception signal input from the antenna 23,
Reception level adjusting means 4 via reception level control means 57
When a signal having a large amplification degree of 6 is received, it is controlled to be small. The reception level control means 57 has a start terminal B.
Is provided. When a signal is input to the activation terminal B, the reception level control means 57 takes in the signal from the reception level detection means 56 and outputs a control signal according to the taken-in signal from the reception level detection means 56 to the reception level adjustment means 46. . After that, the control signal is continuously output to the reception level adjusting means 46 regardless of the signal from the reception level detecting means 56 until the activation terminal B is input again. That is, the amplification level of the reception level adjusting means 46 is kept constant. The input to the starting terminal B is performed when the flow rate measuring device is attached to the gas pipe.

【0014】次に周波数補正手段42、55の構成の一
実施例を図4に示し、その動作を説明する。図4におい
て58は周波数分析手段、59は制御手段、60はアナ
ログ/ディジタル変換手段である。周波数分析手段58
では端子aの信号を高速フーリエ変換手法により周波数
分析を行う。伝送されるFSK信号のビット同期信号に
先立ち、無変調の搬送波信号が送信側より伝送される場
合について考える。端子aにはすでに説明したように 端子a : S*Q =COS{p(t)*△ωーx}*t なる信号が生じる。そして無変調の搬送波信号の場合、
△ω=0である。従って、周波数分析手段58により周
波数分析された結果、x/2πなる周波数が検出され
る。すると制御手段59ではVCO32あるいは45の
周波数がわずかに高くなる方向にVCO32あるいは4
5を制御する。そして周波数分析手段58の周波数分析
結果が前回にくらべ周波数が高くなった場合にはVCO
32あるいは45の発振周波数をx/2πだけ低くする
ように制御する。逆に前回にくらべ周波数が低くなった
場合は発振手段6の発振周波数をx/2πだけ高くする
ように制御する。アナログ/ディジタル変換手段60で
は制御手段59からの制御信号をアナログ量に変換して
VCO32あるいは45に加える。上記動作により周波
数誤差x/2πを補正することができることとなる。
Next, an example of the structure of the frequency correction means 42 and 55 is shown in FIG. 4, and its operation will be described. In FIG. 4, reference numeral 58 is frequency analysis means, 59 is control means, and 60 is analog / digital conversion means. Frequency analysis means 58
Then, the signal at the terminal a is subjected to frequency analysis by the fast Fourier transform method. Consider a case where an unmodulated carrier signal is transmitted from the transmitting side prior to the bit synchronization signal of the transmitted FSK signal. At the terminal a, as described above, a signal of the terminal a: S * Q = COS {p (t) * Δω−x} * t is generated. And for an unmodulated carrier signal,
Δω = 0. Therefore, as a result of the frequency analysis by the frequency analysis means 58, the frequency x / 2π is detected. Then, in the control means 59, the VCO 32 or 4 is moved in the direction in which the frequency of the VCO 32 or 45 is slightly increased.
Control 5 If the frequency analysis result of the frequency analysis means 58 shows that the frequency is higher than the last time, the VCO
The oscillation frequency of 32 or 45 is controlled to be lowered by x / 2π. On the contrary, when the frequency becomes lower than the last time, the oscillation frequency of the oscillation means 6 is controlled to be increased by x / 2π. The analog / digital conversion means 60 converts the control signal from the control means 59 into an analog quantity and applies it to the VCO 32 or 45. By the above operation, the frequency error x / 2π can be corrected.

【0015】さらに周波数補正手段42、55の構成の
他の実施例を図5に示し説明する。42が周波数補正手
段であり、61の直流検出手段、62の掃引信号発生手
段、63の電圧保持手段、64の切換スイッチにより構
成されている。伝送されるFSK信号のビット同期信号
に先立ち、無変調の搬送波信号が送信側より伝送される
場合について考える。最初、切換スイッチ64は掃引信
号発生手段62からの信号がVCO32に加わるように
なっている。掃引信号発生手段62ではVCO32の発
振周波数をある一定の周波数幅にわたって掃引させる信
号を出力する。すると端子aに生じる信号の周波数が掃
引に応じて変化する。直流検出手段61では端子aに生
じた信号の周波数が零になった時を検出する。そして零
を検出すると電圧保持手段63を起動し、切換スイッチ
64を電圧保持手段63の信号がVCO32に加わるよ
うにきりかえる。さらに掃引信号発生手段62の動作を
停止する。電圧保持手段63では直流検出手段61から
の信号により掃引信号発生手段62からの信号レベルを
保持する。上記動作によりVCO32の発振周波数がア
ンテナに入力するFSK信号の搬送波周波数と一致する
ことになる。
Another embodiment of the configuration of the frequency correction means 42 and 55 will be described with reference to FIG. Reference numeral 42 is frequency correction means, which is composed of 61 DC detection means, 62 sweep signal generation means, 63 voltage holding means, and 64 changeover switch. Consider a case where an unmodulated carrier signal is transmitted from the transmitting side prior to the bit synchronization signal of the transmitted FSK signal. First, the changeover switch 64 is adapted so that the signal from the sweep signal generating means 62 is added to the VCO 32. The sweep signal generating means 62 outputs a signal for sweeping the oscillation frequency of the VCO 32 over a certain frequency width. Then, the frequency of the signal generated at the terminal a changes according to the sweep. The DC detecting means 61 detects when the frequency of the signal generated at the terminal a becomes zero. When zero is detected, the voltage holding means 63 is activated and the changeover switch 64 is switched so that the signal of the voltage holding means 63 is applied to the VCO 32. Further, the operation of the sweep signal generating means 62 is stopped. The voltage holding means 63 holds the signal level from the sweep signal generating means 62 by the signal from the DC detecting means 61. With the above operation, the oscillation frequency of the VCO 32 matches the carrier frequency of the FSK signal input to the antenna.

【0016】[0016]

【発明の効果】以上説明したように本発明の流量計測装
置によれば、流量計からの積算データを乗せている搬送
波周波数と同じ周波数でかけ算を行い低周波信号に変換
した後、積算データを復調するように構成しているため
高周波信号部の比率を小さくすることができ、かつ低周
波信号部をモノリシックIC化することができるので高
周波回路の知識のないものであっても容易に流量計測装
置を組み立てることができる。
As described above, according to the flow rate measuring apparatus of the present invention, the integrated data from the flow meter is multiplied by the same frequency as the carrier frequency on which the integrated data is put, and converted into a low frequency signal, and then the integrated data is converted. Since it is configured to demodulate, the ratio of the high frequency signal part can be reduced, and the low frequency signal part can be made into a monolithic IC, so that the flow rate can be easily measured even without knowledge of the high frequency circuit. The device can be assembled.

【0017】さらに送信のための発振手段であるVCO
と、受信のための発振手段であるVCOを共用すること
ができ一つのVCOで送受信を行うことができるため周
波数の安定度を保ち易くなり、自動検針における積算デ
ータの信頼性を向上させることができる。
Further, a VCO which is an oscillating means for transmission
In addition, since the VCO that is the oscillating means for reception can be shared and the transmission and reception can be performed by one VCO, it is easy to maintain the frequency stability, and the reliability of the integrated data in the automatic meter reading can be improved. it can.

【0018】また周波数補正手段により受信すべきFS
K信号の搬送波周波数と発振手段の発振周波数とが一致
するように補正を行うことができるため角周波数偏移の
大きなFSK信号であっても送信された積算データを再
生することができる。
FS to be received by the frequency correction means
Since the correction can be performed so that the carrier frequency of the K signal and the oscillation frequency of the oscillating means match, the transmitted integrated data can be reproduced even with an FSK signal having a large angular frequency deviation.

【0019】また流量計測装置を各家庭に取付時に受信
信号レベルが最適になるように受信レベル調整手段によ
り調整することができるためよりいっそう積算データ受
信における信頼性を向上できる。
Further, since the flow rate measuring device can be adjusted by the reception level adjusting means so that the reception signal level becomes optimum when it is installed in each home, the reliability in receiving the integrated data can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における流量計測装置を構成
する流量計測側の中継装置部のブロック図
FIG. 1 is a block diagram of a relay device section on a flow rate measuring side which constitutes a flow rate measuring device according to an embodiment of the present invention.

【図2】本発明の一実施例における流量計測装置を構成
するT−NCU側の中継装置部のブロック図
FIG. 2 is a block diagram of a repeater unit on the T-NCU side that constitutes a flow rate measuring device according to an embodiment of the present invention.

【図3】本発明の一実施例における各出力端子の出力図FIG. 3 is an output diagram of each output terminal in one embodiment of the present invention.

【図4】本発明の一実施例における周波数補正手段のブ
ロック図
FIG. 4 is a block diagram of frequency correction means in an embodiment of the present invention.

【図5】本発明の他の実施例における周波数補正手段の
ブロック図
FIG. 5 is a block diagram of frequency correction means in another embodiment of the present invention.

【図6】従来の流量計測装置のブロック図FIG. 6 is a block diagram of a conventional flow rate measuring device.

【符号の説明】[Explanation of symbols]

1 ガス配管 2 流量計 3 記憶手段 32 VCO 33 受信レベル調整手段 41 位相差検出手段 42 周波数補正手段 43 受信レベル検出手段 44 受信レベル制御手段 1 gas pipe 2 Flow meter 3 storage means 32 VCO 33 Reception level adjusting means 41 Phase difference detection means 42 Frequency correction means 43 Reception level detection means 44 Reception level control means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−32648(JP,A) 特開 平2−149155(JP,A) 特開 平4−294499(JP,A) (58)調査した分野(Int.Cl.7,DB名) G08C 15/00 H04M 11/00 301 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-2-32648 (JP, A) JP-A-2-149155 (JP, A) JP-A-4-294499 (JP, A) (58) Field (Int.Cl. 7 , DB name) G08C 15/00 H04M 11/00 301

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】流量計での計測データを計測記憶する記憶
手段と、前記記憶手段からの計測データを搬送波信号に
乗せて送信する送信手段と、前記記憶手段からの計測デ
ータの送信を要求する要求信号あるいは前記計測データ
に対する応答信号を受信する受信手段と、前記受信手段
で受信する受信信号のレベルを検出する受信レベル検出
手段と、前記受信手段で受信する受信信号レベルを調整
する受信レベル調整手段と、前記受信レベル検出手段か
らの受信レベルに対応してあらかじめ定めた複数個の出
力信号のうちの一つを前記受信レベル調整手段に出力し
受信レベルを制御する受信レベル制御手段と、前記受信
レベル制御手段を起動するための起動端子とを有し、前
記受信手段は受信すべき搬送波信号周波数に近い周波数
で発振する発振手段と、前記発振手段からの信号と受信
信号の差信号を取り出す第一のミキシング手段と、前記
発振手段からの信号を位相推移させた信号と受信信号の
差信号を取り出す第二のミキシング手段と、前記第一の
ミキシング手段からの信号と前記第二のミキシング手段
からの信号の間の位相差を検出する位相差検出手段と、
前記受信すべき搬送波信号周波数と前記発振手段からの
信号周波数の差を検出し、前記周波数差をなくす方向に
前記発振手段の発振周波数を制御する周波数補正手段と
で構成された流量計測装置。
1. Storage means for measuring and storing measurement data of a flowmeter, transmission means for transmitting measurement data from the storage means on a carrier wave signal, and requesting transmission of measurement data from the storage means. Reception means for receiving a request signal or a response signal to the measurement data, reception level detection means for detecting the level of the reception signal received by the reception means, and reception level adjustment for adjusting the reception signal level received by the reception means Means, and a reception level control means for controlling the reception level by outputting one of a plurality of predetermined output signals corresponding to the reception level from the reception level detecting means to the reception level adjusting means, An activating terminal for activating the reception level control means, wherein the reception means oscillates at a frequency close to a carrier signal frequency to be received. A first mixing means for taking out a difference signal between the signal from the oscillating means and the received signal, and a second mixing means for taking out a difference signal between the signal obtained by phase-shifting the signal from the oscillating means and the received signal, Phase difference detection means for detecting a phase difference between the signal from the first mixing means and the signal from the second mixing means,
A flow rate measuring device comprising a frequency correction means for detecting a difference between a carrier signal frequency to be received and a signal frequency from the oscillating means and controlling the oscillation frequency of the oscillating means in a direction of eliminating the frequency difference.
【請求項2】流量計の計測データを収集するデータ収集
手段と、前記データ収集手段からのデータ収集要求信号
あるいは前記流量計からの計測データに対する応答信号
を搬送波に乗せて送信する送信手段と、前記流量計から
の計測データを受信する受信手段と、前記受信手段で受
信する受信信号のレベルを検出する受信レベル検出手段
と、前記受信手段で受信する受信信号レベルを調整する
受信レベル調整手段と、前記受信レベル検出手段からの
受信レベルに対応してあらかじめ定めた複数個の出力信
号のうちの一つを前記受信レベル調整手段に出力し受信
レベルを制御する受信レベル制御手段と、前記受信レベ
ル制御手段を起動するための起動端子とを有し、前記受
信手段は受信すべき搬送波信号周波数に近い周波数で発
振する発振手段と、前記発振手段からの信号と受信信号
の差信号を取り出す第一のミキシング手段と、前記発振
手段からの信号を位相推移させた信号と受信信号の差信
号を取り出す第二のミキシング手段と、前記第一のミキ
シング手段からの信号と前記第二のミキシング手段から
の信号の間の位相差を検出する位相差検出手段と、前記
受信すべき搬送波信号周波数と前記発振手段からの信号
周波数の差を検出し、前記周波数差をなくす方向に前記
発振手段の発振周波数を制御する周波数補正手段とで構
成された流量計測装置。
2. Data collection means for collecting measurement data of a flow meter, and transmission means for transmitting a data collection request signal from the data collection means or a response signal to the measurement data from the flow meter on a carrier wave. Receiving means for receiving the measurement data from the flow meter, receiving level detecting means for detecting the level of the receiving signal received by the receiving means, and receiving level adjusting means for adjusting the receiving signal level received by the receiving means. Receiving level control means for controlling the receiving level by outputting one of a plurality of predetermined output signals corresponding to the receiving level from the receiving level detecting means to the receiving level adjusting means, and the receiving level An activating means for activating the control means, the receiving means oscillating means for oscillating at a frequency close to a carrier signal frequency to be received; A first mixing means for extracting a difference signal between the signal from the oscillating means and the received signal; a second mixing means for extracting a difference signal between the signal obtained by phase-shifting the signal from the oscillating means and the received signal; Phase difference detecting means for detecting a phase difference between a signal from one mixing means and a signal from the second mixing means, and a difference between a carrier signal frequency to be received and a signal frequency from the oscillating means. And a flow rate measuring device configured with frequency correction means for controlling the oscillation frequency of the oscillation means in the direction of eliminating the frequency difference.
【請求項3】データ収集手段は電話回線に接続される網
制御手段を有することを特徴とした請求項2記載の流量
計測装置。
3. The flow rate measuring device according to claim 2, wherein the data collecting means has a network control means connected to a telephone line.
【請求項4】周波数補正手段は、第一あるいは第二のミ
キシング手段からの信号を周波数分析する周波数分析手
段と、前記周波数分析手段によって検出した周波数成分
に応じて出力を発生する制御手段と、前記制御手段から
の信号により発振手段の発振周波数を制御する直流電圧
を供給するためのディジタル/アナログ変換手段とで構
成された請求項1または2記載の流量計測装置。
4. A frequency correction means, a frequency analysis means for frequency-analyzing a signal from the first or second mixing means, and a control means for generating an output according to a frequency component detected by the frequency analysis means, The flow rate measuring device according to claim 1 or 2, further comprising: a digital / analog conversion means for supplying a DC voltage for controlling an oscillation frequency of the oscillation means by a signal from the control means.
【請求項5】周波数補正手段は、発振手段の発振周波数
を掃引するための掃引信号発生手段と、前記第一あるい
は第二のミキシング手段からの信号から直流信号を検出
する直流検出手段と、掃引信号発生手段からの掃引信号
を前記直流検出手段からの信号により保持する電圧保持
手段と、前記発振手段を制御する信号を直流検出手段か
らの信号により前記掃引信号発生手段からの信号と前記
電圧保持手段からの信号とに切り換える切換手段とで構
成された請求項1または2記載の流量計測装置。
5. The frequency correction means includes sweep signal generating means for sweeping the oscillation frequency of the oscillating means, direct current detecting means for detecting a direct current signal from the signal from the first or second mixing means, and sweeping. A voltage holding means for holding the sweep signal from the signal generating means by the signal from the DC detecting means, and a signal for controlling the oscillating means by the signal from the DC detecting means and the voltage from the sweep signal generating means. The flow rate measuring device according to claim 1 or 2, comprising a switching means for switching to a signal from the means.
JP6853493A 1993-03-26 1993-03-26 Flow measurement device Expired - Fee Related JP3396906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6853493A JP3396906B2 (en) 1993-03-26 1993-03-26 Flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6853493A JP3396906B2 (en) 1993-03-26 1993-03-26 Flow measurement device

Publications (2)

Publication Number Publication Date
JPH06282788A JPH06282788A (en) 1994-10-07
JP3396906B2 true JP3396906B2 (en) 2003-04-14

Family

ID=13376504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6853493A Expired - Fee Related JP3396906B2 (en) 1993-03-26 1993-03-26 Flow measurement device

Country Status (1)

Country Link
JP (1) JP3396906B2 (en)

Also Published As

Publication number Publication date
JPH06282788A (en) 1994-10-07

Similar Documents

Publication Publication Date Title
JP2751840B2 (en) Signal detection device
EP0412207B1 (en) Automatic frequency control circuit
US6067325A (en) Modem designs, and systems using the modem designs for communicating information between a number of remote locations and one or more central locations
JPH0529879A (en) Afc circuit in radio communication equipment
RU2325758C2 (en) New architecture for inexpensive/low power analogue transceiver
US7308024B2 (en) Modulation scheme for FDD/TDD transceivers
JP3396906B2 (en) Flow measurement device
JP2002501688A (en) System and method for avoiding harmonic interference in carrier recovery for digital demodulation
JP2768253B2 (en) Flow measurement device
JPH0749361A (en) Measuring device for circuit characteristic
JP2701815B2 (en) A circuit that transmits data in asynchronous mode with the free reception frequency locked to the transmission frequency
JPH0799475A (en) Data communication equipment
JP3708234B2 (en) Wireless device
KR0138215B1 (en) Costas main loop
JP2576266B2 (en) FSK receiver
KR0130720B1 (en) Receiver
JP3447618B2 (en) Digital mobile telephone device and audio reproduction method thereof
JPH07321687A (en) Receiver
JPH0614511Y2 (en) Phase synchronization receiver
JPH07193881A (en) Radio communication equipment
JP2859227B2 (en) Mobile radio telephone equipment
JPH071868Y2 (en) Space station transceiver
JPH0936777A (en) Transmission power output control circuit
KR880000504B1 (en) High-speed frequency displacement communication device
JP3379242B2 (en) Receiver

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080214

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090214

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100214

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees