JP3396258B2 - Removal method of metal core - Google Patents

Removal method of metal core

Info

Publication number
JP3396258B2
JP3396258B2 JP16832793A JP16832793A JP3396258B2 JP 3396258 B2 JP3396258 B2 JP 3396258B2 JP 16832793 A JP16832793 A JP 16832793A JP 16832793 A JP16832793 A JP 16832793A JP 3396258 B2 JP3396258 B2 JP 3396258B2
Authority
JP
Japan
Prior art keywords
core
metal core
melted
synthetic resin
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16832793A
Other languages
Japanese (ja)
Other versions
JPH071466A (en
Inventor
貴志 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP16832793A priority Critical patent/JP3396258B2/en
Publication of JPH071466A publication Critical patent/JPH071466A/en
Application granted granted Critical
Publication of JP3396258B2 publication Critical patent/JP3396258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/52Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles soluble or fusible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/44Removing or ejecting moulded articles for undercut articles
    • B29C45/4457Removing or ejecting moulded articles for undercut articles using fusible, soluble or destructible cores

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明に係る金属製中子の除去方
法は、例えば自動車用エンジンのシリンダ内に空気を送
り込む為の合成樹脂製吸気マニホールドを、金属製中子
を用いて製造した後、この金属製中子を加熱溶融して除
去する為に利用する。 【0002】 【従来の技術】自動車用エンジンのシリンダ内に空気を
送り込む為の吸気マニホールドは、従来はアルミニウム
合金のダイキャスト成形により造られていたが、近年、
自動車の軽量化を図る為、例えば特開昭58−8205
9号公報に開示されている様に、この吸気マニホールド
を合成樹脂の射出成形により造る事が行なわれている。 【0003】一方、吸気マニホールドは中空で、しかも
外面形状並びに内面形状が三次元方向に屈曲している
為、通常使用されている様な単純な割型を有する射出成
形装置により造る事が出来ない。この為、三次元方向に
屈曲した形状を有する吸気マニホールドを合成樹脂の射
出成形により造る場合、次の様にして行なっている。 【0004】即ち、射出成形に先立って、BiとSnとの合
金、或はBiとSnとPbとの合金の様な、低融点金属(例え
ば融点が150℃)により造られた中子を用意する。こ
の中子の外面形状は、造るべき合成樹脂製吸気マニホー
ルドの内面形状と一致させる。 【0005】そして、造るべき吸気マニホールドの外面
形状と一致する内面形状を有する成形型中に上記中子を
セットした状態で、この成形型内に、上記低融点金属よ
りも高い融点を持つ合成樹脂、例えばガラス繊維を含ん
だナイロン66(例えば融点が240度以上)を注入
し、成形型の内面と中子の外面との間の空間(キャビテ
ィ)内で固化させる。 【0006】キャビティ内に注入される溶融合成樹脂の
温度は、中子を構成する低融点金属の融点よりも高い
が、熱容量が大きく、しかも熱伝達性の良い中子に接触
する事で、直ちに温度低下する為、溶融合成樹脂の注入
に伴って中子の一部が溶融する事はない。 【0007】成形型内に合成樹脂を注入し、固化させた
ならば、成形型を開いて吸気マニホールドを取り出す
が、この吸気マニホールドは三次元方向に屈曲している
為、前記中子はこの吸気マニホールドに内包されたまま
の状態となる。そこで、この中子を、高温の油中に於い
て高周波誘導加熱する事により、溶融除去する。 【0008】即ち、図1に示す様に、成形型から取り出
した、中子1を内包する吸気マニホールド2を、特開平
4−282207号公報に示された様な高周波誘導加熱
装置のコイル部3の内側に位置させた状態で、加熱した
油中に浸漬する。この状態で上記コイル部3に高周波電
流を通電する事により、中子1を構成するBi−Sn等の合
金を発熱させ、この中子1を溶融する。尚、上記コイル
部3は、銅製チューブ4により構成しており、内側に冷
却水を流通自在である。高周波誘導加熱装置の作動時に
は、コイル部3を構成する銅製チューブ4内に冷却水を
流し、コイル部3自体の温度上昇を防止する。上記油と
しては、ポリエチレングリコール等の多価アルコール、
鉱油等を使用する。 【0009】上述した様に、高周波誘導加熱装置を用い
た中子の溶融除去を、高温の油中に於いて行なうのは以
下の理由による。即ち、上記溶融金属は回収し、再利用
を図るが、中子の溶融除去作業を大気中で行った場合、
溶融金属が酸化してしまい、回収率が悪化してしまう。
又、高周波誘導加熱により中子を溶融除去する場合、合
成樹脂製の吸気マニホールドの内側に、中子を構成する
合金による残渣が生じる事が避けられない。そこで、上
記中子の溶融除去を、例えば160〜180℃に加熱し
た油中で行ない、上記合成樹脂の内側に上記油を流通さ
せれば、上記残渣を洗い流す事が出来る。これらの理由
により、高温の油中に於いて、中子の溶融除去を行な
う。 【0010】上述した様に、低融点合金製の中子を溶融
させ、合成樹脂製吸気マニホールドの内側から除去する
結果、外面形状が成形型の内面形状と一致し、内面形状
が中子の外面形状と一致する合成樹脂製吸気マニホール
ドが得られる。油中から取り出した合成樹脂製吸気マニ
ホールドには油が付着している為、洗浄処理を施してか
ら次の検査工程に移す。 【0011】 【発明が解決しようとする課題】ところで、上述した様
に、油中に於いて高周波誘導加熱を行ない、金属製中子
を溶融除去する場合、以下に述べる様な不都合が存在す
る。 【0012】即ち、上記油は熱容量が小さい為、中子を
完全に溶融除去するのに要する時間が増大してしまう。
又、中子を溶融除去した後に油中から取り出した合成樹
脂製吸気マニホールドは、前述した様に洗浄する必要が
あり、面倒である。更に、溶融金属を再利用すべく回収
する際、この溶融金属と油との分離作業を行なわなけれ
ばならず、やはり面倒である。本発明の金属製中子の除
去方法は、上述した不都合を何れも解消すべく、発明さ
れたものである。 【0013】 【課題を解決するための手段】本発明の金属製中子の除
去方法は、前述した従来の金属製中子の除去方法と同
様、低融点合金により造られた金属製中子の周囲に合成
樹脂製の管状部材を射出成形した後、上記管状部材及び
金属製中子を、高周波誘導加熱コイルのコイル部の内側
に位置させた状態で、このコイル部と共に高温の液体中
に浸漬すると共に、上記高周波誘導加熱コイルに通電す
る事により、上記金属製中子を溶融させて上記管状部材
の内側から除去する。 【0014】特に、本発明の金属製中子の除去方法に於
いては、上記液体を、上記金属製中子を構成する低融点
合金と同材質の低融点合金を溶融させたものとしてい
る。又、上記高周波誘導加熱コイルを構成する導体の表
面には絶縁層を設けている。そして、少なくとも上記高
周波誘導加熱コイルへの通電時には、上記液体を撹拌流
動させる。 【0015】 【作用】本発明の金属製中子の除去方法は、上述した様
に中子と同一組成を有する合金を溶融させた液体合金中
で、この中子を溶融させるが、上記液体合金は熱容量が
大きい為、中子を溶融させる速度が早くなり、中子の溶
融効率が向上する。更に、油中で中子を溶融させる従来
方法の様に、油と溶融金属との分離作業、及び合成樹脂
製の管状部材の洗浄作業が不要になる為、上記溶融効率
の向上と相まって、合成樹脂製の管状部材の製造効率が
向上する。 【0016】 【実施例】次に図示の実施例に就いて説明する。本発明
の金属製中子の除去方法は、低融点合金により造られた
金属製の中子1の周囲に、例えば合成樹脂製の管状部材
である吸気マニホールド2を射出成形した後、上記中子
1を溶融除去するものである。即ち、前述した従来方法
と同様、射出成形後の、中子1を内包した合成樹脂製吸
気マニホールド2を、高周波誘導加熱コイルのコイル部
3の内側に位置させた状態で高温の液体に浸漬する。そ
して、上記コイル部3をなす銅製チューブ4に高周波電
流を流す事によって、中子1を発熱させ、この中子1を
溶融させる。 【0017】特に、本発明の金属製中子の除去方法に於
いては、上記液体を、中子1を構成する低融点合金と同
材質の低融点合金を溶融させた液体金属5としている。
そして、上記コイル部3と、このコイル部3の内側に位
置させた、中子1を内包した合成樹脂製吸気マニホール
ド2とを、加熱した高温の液体金属5中に浸漬した状態
で、中子1の溶融除去を行なう。これに伴い、上記コイ
ル部3を構成する銅製チューブ4の表面には、予めポリ
四弗化エチレン(PTFE)、アルミナ溶射層等の絶縁
層を設け、上記液体金属5が上記銅製チューブ4に直接
接触する事でショートするのを防止する。又、中子1を
溶融除去する際、コイル部3内に位置する中子1の過熱
を防止すると共に、溶融した中子1を吸気マニホールド
2の内側から速やかに除去する為に、図示しない撹拌装
置により、上記液体金属5を攪拌する。 【0018】更に、好ましくは、上記液体金属5が酸化
するのを防止すべく、この液体金属5が酸素と接触する
のを防止する為の手段を講じる。この手段としては、例
えば液体金属5表面を酸化防止剤、或は、軽量の蓋部材
で覆う事が考えられる。又、本発明に係る中子の溶融除
去を、不活性ガス雰囲気中で行なっても良い。 【0019】上述の様に構成される本発明の金属製中子
の除去方法に於いては、中子1を浸漬する液体を、油よ
りも熱容量の大きい、中子1と同材質の低融点合金を融
解させた液体金属5としている為、中子1の溶融除去に
要する時間が短縮する。又、溶融除去した中子1を構成
する合金は、液体金属5と同一組成である為、従来方法
の様に分離作業を要せず、再利用の為の回収作業が容易
となる。更に、油を使用しない事に伴い、液体金属5中
から取り出した吸気マニホールド2を洗浄する必要がな
くなると共に、中子1の溶融除去を繰り返す事で劣化し
た油を取り換える手間もなくなる。 【0020】これらの結果、中子1の溶融除去作業を迅
速に行なえる様になり、中子1を効率よく溶融除去出来
る。 【0021】尚、本実施例に於いては、本発明を合成樹
脂製吸気マニホールドを製造する場合に適用した例に就
いて説明したが、本発明はこれに限定される事はなく、
低融点合金製の中子を用いて、他の合成樹脂製の管状部
材を製造する場合に広く適用する事が可能である。 【0022】 【発明の効果】本発明の金属製中子の除去方法は、上述
の様に構成され作用する為、中子の溶融除去を効率よく
行なえ、合成樹脂製吸気マニホールド等、合成樹脂製の
管状部材の製造効率の向上に寄与する。
Description: BACKGROUND OF THE INVENTION A method of removing a metal core according to the present invention comprises, for example, a synthetic resin intake manifold for sending air into a cylinder of an automobile engine. After being manufactured using a metal core, the metal core is heated and melted for use. 2. Description of the Related Art An intake manifold for feeding air into a cylinder of an automobile engine has conventionally been made by die-casting an aluminum alloy.
In order to reduce the weight of automobiles, see, for example,
As disclosed in Japanese Patent Application Laid-Open No. 9-1990, this intake manifold is manufactured by injection molding of a synthetic resin. On the other hand, since the intake manifold is hollow and its outer surface and inner surface are bent three-dimensionally, it cannot be manufactured by an injection molding apparatus having a simple split mold as commonly used. . Therefore, when an intake manifold having a shape bent in a three-dimensional direction is manufactured by injection molding of a synthetic resin, it is performed as follows. That is, prior to injection molding, a core made of a low melting point metal (for example, having a melting point of 150 ° C.) such as an alloy of Bi and Sn or an alloy of Bi, Sn and Pb is prepared. I do. The outer surface shape of this core matches the inner surface shape of the intake manifold made of synthetic resin to be manufactured. [0005] With the core set in a mold having an inner surface shape that matches the outer surface shape of the intake manifold to be produced, a synthetic resin having a higher melting point than the low melting point metal is placed in the mold. For example, nylon 66 (for example, having a melting point of 240 ° C. or more) containing glass fibers is injected and solidified in a space (cavity) between the inner surface of the mold and the outer surface of the core. Although the temperature of the molten synthetic resin injected into the cavity is higher than the melting point of the low melting point metal constituting the core, the molten synthetic resin has a large heat capacity and immediately comes into contact with the core having good heat transfer properties. Since the temperature decreases, part of the core does not melt with the injection of the molten synthetic resin. When the synthetic resin is injected into the mold and solidified, the mold is opened and the intake manifold is taken out. Since the intake manifold is bent in a three-dimensional direction, the core is provided with the intake manifold. It remains in the manifold. Therefore, the core is melted and removed by high-frequency induction heating in high-temperature oil. That is, as shown in FIG. 1, an intake manifold 2 containing a core 1 taken out of a molding die is connected to a coil section 3 of a high-frequency induction heating apparatus as disclosed in Japanese Patent Laid-Open No. 4-282207. Immersed in heated oil while positioned inside. In this state, by passing a high-frequency current through the coil portion 3, an alloy such as Bi-Sn forming the core 1 generates heat, and the core 1 is melted. In addition, the said coil part 3 is comprised by the copper tube 4, and the cooling water can be circulated freely inside. During operation of the high-frequency induction heating device, cooling water is caused to flow in the copper tube 4 constituting the coil unit 3 to prevent the temperature of the coil unit 3 itself from rising. As the oil, polyhydric alcohols such as polyethylene glycol,
Use mineral oil, etc. As described above, the reason why the core is melted and removed using the high-frequency induction heating device in high-temperature oil is as follows. That is, the molten metal is collected and reused, but when the core is melted and removed in the air,
The molten metal is oxidized, and the recovery rate deteriorates.
Further, when the core is melted and removed by high-frequency induction heating, it is inevitable that a residue due to the alloy constituting the core is generated inside the intake manifold made of synthetic resin. Therefore, if the core is melted and removed in oil heated to, for example, 160 to 180 ° C. and the oil is allowed to flow inside the synthetic resin, the residue can be washed away. For these reasons, the core is melted and removed in hot oil. As described above, the core made of the low melting point alloy is melted and removed from the inside of the intake manifold made of synthetic resin. As a result, the outer surface shape matches the inner surface shape of the mold, and the inner surface shape becomes the outer surface of the core. A synthetic resin intake manifold that matches the shape is obtained. Since the oil adheres to the synthetic resin intake manifold taken out of the oil, it is subjected to a cleaning process before moving to the next inspection step. [0011] As described above, when high-frequency induction heating is performed in oil to melt and remove a metal core, there are the following disadvantages. That is, since the oil has a small heat capacity, the time required to completely melt and remove the core increases.
Further, the synthetic resin intake manifold taken out of the oil after the core is melted and removed needs to be cleaned as described above, which is troublesome. Further, when the molten metal is recovered for reuse, the operation of separating the molten metal from the oil must be performed, which is also troublesome. The method for removing a metal core according to the present invention has been invented in order to eliminate any of the above-mentioned disadvantages. A method for removing a metal core according to the present invention is similar to the above-described conventional method for removing a metal core from a metal core made of a low melting point alloy. After injection molding a tubular member made of synthetic resin around the periphery, the tubular member and the metal core are immersed in a high-temperature liquid together with this coil portion while being positioned inside the coil portion of the high-frequency induction heating coil. By energizing the high-frequency induction heating coil, the metal core is melted and removed from the inside of the tubular member. Particularly, in the method for removing a metal core of the present invention, the liquid is obtained by melting a low-melting alloy of the same material as the low-melting alloy constituting the metal core. Further, an insulating layer is provided on the surface of the conductor constituting the high frequency induction heating coil. Then, at least when the high-frequency induction heating coil is energized, the liquid is stirred and flown. According to the method for removing a metal core of the present invention, the core is melted in a liquid alloy obtained by melting an alloy having the same composition as the core as described above. Since the heat capacity is large, the speed at which the core is melted is increased, and the melting efficiency of the core is improved. Furthermore, since the separation operation of the oil and the molten metal and the cleaning operation of the synthetic resin tubular member are not required as in the conventional method of melting the core in the oil, the synthesis efficiency is improved in combination with the improvement of the melting efficiency. The production efficiency of the tubular member made of resin is improved. Next, an embodiment shown in the drawings will be described. The method for removing a metal core according to the present invention comprises the steps of: injection-molding, for example, an intake manifold 2 which is a tubular member made of a synthetic resin around a metal core 1 made of a low melting point alloy; 1 is melted away. That is, similarly to the above-mentioned conventional method, the synthetic resin intake manifold 2 containing the core 1 after the injection molding is immersed in a high-temperature liquid while being positioned inside the coil portion 3 of the high-frequency induction heating coil. . Then, by passing a high-frequency current through the copper tube 4 forming the coil part 3, the core 1 is heated and the core 1 is melted. Particularly, in the method for removing a metal core of the present invention, the liquid is a liquid metal 5 obtained by melting a low melting point alloy of the same material as the low melting point alloy forming the core 1.
Then, the core 3 is immersed in the heated high-temperature liquid metal 5 with the coil portion 3 and the intake manifold 2 made of synthetic resin containing the core 1 positioned inside the coil portion 3. 1 is removed by melting. Along with this, an insulating layer such as polytetrafluoroethylene (PTFE) or an alumina sprayed layer is previously provided on the surface of the copper tube 4 constituting the coil portion 3 so that the liquid metal 5 is directly applied to the copper tube 4. Prevent short circuit by touching. In addition, when the core 1 is melted and removed, a stirring (not shown) is performed to prevent the core 1 located in the coil portion 3 from being overheated and to quickly remove the melted core 1 from the inside of the intake manifold 2. The liquid metal 5 is stirred by the device. Further, preferably, in order to prevent the liquid metal 5 from being oxidized, a means for preventing the liquid metal 5 from coming into contact with oxygen is provided. As this means, for example, it is conceivable to cover the surface of the liquid metal 5 with an antioxidant or a lightweight lid member. Further, the core according to the present invention may be melted and removed in an inert gas atmosphere. In the method for removing a metal core of the present invention configured as described above, the liquid in which the core 1 is immersed is made of a low melting point material having a larger heat capacity than oil and the same material as the core 1. Since the liquid metal 5 is obtained by melting the alloy, the time required for melting and removing the core 1 is reduced. Further, since the alloy constituting the melted and removed core 1 has the same composition as the liquid metal 5, the separation operation is not required unlike the conventional method, and the recovery operation for reuse is facilitated. Further, since no oil is used, there is no need to clean the intake manifold 2 taken out of the liquid metal 5, and there is no need to replace the oil deteriorated by repeatedly melting and removing the core 1. As a result, the operation of melting and removing the core 1 can be performed quickly, and the core 1 can be efficiently melted and removed. In this embodiment, an example in which the present invention is applied to a case where a synthetic resin intake manifold is manufactured has been described. However, the present invention is not limited to this.
It can be widely applied to the case where a tubular member made of another synthetic resin is manufactured using a core made of a low melting point alloy. The method of removing a metal core according to the present invention is constructed and operated as described above, so that the core can be efficiently removed by melting, and a synthetic resin such as an intake manifold made of a synthetic resin. Contributes to the improvement of the production efficiency of the tubular member.

【図面の簡単な説明】 【図1】本発明の実施例を示す略図。 【符号の説明】 1 中子 2 吸気マニホールド 3 コイル部 4 銅製チューブ 5 液体金属[Brief description of the drawings] FIG. 1 is a schematic diagram showing an embodiment of the present invention. [Explanation of symbols] 1 core 2 Intake manifold 3 Coil section 4 Copper tube 5 Liquid metal

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29C 33/52,45/44 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) B29C 33 / 52,45 / 44

Claims (1)

(57)【特許請求の範囲】 【請求項1】 低融点合金により造られた金属製中子の
周囲に合成樹脂製の管状部材を射出成形した後、上記管
状部材及び金属製中子を、高周波誘導加熱コイルのコイ
ル部の内側に位置させた状態で、このコイル部と共に高
温の液体中に浸漬すると共に、上記高周波誘導加熱コイ
ルに通電する事により、上記金属製中子を溶融させて上
記管状部材の内側から除去する、金属製中子の除去方法
に於いて、上記液体は上記金属製中子を構成する低融点
合金と同材質の低融点合金を溶融させたものであり、上
記高周波誘導加熱コイルを構成する導体の表面には絶縁
層が設けられており、少なくとも上記高周波誘導加熱コ
イルへの通電時には、上記液体を撹拌流動させる事を特
徴とする金属製中子の除去方法。
(57) [Claim 1] After injection molding a synthetic resin tubular member around a metal core made of a low melting point alloy, the tubular member and the metallic core are In a state where the coil is immersed in a high-temperature liquid together with the coil portion while being positioned inside the coil portion of the high-frequency induction heating coil, and by energizing the high-frequency induction heating coil, the metal core is melted and melted. In the method for removing a metal core, which is removed from the inside of the tubular member, the liquid is obtained by melting a low-melting alloy of the same material as the low-melting alloy constituting the metal core, and A method for removing a metal core, wherein an insulating layer is provided on a surface of a conductor constituting an induction heating coil, and the liquid is stirred and flowed at least when power is supplied to the high-frequency induction heating coil.
JP16832793A 1993-06-16 1993-06-16 Removal method of metal core Expired - Fee Related JP3396258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16832793A JP3396258B2 (en) 1993-06-16 1993-06-16 Removal method of metal core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16832793A JP3396258B2 (en) 1993-06-16 1993-06-16 Removal method of metal core

Publications (2)

Publication Number Publication Date
JPH071466A JPH071466A (en) 1995-01-06
JP3396258B2 true JP3396258B2 (en) 2003-04-14

Family

ID=15865991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16832793A Expired - Fee Related JP3396258B2 (en) 1993-06-16 1993-06-16 Removal method of metal core

Country Status (1)

Country Link
JP (1) JP3396258B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4122668B1 (en) * 2021-07-22 2023-11-15 Airbus Operations GmbH Method of manufacturing a core for producing a composite structure, a core for producing a composite structure, and method of producing a composite structure

Also Published As

Publication number Publication date
JPH071466A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
US4464324A (en) Apparatus and method for injection moulding of plastic parts of irregular shape, hollow or undercut form
CN112207613A (en) Machining method for cavity-type thin-wall structure
JP3396258B2 (en) Removal method of metal core
CN111644596A (en) Casting method of integral water-cooled motor shell with prefabricated spiral water channel
JP6452790B2 (en) Low melting point alloy recovery method and recovery device
JP2866725B2 (en) Oil strainer manufacturing method
JPH0517815A (en) Heat treatment of casting
JPH071467A (en) Method and apparatus for removing metal core
JPS63227310A (en) Preparation of synthetic resin hollow molded item
JP2965230B2 (en) How to remove the gate part of the casting
JP2530886B2 (en) Molding method for thermoplastic resin moldings
KR101501872B1 (en) Casting for dissimilar metal using tube member
JP3681475B2 (en) Method of forced cooling during brazing and brazing apparatus for carrying out the method
JPH09248653A (en) Casting method using resin core
JPH02167707A (en) Method and device for molding resin with core utilized therefor
JP4021046B2 (en) Powder slush molding apparatus and powder slush molding method
KR20060058236A (en) Removing method of cast iron liner in the cylinder block
JPH03297612A (en) Resin molding method using core
JPH0938764A (en) Method for removing resin core and device therefor
KR100226405B1 (en) Metal core with low melting point and mold casting method using the same
JPH0688099U (en) High frequency induction heating coil for melting metal core
JP2002106414A (en) Removing method of cylinder block casting blowhole
DE69517111T2 (en) Process for producing an injection molding nozzle
JPH0994649A (en) Method for die-casting aluminum alloy casting
KR100240581B1 (en) Method of manufacturing power steering oil pump housing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees