JP3395671B2 - Method for analyzing amines in high salt-containing solutions - Google Patents

Method for analyzing amines in high salt-containing solutions

Info

Publication number
JP3395671B2
JP3395671B2 JP29854598A JP29854598A JP3395671B2 JP 3395671 B2 JP3395671 B2 JP 3395671B2 JP 29854598 A JP29854598 A JP 29854598A JP 29854598 A JP29854598 A JP 29854598A JP 3395671 B2 JP3395671 B2 JP 3395671B2
Authority
JP
Japan
Prior art keywords
amines
eluent
high salt
containing solution
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29854598A
Other languages
Japanese (ja)
Other versions
JP2000121619A (en
Inventor
章 福田
毅 菊池
良夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP29854598A priority Critical patent/JP3395671B2/en
Publication of JP2000121619A publication Critical patent/JP2000121619A/en
Application granted granted Critical
Publication of JP3395671B2 publication Critical patent/JP3395671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高塩類含有溶液中の
アミン類の分析方法に係り、詳しくは、金属陽イオン
高濃度に含有する溶液中のアミン類をイオンクロマトグ
ラフ(以下「IC」と称す。)により容易かつ高精度に
定量する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing amines in a high salt-containing solution, and more particularly, to ion chromatography (hereinafter referred to as "IC") of amines in a solution containing a high concentration of metal cations. ).) And a method for quantifying with high accuracy.

【0002】[0002]

【従来の技術】ICは、イオン交換カラムに注入したサ
ンプルを、移動相としての溶離液で溶出させ、イオン種
毎の保持時間(イオン交換体への親和力)の差により各
イオンを分離して定量する方法であり、水中のイオンを
簡便かつ精度よく分析することができることから、幅広
い分野で利用されている。
2. Description of the Related Art In IC, a sample injected into an ion exchange column is eluted with an eluent as a mobile phase, and each ion is separated according to the difference in retention time (affinity for an ion exchanger) for each ion species. It is a method of quantification and is used in a wide range of fields because it can analyze ions in water easily and accurately.

【0003】このICによりアルカリ金属イオンやアル
カリ土類金属イオンを定量する方法も知られており(特
開平7−5159号公報)、ICによるアルカリ金属イ
オン又はアルカリ土類金属イオンの定量に当り、クラウ
ンエーテルを担持した固定相(陽イオン交換カラム)又
はクラウンエーテルを添加した移動相(溶離液)を用い
ることで、イオンの分離度を高めることができることが
報告されている(「第14回イオンクロマトグラフィー
討論会講演要旨集」(1997年11月6日,7日)第
4頁〜第5頁「2 イオンクロマトグラフの応用範囲を
広げる新しい陽イオン交換カラムの利用」)。
A method for quantifying alkali metal ions and alkaline earth metal ions by this IC is also known (Japanese Patent Laid-Open No. 7-5159), and when quantifying alkali metal ions or alkaline earth metal ions by IC, It has been reported that the separation degree of ions can be enhanced by using a stationary phase carrying a crown ether (cation exchange column) or a mobile phase containing a crown ether (eluent) (see “14th Ionization”). Proceedings of the Chromatographic Debate Conference "(November 6, 1997, Nov. 6, 1997), pp. 4-5," Use of a new cation exchange column to expand the range of application of 2 ion chromatography ".

【0004】また、クラウンエーテルとアルカリ金属イ
オン又はアルカリ土類金属イオンとが錯体を形成するた
め、クラウンエーテルを含む移動相を用いることでIC
の保持挙動を変化させることができることも報告されて
いる(「第14回イオンクロマトグラフィー討論会講演
要旨集」(1997年11月6日,7日)第36頁〜第
37頁「16 ポリエーテル化合物を添加した移動相に
よるアルカリ金属及びアルカリ土類金属イオンの保持挙
動」)。
Further, since a crown ether and an alkali metal ion or an alkaline earth metal ion form a complex, by using a mobile phase containing crown ether, IC
It has also been reported that the retention behavior of can be changed ("Proceedings of the 14th Symposium on Ion Chromatography" (November 6, 1997), pages 36 to 37, "16 Polyether") Retention Behavior of Alkali Metal and Alkaline Earth Metal Ions by Mobile Phases Added with Compounds ").

【0005】ICは、モノエタノールアミン(MEA)
等のアミン類の定量にも利用されており、特開平7−2
09271号公報には、高濃度のMEAと少量のアンモ
ニアを含む試料中のMEAとアンモニアとを定量するた
めに、アンモニアについては予めこれを蒸留により分離
してICで定量する方法が記載されている。
IC is monoethanolamine (MEA)
It is also used to quantify amines such as
Japanese Patent Publication No. 09271 describes a method of quantifying MEA and ammonia in a sample containing high-concentration MEA and a small amount of ammonia by distilling ammonia beforehand and quantifying it by IC. .

【0006】[0006]

【発明が解決しようとする課題】上述の如く、金属陽イ
オンの定量及びアミン類の定量にICを利用することは
知られているが、高濃度に金属陽イオンを含有する溶液
中のアミン類をICで定量しようとすると、陽イオン交
換カラムにおける、金属陽イオン、特にカリウムイオン
(K)の保持性能とMEA等のアミン類の保持性能と
が近似しているために、これらを互いに分離して定量す
ることは困難である。なお、特開平7−209271号
公報に記載されているように、ICによる定量に先立
ち、蒸留等でアミン類を分別することも考えられるが、
このような前処理を行うことは操作が煩雑となり、また
装置も複雑となり好ましくない。
As described above, it is known to use IC for the determination of metal cations and amines, but amines in a solution containing a high concentration of metal cations are known. When quantifying IC with IC, the retention performance of metal cations, especially potassium ions (K + ) and the retention performance of amines such as MEA in a cation exchange column are close to each other, and therefore these are separated from each other. Then, it is difficult to quantify. As described in JP-A-7-20927, it may be possible to separate amines by distillation or the like prior to quantification by IC.
It is not preferable to perform such pretreatment because the operation becomes complicated and the apparatus becomes complicated.

【0007】なお、ごみ焼却炉等の各種焼却炉から排出
される飛灰及び焼却灰中に含まれるダイオキシン類の処
理方法としては、従来より、様々な提案がなされてお
り、MEA等のアミン類を用いてダイオキシン類を分解
する方法が提案されている(特願平10−29789
号,同10−39141号)。この方法において、アミ
ン類によるダイオキシン類の分解効果を確認するために
は、飛灰や焼却灰中のアミン類、即ち、高濃度の金属陽
イオンが共存する試料中のアミン類を定量することが必
要となる。また、ボイラ系復水やドレン水、その他各種
の冷却水系における水質管理等においても、高濃度に
属陽イオンを含有する溶液中のアミン類を定量すること
が必要となる。
[0007] Various methods have been proposed in the past for treating dioxins contained in fly ash and incinerator ash discharged from various incinerators such as refuse incinerators, and amines such as MEA have been proposed. A method for decomposing dioxins by using benzene has been proposed (Japanese Patent Application No. 10-29789).
No. 10-39141). In this method, in order to confirm the decomposition effect of dioxins by amines, amines in fly ash or incineration ash, that is, high concentration of metal
It is necessary to quantify the amines in the sample in which ions coexist. In addition, for water quality control in boiler condensate, drain water, and other various cooling water systems, high concentration of gold is required.
It is necessary to quantify the amines in the solution containing the genus cation .

【0008】このようなことから、ICにおいて、金属
陽イオンを高濃度に含有する高塩類含有溶液中のアミン
類を効果的に他の金属陽イオンと分離して精度良く定量
する技術の開発が切望されている。
From the above, in the IC, metal
There is a strong demand for the development of a technique for accurately separating amines in a solution containing a high salt containing a high concentration of cations from other metal cations with high accuracy.

【0009】本発明は上記従来の実情に鑑みてなされた
ものであって、ICにより金属陽イオンを高濃度に含有
する高塩類含有溶液中のアミン類を容易かつ高精度に定
量する方法を提供することを目的とする。
The present invention has been made in view of the above conventional circumstances, and provides a method for easily and accurately quantifying amines in a solution containing a high salt containing a metal cation at a high concentration by IC. The purpose is to do.

【0010】[0010]

【課題を解決するための手段】本発明の高塩類含有溶液
中のアミン類の分析方法は、金属陽イオンを高濃度に含
有する高塩類含有溶液中のアミン類をICにより定量す
る方法において、クラウンエーテル類を含む溶離液を用
いることを特徴とする。
A method for analyzing amines in a high salt-containing solution according to the present invention is a method for quantifying amines in a high salt-containing solution containing a metal cation at a high concentration by IC. It is characterized by using an eluent containing crown ethers.

【0011】クラウンエーテルは、エーテル結合鎖で囲
まれた空孔を有し、また、酸素原子によるマイナス電荷
を有する。従って、 酸素原子のマイナス電荷と金属陽イオンのプラスの
電荷による静電配位相互作用 クラウンエーテルの空孔の大きさと金属陽イオンの
イオン半径との適合性によって、空孔内に金属陽イオン
を取り込み、錯体を形成することで当該金属陽イオンの
陽イオン交換カラムへの保持性能を変化させる。この保
持性能の変化の度合いは、上記の静電配位相互作用の
程度により左右され、また、クラウンエーテルに取り込
まれる金属陽イオンの選択性は上記の適合性により決
定される。
Crown ether has a hole surrounded by an ether bond chain and has a negative charge due to an oxygen atom. Therefore, electrostatic coordination interaction due to the negative charge of the oxygen atom and the positive charge of the metal cation. The compatibility of the size of the vacancy of the crown ether and the ionic radius of the metal cation causes the cation of the metal cation in the vacancy. The retention performance of the metal cation on the cation exchange column is changed by taking in and forming a complex. The degree of change in the retention performance depends on the degree of the electrostatic coordination interaction, and the selectivity of the metal cation incorporated in the crown ether is determined by the compatibility.

【0012】例えば、18−クラウン−6(以下「18
C6」と記す。)は、直径2.6〜3.2Åの空孔を有
し、イオン半径1.38ÅのK+をこの空孔内に取り込
むことによってK+の陽イオン交換カラムに対する保持
性能を変化させることができるため、18C6を添加し
た溶離液を用いることで、ICによるMEAとK+との
分離、定量が可能となる。
For example, 18-crown-6 (hereinafter "18-crown-6"
C6 ". ) Has pores with a diameter of 2.6 to 3.2 Å, and by incorporating K + with an ionic radius of 1.38 Å into the pores, the retention performance of K + on the cation exchange column can be changed. Therefore, by using the eluent containing 18C6, separation and quantification of MEA and K + by IC becomes possible.

【0013】このように、本発明では、アミン類との保
持性能が近似していて、現状ではICによる分離が困難
な金属陽イオン種に応じて、適当なクラウンエーテルを
選択して溶離液に添加することにより、当該金属陽イオ
ンの保持性能をアミン類の保持性能と異なるものとする
ことで、これらを効果的に分離して定量することが可能
となる。
As described above, according to the present invention, a suitable crown ether is selected as an eluent by selecting an appropriate crown ether according to the metal cation species which is difficult to separate by IC under the present conditions because the retention performance with amines is similar. By making the retention performance of the metal cation different from the retention performance of the amines by adding, it becomes possible to effectively separate and quantify them.

【0014】なお、本発明において、溶離液中のクラウ
ンエーテルの濃度は0.005〜0.5mmol/Lと
するのが好ましい。
In the present invention, the concentration of crown ether in the eluent is preferably 0.005 to 0.5 mmol / L.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0016】本発明の高塩類含有溶液中のアミン類の分
析方法は、溶離液にクラウンエーテル類を添加して用い
ること以外は、通常のICの操作及び装置で実施するこ
とができる。
The method for analyzing amines in a high salt-containing solution of the present invention can be carried out by a normal IC operation and apparatus except that crown ethers are added to the eluent.

【0017】溶離液に添加するクラウンエーテル類とし
ては、前述の18C6の他、15−クラウン−5(15
C5)、24−クラウン−8(24C8)、窒素原子を
含んだクリプタンド等を用いることができ、保持性能を
変化させたいイオン種、即ち、アミン類と保持性能が同
等のイオン種のイオン半径に応じて、適当な空孔径のも
のを適宜選択使用する。
The crown ethers to be added to the eluent include 18-C6, 15-crown-5 (15
C5), 24-Crown-8 (24C8), a cryptand containing a nitrogen atom, or the like can be used, and the ionic radius of the ionic species whose retention performance is desired to be changed, that is, the ionic radius of the ionic species having the same retention performance as amines can be used. Accordingly, the one having an appropriate pore diameter is appropriately selected and used.

【0018】溶離液に添加するクラウンエーテル類の濃
度は、保持性能を変化させたいイオン種をアミン類の保
持性能と異なるものとすることができ、かつ、他のイオ
ン種の保持性能に大きな影響を及ぼさない程度であれば
良く、通常の場合、溶離液中の濃度が0.005〜0.
5mmol/L、好ましくは、0.005〜0.1mm
ol/L、特に、0.01〜0.05mmol/L程度
とするのが望ましい。
The concentration of crown ethers added to the eluent can make the ionic species whose retention performance is to be changed different from the retention performance of amines, and has a great influence on the retention performance of other ionic species. The concentration in the eluent is usually 0.005 to 0.
5 mmol / L, preferably 0.005-0.1 mm
ol / L, particularly 0.01 to 0.05 mmol / L is desirable.

【0019】なお、本発明において用いる溶離液は、ク
ラウンエーテル類を添加したこと以外は通常のICの溶
離液と同様のものであり、例えば、メタンスルホン酸、
トリフルオロ酢酸、シュウ酸、ジアミノプロピオン酸等
の有機酸の1〜50mmol/L水溶液を用いることが
できる。
The eluent used in the present invention is the same as the eluent of ordinary IC except that crown ethers are added. For example, methanesulfonic acid,
A 1 to 50 mmol / L aqueous solution of an organic acid such as trifluoroacetic acid, oxalic acid, or diaminopropionic acid can be used.

【0020】このような本発明の高塩類含有溶液中のア
ミン類の分析方法は、各種アルカリ金属塩、アルカリ土
類金属塩等の金属陽イオンの塩類と、MEA等のアミン
類とを含み、その塩類含有量がアミン類含有量の100
倍以上であるような高塩類含有溶液中に対して特に有効
に適用される。
The method for analyzing amines in the high salt-containing solution of the present invention includes salts of metal cations such as various alkali metal salts and alkaline earth metal salts, and amines such as MEA, The salt content is 100 times the amine content.
It is particularly effectively applied to a solution having a high salt content which is more than double.

【0021】このような高塩類含有溶液中としては、ボ
イラ系復水やドレン水、その他各種の冷却水系の水等が
挙げられる。前述のダイオキシン類の分解のために、ア
ミン類を添加して得られる飛灰や焼却灰中のアミン類の
定量の場合のように、水溶液ではない試料を適用する場
合には、これを超純水に添加して混合、攪拌し、水相に
測定対象の成分を溶出させてIC分析に適用すれば良
い。
Examples of such a high-salt-containing solution include boiler-based condensate water, drain water, and other various cooling water-based water. When a sample that is not an aqueous solution is used, as in the case of the determination of amines in fly ash or incineration ash obtained by adding amines for the decomposition of dioxins described above, this should be used as an ultrapure substance. The components to be measured may be added to water, mixed and stirred to elute the component to be measured in the aqueous phase, and applied to the IC analysis.

【0022】[0022]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0023】実施例1(分離性能の評価) 試薬としてメタンスルホン酸、ナトリウムイオン(Na
+),アンモニウムイオン(NH4 +),カリウムイオン
(K+)の各標準液(100mg/L)、18クラウン
6及びMEA標準液を準備した。MEA標準液はMEA
1gを1000mL容量のフラスコに採り、塩酸を1〜
2滴加えた後、超純水を1000mLの標線まで加えた
ものである。各標準液はICの測定に際して、適宜超純
水で稀釈した。
Example 1 (Evaluation of Separation Performance) As reagents, methanesulfonic acid and sodium ion (Na
+ ), Ammonium ion (NH 4 + ), potassium ion (K + ) standard solutions (100 mg / L), 18 crown 6 and MEA standard solution were prepared. MEA standard solution is MEA
1 g was placed in a flask of 1000 mL capacity,
After adding 2 drops, ultrapure water was added up to the mark line of 1000 mL. When measuring IC, each standard solution was appropriately diluted with ultrapure water.

【0024】下記装置及び測定条件を採用し、Na+
NH4 +,K+,MEAの混合標準液(各々10mg/
L)を50μL注入してIC分析を行ったときの測定結
果を図1に示す。
Adopting the following equipment and measuring conditions, Na + ,
NH 4 + , K + , MEA mixed standard solution (10 mg / each)
FIG. 1 shows the measurement results when 50 μL of L) was injected and IC analysis was performed.

【0025】 [装置及び測定条件] イオンクロマトグラフ:ダイオネクス社製「DX−AQ−2211」 ガードカラム :ダイオネクス社製「IONPAC陽イオンカラム −CG10(4×50mm)」 分離カラム :ダイオネクス社製「IONPAC陽イオンカラム −CS10(4×250mm)」 サプレッサー :ダイオネクス社製「カチオンオートサプレッサー CSRS−II」 検出器 :電気伝導度検出器 オートサンプラー :ダイオネクス社製「DAS−80」 データ処理機 :ダイオネクス社製「ワークステーションPeak net−DAC8−1000」 溶離液 :メタンスルホン酸濃度20mmol/L,18ク ラウン6濃度0.05mmol/Lの水溶液 流速 :1.20mL/min 実施例2,3、比較例1(分解性能の評価) 溶離液として、各々下記のものを用いたこと以外は実施
例1と同様にしてIC分析を行い、その測定結果をそれ
ぞれ図2,図3,図4に示した。
[Apparatus and measurement conditions] Ion chromatograph: "DX-AQ-2211" manufactured by Dionex Guard column: "IONPAC cation column-CG10 (4 x 50 mm)" manufactured by Dionex Separation column: "IONPAC manufactured by Dionex Cation column-CS10 (4 x 250 mm) "Suppressor: Dionex's" Cation Auto Suppressor CSRS-II "Detector: Electrical conductivity detector Autosampler: Dionex's" DAS-80 "Data processor: Dionex "Workstation Peak net-DAC8-1000" Eluent: Aqueous solution with methanesulfonic acid concentration of 20 mmol / L, 18-crown 6 concentration of 0.05 mmol / L Flow rate: 1.20 mL / min Examples 2, 3 and Comparative Example 1 ( Evaluation of disassembly performance ) As eluent, respectively, except that used was the following performs IC analyzed in the same manner as in Example 1, showed the measured results are shown in FIGS. 2, 3, 4.

【0026】 [溶離液] 実施例2 :メタンスルホン酸濃度20mmol/L,18クラウン6濃度 0.1mmol/L水溶液 実施例3 :メタンスルホン酸濃度20mmol/L,18クラウン6濃度 0.5mmol/L水溶液 比較例1 :メタンスルホン酸濃度20mmol/L水
溶液 実施例1〜3及び比較例1の結果から、次のことが明ら
かである。即ち、移動相(溶離液)に20mmol/L
のメタンスルホン酸のみを含む水溶液を用いた場合(比
較例1:図4)には、K+及びMEAの分離が行われて
いない。これに対して、移動相(溶離液)に更に0.0
5mmol/L,0.1mmol/L,0.5mmol
/Lの18C6を各々添加した場合(実施例1,2,
3:図1,2,3)には、K+とMEAとが分離されて
いる。ただし、18C6が0.5mmol/Lの場合
(実施例3:図3)には、NH4 +(イオン半径1.45
Å)が18C6の影響でMEAと重なってしまう。ま
た、18C6が0.1mmol/Lの場合(実施例2:
図2)には、良好に分離されるものの、K+のピークが
若干テーリングする傾向がある。18C6が0.05m
mol/Lの場合(実施例1:図1)には、良好な分離
が行われると共に、K+のピークのテーリングも抑えら
れ、最良な結果が得られた。
[Eluent] Example 2: Methanesulfonic acid concentration 20 mmol / L, 18 crown 6 concentration 0.1 mmol / L aqueous solution Example 3: Methanesulfonic acid concentration 20 mmol / L, 18 crown 6 concentration 0.5 mmol / L Aqueous Solution Comparative Example 1: Methanesulfonic acid concentration 20 mmol / L aqueous solution From the results of Examples 1 to 3 and Comparative Example 1, the following is clear. That is, 20 mmol / L in the mobile phase (eluent)
In the case of using the aqueous solution containing only methanesulfonic acid (Comparative Example 1: FIG. 4), K + and MEA were not separated. On the other hand, the mobile phase (eluent) is further 0.0
5 mmol / L, 0.1 mmol / L, 0.5 mmol
/ L of 18C6 was added to each (Examples 1, 2,
3: In FIGS. 1, 2, 3), K + and MEA are separated. However, when 18C6 is 0.5 mmol / L (Example 3: FIG. 3), NH 4 + (ionic radius 1.45) is used.
Å) overlaps with MEA due to the influence of 18C6. Further, when 18C6 is 0.1 mmol / L (Example 2:
In FIG. 2), although the separation is good, the K + peak tends to be slightly tailed. 18C6 is 0.05m
In the case of mol / L (Example 1: FIG. 1), good separation was performed and tailing of the K + peak was suppressed, and the best result was obtained.

【0027】実施例4(MEA分析の再現性の評価) 混合標準液として、MEAを0.5mg/L,1mg/
L,1.5mg/L,10mg/L,20mg/L濃度
にそれぞれ調製したものを用いたこと以外は実施例1と
同様にして各混合標準液に対してIC分析を行った。測
定は各々6回行い、標準偏差、平均値、変動係数を求
め、結果を表1に示した。また、この結果をもとに作製
した検量線を図5に示す。
Example 4 (Evaluation of reproducibility of MEA analysis) MEA was used as a mixed standard solution at 0.5 mg / L and 1 mg / L.
IC analysis was carried out for each mixed standard solution in the same manner as in Example 1 except that L, 1.5 mg / L, 10 mg / L, and 20 mg / L concentrations were used. The measurement was performed 6 times, the standard deviation, the average value, and the coefficient of variation were determined, and the results are shown in Table 1. Further, a calibration curve prepared based on this result is shown in FIG.

【0028】[0028]

【表1】 [Table 1]

【0029】表1より明らかなように、0.5mg−M
EA/Lの混合標準液の場合には、変動係数が21.7
%と若干大きいが、その他の混合標準液では、変動係数
は0.6〜3.6%と10%以下であり、十分に実用的
な再現性が得られることが確認された。また、図5の検
量線では、18C6を添加しない溶離液を用いた場合と
殆ど同様の結果が得られ、少なくとも1mg−MEA/
LのMEAを高精度に定量可能であることが分かる。
As is clear from Table 1, 0.5 mg-M
In the case of the mixed standard solution of EA / L, the coefficient of variation is 21.7.
%, The coefficient of variation of other mixed standard solutions was 0.6 to 3.6%, which was 10% or less, and it was confirmed that sufficient practical reproducibility was obtained. Further, in the calibration curve of FIG. 5, almost the same result as in the case of using the eluent without addition of 18C6 was obtained, and at least 1 mg-MEA /
It can be seen that L MEA can be quantified with high accuracy.

【0030】[0030]

【発明の効果】以上詳述した通り、本発明の高塩類含有
溶液中のアミン類の分析方法によれば、金属陽イオンを
高濃度に含有する高塩類含有溶液中のアミン類を、特殊
なカラムや複雑な操作を必要とすることなく、容易かつ
高精度に定量することができる。
As described in detail above, according to the method for analyzing amines in a high salt-containing solution of the present invention, metal cations are eliminated.
It is possible to easily and highly accurately quantify amines in a high-salt-containing solution, which is contained at a high concentration, without requiring a special column or a complicated operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1におけるIC分析の結果を示す測定図
である。
FIG. 1 is a measurement diagram showing the results of IC analysis in Example 1.

【図2】実施例2におけるIC分析の結果を示す測定図
である。
FIG. 2 is a measurement diagram showing the results of IC analysis in Example 2.

【図3】実施例3におけるIC分析の結果を示す測定図
である。
FIG. 3 is a measurement diagram showing the results of IC analysis in Example 3.

【図4】比較例1におけるIC分析の結果を示す測定図
である。
FIG. 4 is a measurement diagram showing the result of IC analysis in Comparative Example 1.

【図5】実施例4で作製した検量線を示すグラフであ
る。
FIG. 5 is a graph showing a calibration curve prepared in Example 4.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−72059(JP,A) 特開 平2−101050(JP,A) 澁川明正ら,ホスト−ゲスト相互作用 の高速液体クロマトグラフィーへの応 用,ぶんせき,1986年12月,1986 (12),p.849−856 (58)調査した分野(Int.Cl.7,DB名) G01N 30/26 G01N 30/88 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References Japanese Patent Laid-Open No. 1-72059 (JP, A) Japanese Patent Laid-Open No. 2-101050 (JP, A) Akimasa Shibukawa et al. On high-performance liquid chromatography of host-guest interaction. Application, Bunseki, December 1986, 1986 (12), p. 849-856 (58) Fields investigated (Int.Cl. 7 , DB name) G01N 30/26 G01N 30/88

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属陽イオンを高濃度に含有する高塩類
含有溶液中のアミン類をイオンクロマトグラフにより定
量する方法において、クラウンエーテル類を含む溶離液
を用いることを特徴とする高塩類含有溶液中のアミン類
の分析方法。
1. A high salt containing a high concentration of a metal cation.
A method for analyzing amines in a high salt-containing solution, characterized in that an eluent containing crown ethers is used in a method for quantifying amines in the containing solution by ion chromatography.
【請求項2】 請求項1において、溶離液中のクラウン
エーテル類濃度が0.005〜0.5mmol/Lであ
ることを特徴とする高塩類含有溶液中のアミン類の分析
方法。
2. The method for analyzing amines in a high salt-containing solution according to claim 1, wherein the concentration of crown ethers in the eluent is 0.005 to 0.5 mmol / L.
【請求項3】 請求項1又は2において、高塩類含有溶
液が、ボイラ系復水、ボイラ系ドレン水、冷却水系の
水、アミン類添加飛灰溶出水、又はアミン類添加焼却灰
溶出水であることを特徴とする高塩類含有溶液中のアミ
ン類の分析方法。
3. The high salt-containing solution according to claim 1 or 2.
Liquid of boiler condensate, boiler drain water, cooling water system
Water, amine-added fly ash elution water, or amine-added incineration ash
Ami in high-salt-containing solution characterized by being eluted water
Analysis method.
JP29854598A 1998-10-20 1998-10-20 Method for analyzing amines in high salt-containing solutions Expired - Fee Related JP3395671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29854598A JP3395671B2 (en) 1998-10-20 1998-10-20 Method for analyzing amines in high salt-containing solutions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29854598A JP3395671B2 (en) 1998-10-20 1998-10-20 Method for analyzing amines in high salt-containing solutions

Publications (2)

Publication Number Publication Date
JP2000121619A JP2000121619A (en) 2000-04-28
JP3395671B2 true JP3395671B2 (en) 2003-04-14

Family

ID=17861125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29854598A Expired - Fee Related JP3395671B2 (en) 1998-10-20 1998-10-20 Method for analyzing amines in high salt-containing solutions

Country Status (1)

Country Link
JP (1) JP3395671B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529157A (en) * 2013-10-08 2014-01-22 中华人民共和国北京出入境检验检疫局 Ion chromatography-mass spectrometry detection method of migration volumes of amine curing agents in water purification resins
CN113905797B (en) * 2019-06-14 2023-04-18 株式会社大赛璐 Liquid chromatography-based separation method for amines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
澁川明正ら,ホスト−ゲスト相互作用の高速液体クロマトグラフィーへの応用,ぶんせき,1986年12月,1986(12),p.849−856

Also Published As

Publication number Publication date
JP2000121619A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
Thomas et al. Determination of inorganic cations and ammonium in environmental waters by ion chromatography with a high-capacity cation-exchange column
Martinez-Bravo et al. Multielemental determination of arsenic, selenium and chromium (VI) species in water by HPLC ICP MS
Lin et al. Thallium speciation in river waters with Chelex-100 resin
Roehl et al. Applications of ion chromatography with electrospray mass spectrometric detection to the determination of environmental contaminants in water
Papantoni et al. Trace enrichment of metals using a supported liquid membrane technique
Santoyo et al. Trace analysis of heavy metals in groundwater samples by ion chromatography with post-column reaction and ultraviolet–visible detection
Kumar et al. Determination of iodate and sulphate in iodized common salt by ion chromatography with conductivity detection
Sancho et al. Rapid determination of glufosinate in environmental water samples using 9-fluorenylmethoxycarbonyl precolumn derivatization, large-volume injection and coupled-column liquid chromatography
Liu et al. Chelation ion chromatography as a technique for trace elemental analysis in complex matrix samples
Nielen et al. Use of cation exchangers for the on-line preconcentration of polar anilines in liquid chromatography
Cataldi et al. Comparison of silver, gold and modified platinum electrodes for the electrochemical detection of iodide in urine samples following ion chromatography
Cai et al. Liquid-solid extraction and fast atom bombardment high-resolution mass spectrometry for the determination of hydroxyatrazine in water at low-ppt levels
Tan et al. Simultaneous determination of arsenic (III) and arsenic (V) in metallurgical processing media by ion chromatography with electrochemical and conductivity detectors
JP3395671B2 (en) Method for analyzing amines in high salt-containing solutions
CN111189956B (en) H 2 O 2 Method for detecting content of nitrite in sodium chloride sample by using oxidized ion chromatography
Guidotti Determination of Se4+ in drinkable water by solid-phase microextraction and gas chromatography/mass spectrometry
Abidi Liquid chromatography of hydrocarbonaceous quaternary amines on cyclodextrin-bonded silica
Seubert et al. Trace analysis of bromate in drinking waters by means of on-line coupling IC-ICP-MS
Kientz et al. Verification of nonproduction of chemical warfare agents: II. Large volume injections in microcolumn liquid chromatography using flame photometric detection
JP4186214B2 (en) Determination of silicon by silicomolybdic acid back extraction and silicomolybdic acid (blue) absorptiometry
Xiao-Song et al. Determination of molybdenum, chromium and vanadium by ion-pair high-pressure liquid chromatography based on precolumn chelation with 4-(2-pyridylazo) resorcinol
Grabarczyk et al. Application of a renewable silver based mercury film electrode to the determination of Cr (VI) in soil samples
Tanaka et al. Acid rain monitoring by ion-exclusion-cation-exchange chromatography
JPH112623A (en) Selenium analyzing method and selenium analyzer
Akatsuka et al. Preconcentration of trace cadmium from seawater using a dynamically coated column of quaternary ammonium salt on C18-bonded silica gel and determination by graphite-furnace atomic absorption spectrometry

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees