JP3394833B2 - Method of manufacturing thermal barrier coating member - Google Patents

Method of manufacturing thermal barrier coating member

Info

Publication number
JP3394833B2
JP3394833B2 JP05702295A JP5702295A JP3394833B2 JP 3394833 B2 JP3394833 B2 JP 3394833B2 JP 05702295 A JP05702295 A JP 05702295A JP 5702295 A JP5702295 A JP 5702295A JP 3394833 B2 JP3394833 B2 JP 3394833B2
Authority
JP
Japan
Prior art keywords
layer
bond layer
barrier coating
thermal barrier
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05702295A
Other languages
Japanese (ja)
Other versions
JPH08253875A (en
Inventor
格 千田
昌行 伊藤
啓三 本多
一浩 安田
隆成 岡村
一秀 松本
吉延 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP05702295A priority Critical patent/JP3394833B2/en
Publication of JPH08253875A publication Critical patent/JPH08253875A/en
Application granted granted Critical
Publication of JP3394833B2 publication Critical patent/JP3394833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱合金からなる基材の
表面にセラミックスからなる遮熱コーティング層を形成
して構成される遮熱コーティング部材およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal barrier coating member formed by forming a thermal barrier coating layer made of ceramics on a surface of a base material made of a heat-resistant alloy, and a method for producing the same.

【0002】[0002]

【従来の技術】発電用ガスタービンプラントの効率を向
上させるためにガスタービン入口温度を1300℃以上
に高めることが不可欠な課題となっている。この課題の
解決に向けて高温ガスにさらされる動翼および静翼の耐
熱温度を高める努力が傾けられており、その方法として
材料、すなわち耐熱合金の開発が急務となっている。し
かし、耐熱合金で得られる耐熱温度は現状の技術をもっ
ては850℃が限界であり、特に、高温酸化および高温
腐食などを考慮すると、この種の耐熱合金では十分とは
いえない。
2. Description of the Related Art In order to improve the efficiency of a gas turbine plant for power generation, increasing the gas turbine inlet temperature to 1300 ° C. or higher has become an essential issue. In order to solve this problem, efforts are being made to increase the heat resistant temperature of the moving blades and the stationary blades exposed to high temperature gas, and as a method therefor, development of a material, that is, a heat resistant alloy is urgently needed. However, the heat-resistant temperature obtained with the heat-resistant alloy is limited to 850 ° C. with the current technology, and in view of high-temperature oxidation and high-temperature corrosion, this type of heat-resistant alloy is not sufficient.

【0003】そこで、この耐熱合金に代えてより耐熱温
度の高いセラミックス系材料の開発も進められている。
しかしながら、ガスタービンの動翼および静翼にこうし
たセラミックス系材料を用いたとき、回転体である動翼
への適用には靭性の不足があり、静翼への適用も飛来す
る粒子に対する耐衝撃性に難点があり、実際に適用する
までに至っていない。
Therefore, in place of this heat-resistant alloy, development of a ceramic material having a higher heat-resistant temperature is under way.
However, when such ceramic materials are used for the moving blades and stationary blades of a gas turbine, their toughness is insufficient for application to rotating rotor blades, and their application to stationary blades also has impact resistance to incoming particles. However, there is a problem in that it has not been applied yet.

【0004】そこで、ガスタービン入口温度の高温化の
課題に対処するために、さらに、別の方法が注目されて
きた。これは部材の表面を熱伝導率の小さいセラミック
ス系材料で被覆する方法で、遮熱コーティング(The
rmal BarrierCoating、以下TBC
と称する。)と呼ばれている。このTBCは合金系材料
の実質的な温度上昇を抑制する働きがあり、これによる
遮熱効果は一般に、50〜100℃程度と考えられてい
る。
Then, in order to deal with the problem of increasing the gas turbine inlet temperature, another method has been attracting attention. This is a method of coating the surface of the member with a ceramic material having a low thermal conductivity.
rmal Barrier Coating, TBC
Called. )It is called. This TBC has a function of suppressing a substantial temperature rise of the alloy-based material, and the heat shielding effect by this is generally considered to be about 50 to 100 ° C.

【0005】[0005]

【発明が解決しようとする課題】ところで、TBCはこ
れまでのところガスタービンプラントの燃焼器に適用例
がある程度で、動翼における適用例は皆無である。遮熱
特性を有するセラミックスは耐熱合金との物性値が大き
く異なり、剥離が問題となる動翼等への適用は特に難し
い。TBCが施された部材の信頼性を高めるにはより確
実な方法によらねばならない。
By the way, the TBC has so far been applied to a combustor of a gas turbine plant only to some extent, and not applied to a moving blade. Ceramics having heat-shielding properties have greatly different physical properties from heat-resistant alloys, and it is particularly difficult to apply them to moving blades, etc., where peeling is a problem. In order to increase the reliability of the TBC-treated member, a more reliable method must be used.

【0006】この観点から見出された方法がセラミック
ス層と耐熱合金との間に金属材料からなるボンド層を形
成することである。このボンド層は基材の合金とセラミ
ックス層との物性値の差を緩和するものとして、Niま
たはCoを主成分とし、Cr, AlさらにY、Hf、T
a、Si等を適宜添加した、いわゆるMCrAlY系合
金からなるボンド層を基材の表面に形成することが多
い。
A method found from this point of view is to form a bond layer made of a metal material between the ceramic layer and the heat resistant alloy. This bond layer contains Ni or Co as a main component, and contains Cr, Al, and Y, Hf, and T to alleviate the difference in physical properties between the alloy of the base material and the ceramics layer.
In many cases, a bond layer made of a so-called MCrAlY-based alloy to which a, Si or the like is appropriately added is formed on the surface of the base material.

【0007】しかし、高温の使用環境のもとでセラミッ
クス層を透過する酸素がボンド層に拡散し、ボンド層表
面のAlやCrが酸化することでAl2 3 やCr2
3 等が生成し、これが新たな熱応力の発生源となること
がある。このため、遮熱コーティング層の密着力は著し
く弱まり、剥離を生じることになる。
However, under a high-temperature use environment, oxygen that permeates the ceramic layer diffuses into the bond layer, and Al and Cr on the surface of the bond layer oxidize to cause Al 2 O 3 and Cr 2 O.
3 etc. are generated and this may become a new source of thermal stress. For this reason, the adhesion of the thermal barrier coating layer is significantly weakened and peeling occurs.

【0008】この密着力を高めるためにセラミックス層
を物理蒸着法(PhysicalVapor Depo
sition、以下PVD法と称する。)により形成す
ることでTBC部材を製造することが検討されている。
PVDによりセラミックス層を形成した場合、基材との
密着力は飛躍的に高くなり、有力な方法と考えられてい
る。しかしながら、PVDでは成膜する基材表面と垂直
方向に成長するためにボンド層表面にセラミックス層を
形成すると、膜組織がボンド層表面の形状に沿ってラン
ダムに成長した結晶組織となる。このため、セラミック
ス層内の密着性が低下してしまい、遮熱コーティング層
の寿命を延ばすのに有効に機能させることができない。
In order to improve the adhesion, a ceramic layer is formed on the ceramic layer by a physical vapor deposition method (Physical Vapor Depo).
position, hereinafter referred to as PVD method. It is considered that the TBC member is manufactured by forming the TBC member.
When the ceramic layer is formed by PVD, the adhesion to the base material is remarkably increased, which is considered to be an effective method. However, in PVD, when a ceramic layer is formed on the surface of the bond layer in order to grow in a direction perpendicular to the surface of the base material to be formed, the film structure becomes a crystal structure that grows randomly along the shape of the surface of the bond layer. For this reason, the adhesiveness in the ceramics layer is reduced, and the thermal barrier coating layer cannot be effectively functioned to prolong its life.

【0009】そこで、本発明の目的は高温ガスのもとで
使用される動翼などのタービン構成部材においてセラミ
ックス層とボンド層との界面に酸化物が生成されるのを
抑制するようにした遮熱コーティング部材およびその製
造方法を提供することにある。
Therefore, an object of the present invention is to prevent generation of oxides at the interface between the ceramic layer and the bond layer in a turbine constituent member such as a moving blade used under high temperature gas. A thermal coating member and a method for manufacturing the same are provided.

【0010】[0010]

【課題を解決するための手段】本発明による製造方法は
NiあるいはCoのいずれか一方を主成分に持つ耐熱合
金の基材にNiおよびCoの少なくとも一方を主成分と
し、さらにCrおよびAlを含む合金を溶射してボンド
層を形成し、前記ボンド層の表面に酸素を含む雰囲気中
でレーザ光を照射してバリア層を形成し、さらに前記バ
リア層の表面にZrOを主成分とするセラミックスを
蒸着して遮熱コーティング層を形成したことを特徴とす
るものである。
According to the manufacturing method of the present invention, a base material of a heat-resistant alloy having Ni or Co as a main component contains at least one of Ni and Co as a main component and further contains Cr and Al. by spraying the alloy to form a bond layer, forms the shape of the barrier layer is irradiated with a laser beam in an atmosphere containing oxygen to the surface of the bond layer further composed mainly of ZrO 2 on the surface of the barrier layer It is characterized in that a thermal barrier coating layer is formed by depositing ceramics.

【0011】[0011]

【0012】[0012]

【作用】ガスタービン作動ガスの高温化は漸次進みつつ
あるが、酸化物の生成速度がこうした作動ガス温度の向
上と共に著しく上昇することはよく知られている。特
に、1000℃以上になると、ボンド層とセラミック層
との界面で生成する酸化物は、MCrAlY中の酸化物
生成速度の速いAlとCrの双方が酸化物を生成するた
めに剥離が進み易くなる。
Although the temperature of the working gas of the gas turbine is gradually increasing, it is well known that the rate of oxide formation increases remarkably with the increase of the working gas temperature. In particular, when the temperature is 1000 ° C. or higher, the oxide formed at the interface between the bond layer and the ceramic layer is easily separated because both Al and Cr, which have a high oxide generation rate in MCrAlY, generate the oxide. .

【0013】これを回避するために発明者らは試験を行
い、次の知見を得た。すなわち、ボンド層表面を局部的
に溶融凝固させたとき、セラミックス層を透過する酸素
が著しく減少するということである。これはAlが選択
的に酸化されて表面に緻密なAl2 3 からなる層が形
成されることによるものと推察される。
In order to avoid this, the inventors conducted a test and obtained the following findings. That is, when the surface of the bond layer is locally melted and solidified, oxygen permeating through the ceramic layer is significantly reduced. It is assumed that this is because Al is selectively oxidized to form a dense layer of Al 2 O 3 on the surface.

【0014】基材の表面にMCrAlYからなるボンド
層を形成し、酸素を含む雰囲気中でレーザ処理を施して
バリア層を形成した後、その表面にPVDによってセラ
ミックス層を形成したものの剥離寿命試験の結果を表1
に示している。本試験はTBC表面をバーナによって加
熱し、1200℃の温度で40分保持し、その後160
℃まで冷却する操作を1サイクルとして、セラミックス
層が剥離するまでのサイクル数を試験片毎に調べる方法
により実施した。
A bond layer made of MCrAlY was formed on the surface of the base material, laser treatment was performed in an atmosphere containing oxygen to form a barrier layer, and then a ceramic layer was formed by PVD on the surface of the bond life test. The results are shown in Table 1.
Is shown in. In this test, the TBC surface was heated by a burner, kept at a temperature of 1200 ° C for 40 minutes, and then heated at 160 ° C.
The operation of cooling to ° C was set as one cycle, and the number of cycles until the ceramic layer was peeled off was examined for each test piece.

【0015】[0015]

【表1】 試験片No.1ないし3が本発明方法により作られたも
のを示し、試験片No.4が比較のために用意されたボ
ンド層およびセラミックス層が共に大気中のプラズマ溶
射により形成された試験片によるものを示している。N
o.4は513〜850回のサイクルで剥離が生じてい
る。これに対し、本発明によるものでは1865〜21
63回のサイクルで剥離が生じている。
[Table 1] Test piece No. Nos. 1 to 3 show those produced by the method of the present invention. Reference numeral 4 shows a test piece in which both the bond layer and the ceramics layer prepared for comparison were formed by plasma spraying in the atmosphere. N
o. In No. 4, peeling occurred in 513 to 850 cycles. On the other hand, according to the present invention, 1865 to 21
Peeling occurred after 63 cycles.

【0016】本発明で見出されたAl2 3 からなる緻
密なバリア層は、ガスタービンの運転中、セラミックス
層を透過する酸素を遮断し、ボンド層が酸化されるのを
防ぐ働きがあり、このため、耐剥離性を向上させること
が可能になる。
The dense barrier layer made of Al 2 O 3 found in the present invention has a function of blocking oxygen that permeates the ceramic layer and preventing the bond layer from being oxidized during the operation of the gas turbine. Therefore, the peel resistance can be improved.

【0017】また、レーザ処理を施すことにより平滑な
面が得られ、PVDにより成膜したセラミックスの遮熱
コーティング層をボンド層に垂直な方向に成長する柱状
晶とすることが可能になる。ボンド層に用いられるMC
rAlY合金は、耐酸化性を高めるためには、Al濃度
を高くすることが望ましいが、基材とのマッチングを考
慮すると、Al濃度を低くした延性の高い材料を用いる
方が望ましい。そこで、本発明においてはボンド層表面
にAl付加処理を施す。これにより表層の部分だけをA
l濃度を高め、レーザ処理時にAl2 3 を優先的に生
成することができる。また、基材側に延性の高いMCr
AlYを用いることによりレーザ処理時にAl2 3
優先的に生成することができる。
Further, a smooth surface can be obtained by performing the laser treatment, and it becomes possible to form the ceramic thermal barrier coating layer formed by PVD into columnar crystals that grow in the direction perpendicular to the bond layer. MC used for bond layer
The rAlY alloy preferably has a high Al concentration in order to enhance the oxidation resistance, but in consideration of matching with the base material, it is preferable to use a material having a low Al concentration and high ductility. Therefore, in the present invention, the surface of the bond layer is subjected to Al addition treatment. As a result, only the surface part is A
It is possible to increase the 1 concentration and preferentially generate Al 2 O 3 during laser processing. In addition, MCr with high ductility on the substrate side
By using AlY, Al 2 O 3 can be preferentially generated during laser processing.

【0018】[0018]

【実施例】本発明をガスタービンの動翼に適用した実施
例を説明する。図2において、耐熱合金からなる動翼1
1は、予め図に示すような形状に機械加工等により仕上
げ、そのガス通路部にセラミックス層からなる遮熱コー
ティング層12を形成している。この遮熱コーティング
層12の断面を模式図によって示す図1を参照して本実
施例をさらに詳しく説明する。
EXAMPLE An example in which the present invention is applied to a moving blade of a gas turbine will be described. In FIG. 2, a rotor blade 1 made of a heat-resistant alloy
In No. 1, a thermal barrier coating layer 12 made of a ceramics layer is formed in the gas passage portion in advance by finishing the shape as shown in the drawing by machining or the like. This embodiment will be described in more detail with reference to FIG. 1, which schematically shows a cross section of the thermal barrier coating layer 12.

【0019】初めに、図1(a)に示すように、Niま
たはCoを主成分とする耐熱合金からなる基材13の表
面にMCrAlYのボンド層14を形成し、次に、図1
(b)に示すようにボンド層14の表面を酸素を含む雰
囲気のもとでレーザ処理により溶融し、溶融処理層15
とする。さらに、この溶融処理層15の表面に図1
(c)に示すように遮熱コーティング層として所定の厚
さを有するセラミックス層16を形成する。
First, as shown in FIG. 1A, a bond layer 14 of MCrAlY is formed on the surface of a base material 13 made of a heat-resistant alloy containing Ni or Co as a main component, and then, as shown in FIG.
As shown in (b), the surface of the bond layer 14 is melted by laser treatment in an atmosphere containing oxygen, and the melt-treated layer 15 is formed.
And Further, on the surface of the melt-processed layer 15, as shown in FIG.
As shown in (c), a ceramics layer 16 having a predetermined thickness is formed as a thermal barrier coating layer.

【0020】上記の各工程をさらに詳しく説明すると、
図1(a)のMCrAlYからなるボンド層14は減圧
プラズマ溶射法によって10〜200μm の厚さに形成
する。この減圧プラズマ溶射法は基材13への密着強度
も高く成膜方法として非常に望ましいが、これによらな
い場合は大気プラズマ溶射法、高速フレーム溶射法によ
って成膜する。
The above steps will be described in more detail.
The bond layer 14 made of MCrAlY in FIG. 1A is formed to a thickness of 10 to 200 .mu.m by the low pressure plasma spraying method. This low pressure plasma spraying method has a high adhesion strength to the base material 13 and is very desirable as a film forming method. However, if not so, the film is formed by an atmospheric plasma spraying method or a high speed flame spraying method.

【0021】次に、図1(b)のボンド層14の表面を
レーザ処理で溶融するには加工速度を50〜1500mm
/分に保ってレーザ光を照射する。レーザ光は、これに
限られないが、たとえばCO2 レーザ、YAGレーザを
用いて行い、出力は1〜10KWに保持する。この場合、
図3に示すようにレーザ発振器21からのレーザ光22
は集光レンズ23によってボード層14の表面に焦点を
ずらして照射される。集光レンズによる焦点距離は12
7mm、190.5mm、254mm、381mm、508mmで
あり、ボンド層14の表面でのレーザビーム径は5〜3
5mmに保持する。 次に、図1(c)の溶融処理層15
の表面にセラミックス層16を形成するのはセラミック
ス被覆装置によって行う。すなわち、このセラミックス
被覆装置は、図4に示すように、被覆処理のための真空
チャバ24、拡散ポンプと油拡散ポンプからなる真空排
気装置25ならびに図示しない制御装置および電源装置
によって構成されている。
Next, in order to melt the surface of the bond layer 14 of FIG. 1 (b) by laser processing, the processing speed is 50 to 1500 mm.
Irradiate with laser light while keeping at / min. Although the laser light is not limited to this, for example, a CO 2 laser or a YAG laser is used, and the output is maintained at 1 to 10 KW. in this case,
As shown in FIG. 3, the laser light 22 from the laser oscillator 21
Is irradiated onto the surface of the board layer 14 by defocusing it by the condenser lens 23. The focal length of the condenser lens is 12
7 mm, 190.5 mm, 254 mm, 381 mm and 508 mm, and the laser beam diameter on the surface of the bond layer 14 is 5 to 3
Hold at 5 mm. Next, the melt processing layer 15 of FIG.
The ceramic coating device is used to form the ceramic layer 16 on the surface. That is, as shown in FIG. 4, this ceramic coating apparatus is composed of a vacuum chamber 24 for coating processing, a vacuum exhaust apparatus 25 composed of a diffusion pump and an oil diffusion pump, and a control unit and a power supply unit (not shown).

【0022】真空チャバ24内の下部にはセラミックス
材26を装着するるつぼ27が配置されており、このる
つぼ27の下方にはセラミックス材26を溶融し、かつ
蒸発させる電子ビーム発生装置28が、また、るつぼ2
7の一側に電子ビーム走査装置29がそれぞれ設けられ
ている。一方、真空チャバ21内の上部にはモータ30
によって駆動される基材駆動装置31が設けられてお
り、基材32がこの基材駆動装置31の端部に装着され
る。
A crucible 27 for mounting a ceramic material 26 is arranged in the lower part of the vacuum chamber 24, and an electron beam generator 28 for melting and evaporating the ceramic material 26 is disposed below the crucible 27. , Crucible 2
An electron beam scanning device 29 is provided on one side of each of the seven. On the other hand, the motor 30 is installed in the upper part of the vacuum chamber 21.
The base material drive device 31 driven by is provided, and the base material 32 is attached to the end portion of the base material drive device 31.

【0023】セラミックス層16を形成するには、初め
にセラミックス材26をるつぼ27に満たし、基材32
を基材駆動装置31に装着する。次に、真空排気装置2
5を運転して真空チャバ24内を10-2〜10-4Paの真
空度に保持する。次に、電子ビーム発生装置28によっ
てセラミックス材26に電子ビームを照射し、その表面
を溶融させる。このとき、表面が常に溶けた状態で所定
の蒸発速度が保たれるように電子ビーム電流を制御し、
さらに電子ビームを走査して溶融処理層15の表面にセ
ラミックス層16を形成する。
In order to form the ceramic layer 16, the ceramic material 26 is first filled in the crucible 27, and the substrate 32 is formed.
Is mounted on the substrate driving device 31. Next, the vacuum exhaust device 2
5 is operated to maintain the inside of the vacuum chamber 24 at a vacuum degree of 10 -2 to 10 -4 Pa. Next, the electron beam generator 28 irradiates the ceramic material 26 with an electron beam to melt the surface thereof. At this time, the electron beam current is controlled so that the predetermined evaporation rate is maintained with the surface always melted,
Further, the ceramic layer 16 is formed on the surface of the melt-processed layer 15 by scanning with an electron beam.

【0024】ここで成膜されるセラミックスはZrO2
を主成分とするセラミックスであり、ZrO2 を8wt%
2 2 で部分安定化した8%イットリア部分安定化ジ
ルコニア(8wt%Y2 3 −ZrO2 )が望ましい。こ
れによらない場合、たとえば、イットリアの添加量を変
化させたジルコニア、セリア、カルシア等で部分安定化
させたジルコニア等を用いてもよい。
The ceramics formed here are ZrO 2
8% by weight of ZrO 2
8% yttria partially stabilized zirconia partially stabilized with Y 2 O 2 (8wt% Y 2 O 3 -ZrO 2) is desirable. In the case where this is not the case, for example, zirconia whose amount of yttria added is changed, zirconia partially stabilized with ceria, calcia or the like may be used.

【0025】ボンド層14の表面にレーザ処理を施す
と、図1(b)に示すように凹凸のあるボンド層14の
表面が溶融して平滑化し、このため、溶射層内に点在し
ていたポロシティ等もなくなり、表面に緻密なAl2
3 からなるバリア層が形成される。このAl2 3 から
なるバリア層により運転中、遮熱コーティング層12を
透過する酸素を遮断することができ、ボンド層14が酸
化されるのを防ぐことが可能になる。
When the laser treatment is applied to the surface of the bond layer 14, the surface of the bond layer 14 having irregularities is melted and smoothed as shown in FIG. 1 (b). Therefore, the surface of the bond layer 14 is scattered in the sprayed layer. The fine porosity disappears, and the surface is dense Al 2 O
A barrier layer consisting of 3 is formed. The barrier layer made of Al 2 O 3 can block oxygen that permeates the thermal barrier coating layer 12 during operation, and can prevent the bond layer 14 from being oxidized.

【0026】蒸着法により成膜されたセラミックス層は
成膜される表面性状により大きな影響を受けることにな
るが、基材表面を予め平滑に仕上げておくことで基材1
3と垂直な方向に柱状晶のセラミックス層16を形成す
ることができる。このセラミックス層16の厚さは50
〜400μm が望ましい。
The ceramic layer formed by the vapor deposition method is greatly affected by the surface properties of the formed film. However, by finishing the surface of the base material in advance, the base material 1
The columnar ceramic layer 16 can be formed in a direction perpendicular to the direction 3. The thickness of this ceramic layer 16 is 50
˜400 μm is desirable.

【0027】さらに、本発明の他の実施例を図5を参照
して説明する。本実施例はMCrAlYからなるボンド
層14と共にAl付加処理を施すものである。すなわ
ち、本実施例はボンド層14の形成後に、図5に示すよ
うにAl付加層17を形成する。これによりAl2 3
からなる層の形成をより確実にすることができる。Al
付加層17の形成方法としては、表面に2〜50μm の
Al付加層が形成できるパック処理が望ましい。
Further, another embodiment of the present invention will be described with reference to FIG. In this embodiment, an Al addition process is performed together with the bond layer 14 made of MCrAlY. That is, in this embodiment, after the bond layer 14 is formed, the Al addition layer 17 is formed as shown in FIG. As a result, Al 2 O 3
The formation of the layer made of can be made more reliable. Al
As a method of forming the additional layer 17, it is desirable to use a pack process capable of forming an Al additional layer of 2 to 50 μm on the surface.

【0028】また、上記のものと異なる実施例を図6を
参照して説明する。本実施例ではMCrAlYからなる
単一のボンド層14に代えて複数のボンド層が形成され
る。すなわち、基材13に近い第1層はAl濃度が低
い、たとえば3%以上6%未満のMCrAlYからなる
内側ボンド層18により、また第2層はAl濃度が高
い、たとえば6%以上20%以下のMCrAlYからな
る外側ボンド層19により構成されている。基材13に
近い内側ボンド層18は延性を基材13と同等に保持す
るためにAl濃度は低く保ち、一方、外側ボンド層19
は耐食性に優れたAl2 3 を生成し易くするためにA
l濃度を高くする。このような複層のボンド層からなる
ものはTBCとこれを施した基材とのマッチングがよ
く、より確実に耐剥離性を向上させることができる。
An embodiment different from the one described above will be described with reference to FIG. In this embodiment, a plurality of bond layers are formed instead of the single bond layer 14 made of MCrAlY. That is, the first layer close to the base material 13 has a low Al concentration, for example, the inner bond layer 18 made of MCrAlY of 3% or more and less than 6%, and the second layer has a high Al concentration, for example, 6% or more and 20% or less. The outer bond layer 19 is made of MCrAlY. The inner bond layer 18 close to the base material 13 keeps the Al concentration low in order to maintain ductility equivalent to that of the base material 13, while the outer bond layer 19 is kept.
Is A in order to easily form Al 2 O 3 having excellent corrosion resistance.
l Increase the concentration. In the case of such a multi-layered bond layer, the TBC and the base material on which the TBC is applied are well matched, and the peel resistance can be more reliably improved.

【0029】[0029]

【発明の効果】以上説明したように本発明はボンド層の
表面に酸化物からなるバリア層を形成したので、たとえ
ばガスタービンなどの高温作動ガスにさらされる環境下
においても酸素がボンド層に到達するのを確実に阻止す
ることができる。また、ボンド層の表面に酸素を含む雰
囲気中でレーザ光を照射することにより平滑なバリア層
が得られ、この上にセラミックスを蒸着して遮熱コーテ
ィング層を形成することで、基材と垂直な方向に柱状晶
の遮熱コーティング層を形成することができる。したが
って、本発明によれば、ボンド層とセラミックスからな
る遮熱コーティング層との界面で生成される酸化物によ
って遮熱コーティング層が剥離するのを防止でき、動翼
などの供用時間を大きく延ばすことが可能になる。
As described above, according to the present invention, since the barrier layer made of an oxide is formed on the surface of the bond layer, oxygen reaches the bond layer even in an environment exposed to a high temperature working gas such as a gas turbine. It can be surely prevented from doing. In addition, the surface of the bond layer contains an atmosphere containing oxygen.
A smooth barrier layer by irradiating laser light in the atmosphere
Is obtained, and ceramics are vapor-deposited on this
By forming a wing layer, columnar crystals are formed in the direction perpendicular to the substrate.
The thermal barrier coating layer can be formed. Therefore, according to the present invention, it is possible to prevent the thermal barrier coating layer from peeling off due to the oxide generated at the interface between the bond layer and the thermal barrier coating layer made of ceramics, and to extend the service time of the moving blade etc. greatly. Will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)(c)は本発明による遮熱コーテ
ィング部材の製造方法を示す工程図。
1A, 1B, and 1C are process diagrams showing a method for manufacturing a thermal barrier coating member according to the present invention.

【図2】遮熱コーティング部材の適用例である動翼の斜
視図。
FIG. 2 is a perspective view of a moving blade that is an application example of a thermal barrier coating member.

【図3】本発明によるレーザ処理工程を説明するための
図。
FIG. 3 is a diagram for explaining a laser processing process according to the present invention.

【図4】本発明で用いられるセラミックス被覆装置を示
す構成図。
FIG. 4 is a configuration diagram showing a ceramic coating device used in the present invention.

【図5】本発明の他の実施例を示す工程図。FIG. 5 is a process drawing showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す工程図。FIG. 6 is a process drawing showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 動翼 12 遮熱コーティング層 13 基材 14、18、19 ボンド層 15 溶融層 16 セラミックス層 17 Al付加層 24 真空チャンバ 27 るつぼ 31 基材駆動装置 11 moving blade 12 Thermal barrier coating layer 13 Base material 14, 18, 19 Bond layer 15 Molten layer 16 Ceramics layer 17 Al additional layer 24 vacuum chamber 27 crucibles 31 Substrate driving device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 一浩 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 研究開発センター内 (72)発明者 岡村 隆成 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (72)発明者 松本 一秀 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (72)発明者 牧野 吉延 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (56)参考文献 特開 平8−246901(JP,A) 特開 平8−225959(JP,A) 特開 平8−225958(JP,A) 特開 平8−135469(JP,A) 特開 平8−85883(JP,A) 特開 平8−67990(JP,A) 特開 平7−54603(JP,A) 特公 昭61−32392(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C23C 28/00 - 30/00 F01D 5/28 F01D 9/02 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuhiro Yasuda 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Research & Development Center (72) Inventor Takanari Okamura 2 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 4 Stock Company Toshiba Keihin Works (72) Inventor Kazuhide Matsumoto 1st Toshiba Town, Fuchu City, Tokyo Inside Toshiba Fuchu Factory (72) Inventor Yoshinobu Makino 4 shares of 2 Suehiro Town, Tsurumi Ward, Yokohama City, Kanagawa Prefecture (56) Reference JP-A-8-246901 (JP, A) JP-A-8-225959 (JP, A) JP-A-8-225958 (JP, A) JP-A-8-135469 (JP, A) JP 8-85883 (JP, A) JP 8-67990 (JP, A) JP 7-54603 (JP, A) JP 61-32392 (JP, B2) (JP, A) 58) Fields surveyed (In t.Cl. 7 , DB name) C23C 28/00-30/00 F01D 5/28 F01D 9/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 NiあるいはCoのいずれか一方を主成
分に持つ耐熱合金の基材にNiおよびCoの少なくとも
一方を主成分とし、さらにCrおよびAlを含む合金を
溶射してボンド層を形成し、前記ボンド層の表面に酸素
を含む雰囲気中でレーザ光を照射してバリア層を形
、さらに前記バリア層の表面にZrOを主成分とす
るセラミックスを蒸着して遮熱コーティング層を形成し
たことを特徴とする遮熱コーティング部材の製造方法。
1. A bond layer is formed by thermally spraying an alloy containing at least one of Ni and Co as a main component and further containing Cr and Al onto a base material of a heat-resistant alloy having one of Ni and Co as a main component. , the shape formed the barrier layer is irradiated with a laser beam in an atmosphere containing oxygen to the surface of the bond layer
A method of manufacturing a thermal barrier coating member, characterized in that a thermal barrier coating layer is formed by vapor-depositing ceramics containing ZrO 2 as a main component on the surface of the barrier layer.
【請求項2】 前記レーザ光の照射に先立ち、前記ボン
ド層の表面にパック処理によってAl付加層を形成した
ことを特徴とする請求項1記載の遮熱コーティング部材
の製造方法。
2. The method for manufacturing a thermal barrier coating member according to claim 1 , wherein an Al addition layer is formed on the surface of the bond layer by a pack treatment prior to the irradiation of the laser beam .
【請求項3】 前記基材に形成される該ボンド層に代え
て、NiおよびCoの少なくとも一方を主成分とし、さ
らにCrおよび低濃度のAlを含む合金を溶射して内側
ボンド層を形成すると共に、このボンド層の上にNiお
よびCoの少なくとも一方を主成分とし、さらにCrお
よび高濃度のAlを含む合金を溶射して外側ボンド層を
形成したことを特徴とする請求項1記載の遮熱コーティ
ング部材の製造方法。
3. An inner bond layer is formed by spraying an alloy containing at least one of Ni and Co as main components, and further containing Cr and low concentration Al instead of the bond layer formed on the base material. At the same time, an outer bond layer is formed on the bond layer by spraying an alloy containing at least one of Ni and Co as a main component and further containing Cr and high concentration Al. A method for manufacturing a heat-coated member.
JP05702295A 1995-03-16 1995-03-16 Method of manufacturing thermal barrier coating member Expired - Fee Related JP3394833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05702295A JP3394833B2 (en) 1995-03-16 1995-03-16 Method of manufacturing thermal barrier coating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05702295A JP3394833B2 (en) 1995-03-16 1995-03-16 Method of manufacturing thermal barrier coating member

Publications (2)

Publication Number Publication Date
JPH08253875A JPH08253875A (en) 1996-10-01
JP3394833B2 true JP3394833B2 (en) 2003-04-07

Family

ID=13043814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05702295A Expired - Fee Related JP3394833B2 (en) 1995-03-16 1995-03-16 Method of manufacturing thermal barrier coating member

Country Status (1)

Country Link
JP (1) JP3394833B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509118B1 (en) * 2002-10-28 2005-08-19 한국전력공사 Pre-oxidation treatment method for life extension of thermal barrier coating
US7306860B2 (en) 2004-07-30 2007-12-11 Honeywell International, Inc. Protective coating for oxide ceramic based composites
US20070231589A1 (en) * 2006-04-04 2007-10-04 United Technologies Corporation Thermal barrier coatings and processes for applying same
CN116254496B (en) * 2022-09-09 2023-12-15 北京金轮坤天特种机械有限公司 Preparation method of thermal barrier coating

Also Published As

Publication number Publication date
JPH08253875A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
US9683281B2 (en) Laser assisted oxide removal
US5834070A (en) Method of producing protective coatings with chemical composition and structure gradient across the thickness
US6382920B1 (en) Article with thermal barrier coating and method of producing a thermal barrier coating
EP0916635B1 (en) Ceramic coatings containing layered porosity
US5015502A (en) Ceramic thermal barrier coating with alumina interlayer
US4916022A (en) Titania doped ceramic thermal barrier coatings
EP1897967B1 (en) Nanolaminate thermal barrier coatings
JP2009108410A (en) Alumina-based protective coating for thermal barrier coating
JP2007231422A (en) Coating process and coated article
JP2007277722A (en) Process for applying coating, bond coat composition, and coated article
JP2001225411A (en) Method for forming ceramic coating comprising porous layer, and coated article
JP4827365B2 (en) Thermal barrier coating
JP2007217795A (en) Component, apparatus and method for manufacture of layer system
US7229675B1 (en) Protective coating method for pieces made of heat resistant alloys
JP2000144365A (en) Thermal barrier coating member, production of thermal barrier coating member and high temperature gas turbine using thermal barrier coating member
US20200291529A1 (en) LASER INDUCED, FINE GRAINED, GAMMA PHASE SURFACE FOR NiCoCrAlY COATINGS PRIOR TO CERAMIC COAT
US6635124B1 (en) Method of depositing a thermal barrier coating
RU2264480C2 (en) Method of deposition of protective coatings on details made out of refractory alloys
JP3394833B2 (en) Method of manufacturing thermal barrier coating member
GB2285632A (en) Thermal barrier coating system for superalloy components
JP2003201803A (en) Stabilized zirconia thermal barrier coating with hafnia
US20220298645A1 (en) LASER INDUCED, FINE GRAINED, GAMMA PHASE SURFACE FOR NiCoCrAlY COATINGS PRIOR TO CERAMIC COAT
JP2001295075A (en) Corrosion resistant ceramic coating member to metallic base material, method for manufacturing the same and part composed of the member
JP4644803B2 (en) Method for manufacturing heat shielding coating member and heat shielding coating member
JPH0885883A (en) Ceramic coated heat resistant member with multiple oxides bonding layer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030114

LAPS Cancellation because of no payment of annual fees