JP3394426B2 - Heating resistance type flow measurement device, temperature error correction system and correction device - Google Patents

Heating resistance type flow measurement device, temperature error correction system and correction device

Info

Publication number
JP3394426B2
JP3394426B2 JP18945097A JP18945097A JP3394426B2 JP 3394426 B2 JP3394426 B2 JP 3394426B2 JP 18945097 A JP18945097 A JP 18945097A JP 18945097 A JP18945097 A JP 18945097A JP 3394426 B2 JP3394426 B2 JP 3394426B2
Authority
JP
Japan
Prior art keywords
flow rate
temperature
signal
fluid
resistance type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18945097A
Other languages
Japanese (ja)
Other versions
JPH1137815A (en
Inventor
信弥 五十嵐
泰生 牧絵
健治 太田
菅家  厚
崇 角廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP18945097A priority Critical patent/JP3394426B2/en
Priority to EP98112397A priority patent/EP0890827A1/en
Priority to EP07003890A priority patent/EP1793209A1/en
Priority to CNB2004100877965A priority patent/CN100347430C/en
Priority to CNB981156886A priority patent/CN1222759C/en
Priority to KR10-1998-0027205A priority patent/KR100491488B1/en
Priority to US09/111,767 priority patent/US6230559B1/en
Publication of JPH1137815A publication Critical patent/JPH1137815A/en
Application granted granted Critical
Publication of JP3394426B2 publication Critical patent/JP3394426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発熱抵抗式流量測
定装置を用いて流体の質量流量を計測するときの、流体
の温度変化により生じる流量計測誤差の補正手段であっ
て、特に内燃機関に吸入される空気流量を計測し、その
空気流量に応じた機関の制御を行うシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a means for correcting a flow rate measurement error caused by a temperature change of a fluid when a mass flow rate of the fluid is measured by using a heat generation resistance type flow rate measuring apparatus, and particularly to an internal combustion engine. The present invention relates to a system that measures an intake air flow rate and controls an engine according to the air flow rate.

【0002】[0002]

【従来の技術】本発明に近い公知例として、発熱抵抗式
空気流量測定装置の温度特性を電子回路の温度特性によ
り相殺する構成とした特開平8−278178 号記載の発熱抵
抗式流量測定装置がある。特開平8−278178 号記載の発
熱抵抗式流量測定装置は、温度変化による計測誤差の空
気流量に対する依存性を、発熱抵抗式流量測定装置が有
する基準電圧発生回路の温度特性に、前記計測誤差を相
殺するような流量依存性を持たせ補正したものである。
2. Description of the Related Art As a known example close to the present invention, there is disclosed a heating resistance type flow rate measuring device described in Japanese Patent Application Laid-Open No. 8-278178 in which a temperature characteristic of a heating resistance type air flow rate measuring device is offset by a temperature characteristic of an electronic circuit. is there. The heating resistance type flow rate measuring device described in JP-A-8-278178 shows the dependence of the measurement error due to temperature change on the air flow rate in the temperature characteristic of the reference voltage generating circuit of the heating resistance type flow rate measuring device. It is corrected by having a flow rate dependency that cancels out.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、流体
の温度変化により生じる発熱抵抗体,感温抵抗体等によ
り形成されたブリッジ回路の流量に対応した出力が持つ
温度誤差を、電子回路が持つ温度特性により相殺するも
のである。従って、流体の温度と電子回路の温度に差が
生じる場合には、その補正は機能しないという問題を有
している。
SUMMARY OF THE INVENTION In the above-mentioned prior art, the electronic circuit has a temperature error which the output corresponding to the flow rate of the bridge circuit formed by the heating resistor, the temperature sensitive resistor, etc., caused by the temperature change of the fluid. This is offset by the temperature characteristics that it has. Therefore, when there is a difference between the temperature of the fluid and the temperature of the electronic circuit, there is a problem that the correction does not work.

【0004】本発明は、流体の温度変化により生じる発
熱抵抗式流量測定装置の温度誤差を流体の温度により容
易に補正可能としたものである。
The present invention makes it possible to easily correct the temperature error of the heating resistance type flow rate measuring device caused by the temperature change of the fluid by the temperature of the fluid.

【0005】[0005]

【課題を解決するための手段】上記目的は、副通路に設
けられた発熱抵抗体と、前記副通路に設けられ、前記発
熱抵抗体の加熱基準となる基準抵抗体と、温度を検出す
る温度検出手段と、少なくともCPUとA/Dコンバー
タとを有する電子回路と、前記電子回路を内装するハウ
ジングとを備え、前記副通路が前記ハウジングに一体に
形成された発熱抵抗式流量測定装置であって、前記A/
Dコンバータによりデジタル変換された流量信号が、流
量に対する計測誤差が流体の温度によらずほぼ一定の特
性を有し、前記CPUが前記温度検出手段が検出する温
度に基づいて、前記デジタル変換された流量信号を一次
式で補正することによって達成される。 また、上記目的
は、発熱抵抗体からの放熱量あるいは加熱された抵抗体
の温度を基に流体の流量を計測する発熱抵抗式流量測定
手段からの流量信号を入力して補正する補正装置であっ
て、前記流量信号は、流量に対する計測誤差が前記流体
の温度によらずほぼ一定の特性を有し、前記発熱抵抗式
流量測定手段が設置された流体通路内の温度を検出する
温度検出手段からの温度信号に基づいて前記流量信号を
一次式で補正することによって達成される。 また、上記
目的は、発熱抵抗体からの放熱量あるいは加熱された抵
抗体の温度を基に、流体の流量に対応した流量信号を出
力する発熱抵抗式流量測定手段と、前記発熱抵抗式流量
測定手段が設置された流体通路内の温度を検出する温度
検出手段と、前記発熱抵抗式流量測定手段からの流量信
号を補正する補正手段と、を備えた温度誤差補正システ
ムであって、前記流量信号は、流量に対する計測誤差が
流体の温度によらずほぼ一定の特性を有し、前記補正手
段は、前記流体温度検出手段からの温度信号に基づいて
前記流量計測手段からの流量信号を一次式で補正するこ
とによって達成される。
[Means for Solving the Problems] The above object is to install the auxiliary passage.
And the heating resistor provided in the auxiliary passage.
Detects the temperature and the reference resistor that is the heating reference of the thermal resistor.
Temperature detecting means, and at least a CPU and an A / D converter
And an electronic circuit having the electronic circuit
And the auxiliary passage is integrally formed with the housing.
A heating resistance type flow rate measuring device formed, comprising:
The flow rate signal digitally converted by the D converter
The measurement error for the quantity is almost constant regardless of the fluid temperature.
Of the temperature detected by the temperature detection means by the CPU.
The digitally converted flow signal based on the
This is achieved by correcting with an equation. Also, the above purpose
Is the amount of heat released from the heating resistor or the heated resistor
Heat resistance type flow rate measurement that measures the flow rate of the fluid based on the temperature of the
It is a correction device that corrects by inputting the flow rate signal from the means.
The flow rate signal has a measurement error with respect to the flow rate of the fluid.
It has almost constant characteristics regardless of the temperature of the
Detects the temperature in the fluid passage where the flow rate measuring means is installed
Based on the temperature signal from the temperature detection means, the flow rate signal
It is achieved by correcting with a linear equation. Also, above
The purpose is the amount of heat released from the heating resistor or the
A flow rate signal corresponding to the flow rate of the fluid is output based on the antibody temperature.
Heat resistance resistance type flow rate measuring means, and the heat generation resistance type flow rate
Temperature to detect the temperature in the fluid passage where the measuring means is installed
The flow rate signal from the detecting means and the heating resistance type flow rate measuring means.
Error correction system including a correction means for correcting the signal
And the flow rate signal has a measurement error with respect to the flow rate.
It has almost constant characteristics regardless of the fluid temperature.
The stage based on the temperature signal from the fluid temperature sensing means.
The flow rate signal from the flow rate measuring means can be corrected by a linear equation.
Achieved by.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施例を図1〜図
17を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS.

【0007】本発明の代表的な実施例である温度誤差補
正手段を用いた制御システムの構成図を図1に示す。
FIG. 1 shows a block diagram of a control system using a temperature error correction means, which is a typical embodiment of the present invention.

【0008】発熱抵抗式流量測定装置1は、流量検出用
の発熱抵抗体11と流体の温度に応じた抵抗値となる感
温抵抗体であり発熱抵抗体の加熱温度の基準となる基準
抵抗体12が流体通路40の内部に位置するように取り
付けられ、発熱抵抗体11,基準抵抗体12とその他の
抵抗17,18とでブリッジ回路を構成しており、発熱
抵抗体11は、基準抵抗体12が検出している流体温度
に対して常に一定温度高くなるように制御される。従っ
て、発熱抵抗体11から流体への放熱量と等しい加熱量
を得られるように発熱抵抗体11に電流が供給されるた
め、発熱抵抗体11を流れる電流値は流体の流量に対応
した信号となる。この電流を固定抵抗である抵抗17で
電圧として置き換え、出力特性調整回路14により調整
されて、流量信号15を出力するものである。
The heating resistance type flow rate measuring device 1 is a temperature sensing resistor having a resistance value according to the temperature of the heating resistor 11 for detecting the flow rate and the fluid, and a reference resistor serving as a reference of the heating temperature of the heating resistor. 12 is attached so as to be located inside the fluid passage 40, and the heating resistor 11, the reference resistor 12 and the other resistors 17 and 18 form a bridge circuit, and the heating resistor 11 is the reference resistor. It is controlled so that the temperature of the fluid 12 is always higher than the temperature of the fluid being detected. Therefore, since a current is supplied to the heating resistor 11 so as to obtain a heating amount equal to the amount of heat radiated from the heating resistor 11 to the fluid, the current value flowing through the heating resistor 11 becomes a signal corresponding to the flow rate of the fluid. Become. This current is replaced with a voltage by a resistor 17 which is a fixed resistor, adjusted by an output characteristic adjusting circuit 14, and a flow rate signal 15 is output.

【0009】一方、流体温度検出装置2は、サーミスタ
等の感温抵抗体21を流体通路40内に配したもので、
その抵抗値自体、あるいは一定電流を供給した時の電圧
値を温度信号22として出力するものである。
On the other hand, the fluid temperature detecting device 2 has a temperature sensitive resistor 21 such as a thermistor arranged in the fluid passage 40.
The resistance value itself or the voltage value when a constant current is supplied is output as the temperature signal 22.

【0010】上記の流量信号15及び温度信号22は、
その他の信号31と共に、コントロールユニット4に入
力される。入力された各信号はA/Dコンバータ7によ
りディジタル値に変換され、マイコン9内で処理され
る。ここで、流量信号は実際には流量に対して非線形な
電圧信号であるため、ディジタル値に変換後さらに流量
変換部6においてリニアな流量値に換算され、さらに、
温度補正部3において、流体の温度変化による計測誤差
を補正した流量信号となり、温度誤差を低減した流量値
が得られる。この温度補正後の流量信号,温度信号及び
その他の信号を制御部5に入力し、その機関あるいは設
備の制御信号32をD/Aコンバータ等のインターフェ
ース8を介してコントロールユニット4により出力する
ことができる。
The above flow rate signal 15 and temperature signal 22 are
It is input to the control unit 4 together with other signals 31. Each input signal is converted into a digital value by the A / D converter 7 and processed in the microcomputer 9. Here, since the flow rate signal is actually a non-linear voltage signal with respect to the flow rate, it is converted into a digital value and then converted into a linear flow rate value in the flow rate conversion unit 6, and further,
In the temperature correction unit 3, the flow rate signal is obtained by correcting the measurement error due to the temperature change of the fluid, and the flow rate value with the reduced temperature error is obtained. The temperature-corrected flow rate signal, temperature signal, and other signals can be input to the control unit 5, and the control signal 32 for the engine or equipment can be output by the control unit 4 via the interface 8 such as a D / A converter. it can.

【0011】次に、本発明に用いる発熱抵抗式流量測定
装置の一実施例として、内燃機関の吸入空気流量を測定
するための発熱抵抗式空気流量測定装置の構造につい
て、図2に示す横断面図と図3の上流側から見た外観図
を用いて説明する。
Next, as an embodiment of the heat generation resistance type flow rate measuring apparatus used in the present invention, the structure of the heat generation resistance type air flow rate measuring apparatus for measuring the intake air flow rate of the internal combustion engine is shown in the cross section of FIG. This will be described with reference to the drawings and the external view seen from the upstream side of FIG.

【0012】発熱抵抗式空気流量測定装置の構造は、従
来品と変える必要はなく、ここでは本実施例の概略のみ
説明する。発熱抵抗式流量測定装置は、電子回路を構成
する回路基板52を内装するハウジング51、ハウジン
グ51と固定された副通路構成部材56、流体通路とな
るボディ41により構成される。流量検出用の発熱抵抗
体11及び基準抵抗体12は、両端に導電性のリード5
4を有し、リード54の両端をターミナル53に固定す
ることにより副通路43の内部に配置固定される。ター
ミナル53は導電性部材であり、ハウジング51の内部
へ連通して回路基板52とワイヤ57にて接続される。
計測対象である吸入空気44は、ボディ41にて形成さ
れる流体通路を主通路42とし、その一部の流れが副通
路43に分岐され発熱抵抗体11の放熱量を基に電子回
路にて空気流量に対応した信号を得る。この信号をコネ
クタ55より外部機器へ出力するものである。
The structure of the heating resistance type air flow rate measuring device does not need to be changed from the conventional product, and only the outline of this embodiment will be described here. The heat generation resistance type flow rate measuring device is composed of a housing 51 in which a circuit board 52 constituting an electronic circuit is housed, a sub-passage forming member 56 fixed to the housing 51, and a body 41 serving as a fluid passage. The heating resistor 11 and the reference resistor 12 for detecting the flow rate have conductive leads 5 at both ends.
4, the lead 54 is arranged and fixed inside the sub passage 43 by fixing both ends of the lead 54 to the terminal 53. The terminal 53 is a conductive member and communicates with the inside of the housing 51 and is connected to the circuit board 52 by a wire 57.
The intake air 44 to be measured has a fluid passage formed in the body 41 as a main passage 42, and a part of the flow is branched to a sub passage 43 to generate an electronic circuit based on a heat radiation amount of the heating resistor 11. Obtain a signal corresponding to the air flow rate. This signal is output from the connector 55 to an external device.

【0013】また、上記発熱抵抗式空気流量測定装置の
電子回路図を図4に示す。電子回路は、発熱抵抗体11
の加熱温度を制御し、流量に対応した信号19が得られ
る制御回路61と、ツェナーダイオード64,ダイオー
ド65の温度特性を利用して温度変化による出力変化を
補正するための温度補償回路62と、前記流量に対応し
た信号19のゼロレベルとゲインを調整して所定の流量
特性に合わせるための出力特性調整回路63に大別され
る。
An electronic circuit diagram of the heating resistance type air flow rate measuring device is shown in FIG. The electronic circuit is the heating resistor 11
A control circuit 61 for controlling the heating temperature of No. 1 to obtain a signal 19 corresponding to the flow rate, and a temperature compensating circuit 62 for correcting the output change due to the temperature change by utilizing the temperature characteristics of the Zener diode 64 and the diode 65. It is roughly classified into an output characteristic adjusting circuit 63 for adjusting the zero level and gain of the signal 19 corresponding to the flow rate so as to match a predetermined flow rate characteristic.

【0014】制御回路61は、図1に示した単純ブリッ
ジ回路とは構成が異なるが、基準抵抗体12の抵抗値に
対応する空気温度に対して発熱抵抗体11が一定温度高
くなるように制御するもので、単純ブリッジと同じ機能
を有する回路である。
The control circuit 61 has a different structure from that of the simple bridge circuit shown in FIG. 1, but controls the heating resistor 11 so as to have a constant temperature higher than the air temperature corresponding to the resistance value of the reference resistor 12. It has the same function as a simple bridge.

【0015】温度補償回路62は、ツェナーダイオード
64とダイオード65の温度特性を利用して、抵抗66
または抵抗67を調整することにより、任意の温度特性
を有する出力特性調整回路63の基準電圧68が得られ
るものである。
The temperature compensating circuit 62 utilizes the temperature characteristics of the Zener diode 64 and the diode 65 to make the resistance 66
Alternatively, by adjusting the resistance 67, the reference voltage 68 of the output characteristic adjusting circuit 63 having an arbitrary temperature characteristic can be obtained.

【0016】出力特性調整回路63は、制御回路61の
流量に対応した信号19を入力して、オペアンプ69に
よりゼロスパン調整して所定の流量特性に合わせた流量
信号15を得るものである。ここで、ゼロ点調整の基準
となる電圧は温度補償回路62により任意の温度特性に
調整されたものであるため、流量信号15の温度特性が
調整可能となる。
The output characteristic adjusting circuit 63 receives the signal 19 corresponding to the flow rate of the control circuit 61 and adjusts the zero span by the operational amplifier 69 to obtain the flow rate signal 15 that matches the predetermined flow rate characteristic. Here, since the reference voltage for zero point adjustment is adjusted to an arbitrary temperature characteristic by the temperature compensation circuit 62, the temperature characteristic of the flow rate signal 15 can be adjusted.

【0017】上記の発熱抵抗式流量測定装置の流量信号
の持つ温度特性を、20℃における出力特性を誤差0%
として、80℃及び−40℃と温度を変化させた時の計
測誤差として、従来の温度誤差調整を行った場合を図5
から図7に示す。
The temperature characteristic of the flow rate signal of the heating resistance type flow rate measuring device has an error of 0% in the output characteristic at 20 ° C.
As a measurement error when the temperature is changed to 80 ° C. and −40 ° C., the conventional temperature error adjustment is performed as shown in FIG.
7 to FIG.

【0018】図5は、回路基板上の抵抗や素子の温度特
性を無視して、流体の温度のみが80℃または−40℃
に変化した時の計測誤差を示したものである。流体の温
度が変化した時の流量計測誤差は、その流体の熱伝導率
や動粘性係数等の物性値が変化すること、また、リード
等の熱伝導率等も影響を受けることから、図5に示すよ
うに流量により異なる計測誤差、すなわち流量依存性を
持つ。
FIG. 5 shows that only the fluid temperature is 80.degree. C. or -40.degree. C., ignoring the temperature characteristics of the resistors and elements on the circuit board.
It shows the measurement error when changing to. The flow rate measurement error when the temperature of the fluid changes is because the physical properties such as the thermal conductivity and the kinematic viscosity of the fluid change, and the thermal conductivity of the leads and the like are also affected. As shown in, there is a measurement error that depends on the flow rate, that is, flow rate dependence.

【0019】この計測誤差は、基準抵抗体12と直列に
配された抵抗13によって調整可能であり、従来、その
計測誤差が全流量域でゼロに近付くように、図5に示す
程度に抵抗13を設定していた。
This measurement error can be adjusted by a resistor 13 arranged in series with the reference resistor 12, and conventionally, the resistance 13 is set to the extent shown in FIG. 5 so that the measurement error approaches zero in the entire flow rate range. Had been set.

【0020】一方、回路基板上の抵抗や素子の温度特性
は、各素子,各抵抗の温度特性の総和として現れるが、
前述のように温度補償回路により調整可能である。その
温度特性は流量によらず一定電圧となるが、流量に換算
した時の計測誤差は低流量で大きく、高流量で小さくな
る。従って、図5に示した計測誤差の流量依存性を少し
でも打ち消すように、図6に示すように若干の計測誤差
を持たせた温度特性となるように調整する。
On the other hand, the temperature characteristics of the resistors and elements on the circuit board appear as the sum of the temperature characteristics of each element and each resistor.
It can be adjusted by the temperature compensation circuit as described above. The temperature characteristic is a constant voltage regardless of the flow rate, but the measurement error when converted to the flow rate is large at low flow rate and small at high flow rate. Therefore, in order to cancel the flow rate dependency of the measurement error shown in FIG. 5 as much as possible, the temperature characteristic is adjusted to have a slight measurement error as shown in FIG.

【0021】上記により、実際に流体と回路が同じ温度
に変化した時の計測誤差は図7のようになる。発熱抵抗
式流量測定装置は流体温度を基準とした放熱量により流
量を計測しているため、他の流量計測法と比べて温度変
化による計測誤差は小さく、図7に示した最大誤差は数
%であり、従来あまり問題視されていなかった。
From the above, the measurement error when the temperature of the fluid and the temperature of the circuit actually change is as shown in FIG. Since the heat generation resistance type flow rate measuring device measures the flow rate by the amount of heat radiation based on the fluid temperature, the measurement error due to temperature change is small compared to other flow rate measuring methods, and the maximum error shown in FIG. Therefore, it has not been regarded as a problem so far.

【0022】しかし、近年さらなる高精度化が要求され
ており、温度変化による計測誤差の低減が必要となっ
た。この手段のひとつとして前述の従来技術として挙げ
た特開平8−278178 号記載の発熱抵抗式流量測定装置が
ある。これは、温度補償回路62の出力となる基準電圧
68の温度特性に流量依存性を持たせ、流体温度変化に
より生じる計測誤差の流量依存性を相殺するようにした
ものである。
However, in recent years there has been a demand for higher precision, and it has become necessary to reduce measurement errors due to temperature changes. As one of the means, there is a heating resistance type flow rate measuring device described in Japanese Patent Laid-Open No. 8-278178 mentioned above as the prior art. This is to make the temperature characteristic of the reference voltage 68, which is the output of the temperature compensation circuit 62, have flow rate dependency so as to cancel the flow rate dependency of the measurement error caused by the fluid temperature change.

【0023】すなわち、前述の従来の温度誤差調整を行
った場合に対して、流体の温度変化による計測誤差は同
じ(図8)であるが、回路基板の温度特性を図9のよう
に調整可能とし、流体と回路が同じ温度に変化した時の
計測誤差を図10のようにほぼ0%としたものである。
That is, although the measurement error due to the temperature change of the fluid is the same as the case where the above-mentioned conventional temperature error adjustment is performed (FIG. 8), the temperature characteristic of the circuit board can be adjusted as shown in FIG. The measurement error when the temperature of the fluid and that of the circuit change to the same temperature is almost 0% as shown in FIG.

【0024】しかし、特開平8−278178 号記載の調整法
においても、流体の温度と回路の温度がほぼ等しい場合
には有効であるが、両者に温度差が生じると適切な補正
はできなくなる。例えば、自動車のエンジンに吸入され
る空気流量を測定する発熱抵抗式空気流量測定装置で
は、発熱抵抗式空気流量測定装置がエンジンルーム内に
装着されエンジンからの熱を受けて回路部が加熱された
状態で冷気を吸入した時等は、吸入空気の温度は20℃
程度でありながら回路部が80℃程度まで加熱されてい
るような状況が考えられる。また、十分にエンジンが暖
機された後、極寒の屋外に出た時等は、逆に回路部は2
0℃程度でありながら吸入空気の温度は−40℃程度と
いう状況も考えられる。
However, the adjusting method described in Japanese Patent Application Laid-Open No. 8-278178 is also effective when the temperature of the fluid and the temperature of the circuit are substantially equal, but an appropriate correction cannot be performed if a temperature difference occurs between the two. For example, in a heating resistance type air flow rate measuring device that measures the flow rate of air drawn into an automobile engine, the heating resistance type air flow rate measuring device is installed in the engine room, and the circuit section is heated by receiving heat from the engine. The temperature of the intake air is 20 ° C when cold air is inhaled.
It is conceivable that the circuit part is heated to about 80 ° C. although the temperature is about the same. Also, after the engine has warmed up sufficiently, when it goes out in the cold outside, the circuit section is 2
It is possible that the temperature of the intake air is about -40 ° C even though it is about 0 ° C.

【0025】従って、前述の例では、回路基板の温度特
性がそのまま、流量信号の計測誤差となり、後述の例で
は吸入空気の温度変化による計測誤差が回路の温度特性
で補正されずにそのまま流量信号の計測誤差として現れ
る。
Therefore, in the above-mentioned example, the temperature characteristic of the circuit board remains as it is and becomes a measurement error of the flow rate signal. Appears as a measurement error of.

【0026】そこで、本発明は流体の温度変化により生
じる計測誤差を、流体の温度により補正することで低減
し、回路基板の抵抗や素子の温度特性は、前述の温度補
償回路62にてほぼ0%となるように調整することによ
り、流体の温度と回路部の温度が異なる場合において
も、常に温度誤差を抑えた流量値が得られるようにした
ものである。
Therefore, according to the present invention, the measurement error caused by the temperature change of the fluid is reduced by correcting the temperature of the fluid, and the resistance of the circuit board and the temperature characteristic of the element are almost zero in the temperature compensation circuit 62. By adjusting the flow rate to be%, even when the temperature of the fluid and the temperature of the circuit portion are different, a flow rate value with a suppressed temperature error can always be obtained.

【0027】しかし、流体の温度変化により生じる計測
誤差には、前述のように従来の調整では流量依存性を持
つため、流量と温度のマップにより補正係数を求める等
のやや負荷のかかる補正が必要となる。
However, since the measurement error caused by the change in the temperature of the fluid has a flow rate dependency in the conventional adjustment as described above, it is necessary to perform the correction with a slight load such as obtaining the correction coefficient from the map of the flow rate and the temperature. Becomes

【0028】本発明は、この補正を非常に容易に行うた
めに、流体の温度変化による計測誤差を、あえて0%を
狙わず流量依存性が無くなるように、流量によらず一定
の計測誤差を生じるように発熱抵抗式流量測定装置を調
整したものである。反対に、回路の温度特性は、流体の
温度変化による計測誤差を打ち消すような調整は行わ
ず、計測誤差が生じない(ほぼ0%となる)ように調
整、あるいは設定すれば良い。
In the present invention, in order to make this correction very easily, the measurement error due to the temperature change of the fluid is fixed at a constant measurement error irrespective of the flow rate so as to eliminate the flow rate dependence without aiming at 0%. The heating resistance type flow rate measuring device is adjusted so as to be generated. On the contrary, the temperature characteristic of the circuit may be adjusted or set so that the measurement error does not occur (becomes almost 0%) without canceling the measurement error due to the temperature change of the fluid.

【0029】上記の流体の温度変化による計測誤差の調
整は、例えば基準抵抗体12と直列に配置された抵抗1
3の抵抗値を変えることにより行える。抵抗13の抵抗
値を変更した時の流体の温度を20℃から80℃また
は、−40℃とした時の計測誤差を図11に従来の調整
と比較して示す。抵抗13の抵抗値を変更した開発品
は、流体の温度変化による計測誤差が、80℃でマイナ
ス誤差となるが流量によらずほぼ一定比率であり、−4
0℃ではプラス誤差で一定比率となる。この流体の温度
変化による計測誤差が流量依存性を持たずフラットにな
る時の計測誤差は、発熱抵抗体11や基準抵抗体12の
構成材料や構造によっても異なるが、性能,信頼性の面
から0%でフラットとするのは困難なことがあるため、
あえて0%にせずとも、設定の容易な抵抗値の変更で流
量依存性がなくなるように調整することが、本発明のポ
イントである。
The adjustment of the measurement error due to the temperature change of the fluid is performed by, for example, the resistor 1 arranged in series with the reference resistor 12.
This can be done by changing the resistance value of 3. FIG. 11 shows the measurement error when the temperature of the fluid when the resistance value of the resistor 13 is changed from 20 ° C. to 80 ° C. or −40 ° C. is compared with the conventional adjustment. In the developed product in which the resistance value of the resistor 13 is changed, the measurement error due to the temperature change of the fluid is a minus error at 80 ° C, but it is almost a constant ratio regardless of the flow rate.
At 0 ° C, there is a positive error and the ratio is constant. The measurement error when the measurement error due to the temperature change of the fluid becomes flat without flow rate dependency is different depending on the constituent material and structure of the heating resistor 11 and the reference resistor 12, but from the viewpoint of performance and reliability. Since it can be difficult to make it flat at 0%,
The point of the present invention is to adjust so that the flow rate dependency is eliminated by changing the resistance value that is easy to set, even if it is not set to 0%.

【0030】また、この一定比率の計測誤差は、温度に
対して図12に示すようにほぼ直線的な相関を示す。従
って、この流体の温度変化による計測誤差の補正は、例
えば実測された流体温度と基準温度(本実施例では20
℃)との温度差に図12の傾き係数をかけ合わせること
で補正誤差が得られ、その誤差分発熱抵抗式流量測定装
置から得られた流量を補正してやれば、流量によらず流
体の温度変化による計測誤差を補正した流量が得られ
る。このように、本発明は簡単な一次式にて流体の温度
変化による計測誤差の補正が可能なため、その補正処理
が非常に容易で処理部の負荷が小さくてすむ。
Further, the measurement error of the constant ratio shows a substantially linear correlation with the temperature as shown in FIG. Therefore, the correction of the measurement error due to the temperature change of the fluid is performed by, for example, the actually measured fluid temperature and the reference temperature (20 in this embodiment).
12) is multiplied by the slope coefficient of Fig. 12 to obtain a correction error. If the flow rate obtained from the heating resistance type flow rate measuring device is corrected by the error, the temperature change of the fluid will be independent of the flow rate. The flow rate corrected for the measurement error due to is obtained. As described above, according to the present invention, since the measurement error due to the temperature change of the fluid can be corrected by a simple linear equation, the correction process is very easy and the load on the processing unit is small.

【0031】一方、回路の温度特性は、前述のように基
準電圧回路62により、回路の温度特性がほぼ0%とな
るように調整するか、あるいは、抵抗や素子の温度特性
がほとんどないように設定することで、図13に示すよ
うに計測誤差をほぼ0%とする。
On the other hand, the temperature characteristic of the circuit is adjusted by the reference voltage circuit 62 so that the temperature characteristic of the circuit becomes almost 0% as described above, or the temperature characteristic of the resistor or the element is made almost zero. By setting, the measurement error is set to approximately 0% as shown in FIG.

【0032】従って、前述流体の温度変化による計測誤
差の補正手段を発熱抵抗式流量測定装置の外部の処理装
置や制御装置で行う場合、発熱抵抗式流量測定装置の総
合温度誤差は図14に示すように流体温度による計測誤
差とほぼ等しい。しかし、流体温度による計測誤差は補
正処理部で流体の温度を基に補正されるため、補正後の
流量値は図15に示すように温度変化による誤差がほぼ
0%となる。この方法によれば、流体温度と回路温度の
影響を独立に補正しているため、前述のように流体温度
と回路温度が異なる環境においても、温度による計測誤
差を低減した流量が得られる。
Therefore, when the correction means for the measurement error due to the temperature change of the fluid is carried out by a processing device or a control device outside the heat generation resistance type flow measuring device, the total temperature error of the heat generation resistance type flow measuring device is shown in FIG. Thus, it is almost equal to the measurement error due to the fluid temperature. However, since the measurement error due to the fluid temperature is corrected by the correction processing unit based on the temperature of the fluid, the error due to the temperature change is almost 0% in the corrected flow rate value as shown in FIG. According to this method, since the influences of the fluid temperature and the circuit temperature are independently corrected, the flow rate with reduced measurement error due to the temperature can be obtained even in the environment where the fluid temperature and the circuit temperature are different as described above.

【0033】次に、前述の流体温度による計測誤差の補
正処理部を有する発熱抵抗式流量測定装置の一実施例に
ついて、その発熱抵抗式流量測定装置の横断面図である
図16を用いて説明する。
Next, an embodiment of a heat generation resistance type flow rate measuring device having the above-mentioned processing unit for correcting the measurement error due to the fluid temperature will be described with reference to FIG. 16 which is a cross sectional view of the heat generation resistance type flow rate measuring device. To do.

【0034】流量を検出する発熱抵抗体11及び流体の
発熱抵抗体の加熱温度の基準となる基準抵抗体12は、
電子回路52を内装するハウジング51に一体に形成さ
れた副通路43の内部に配置され、ターミナル53及び
ワイヤ57を介して電子回路52と電気的に接続してい
る。
The heating resistor 11 for detecting the flow rate and the reference resistor 12 serving as a reference for the heating temperature of the fluid heating resistor are:
The electronic circuit 52 is disposed inside a sub passage 43 formed integrally with a housing 51 that houses the electronic circuit 52, and is electrically connected to the electronic circuit 52 via a terminal 53 and a wire 57.

【0035】電子回路52は、前述の制御回路61,基
準電圧回路62,出力特性調整回路63に加えて、cp
u71,A/Dコンバータ72,メモリ73,インター
フェース74等を有し、電子回路内でディジタル変換
し、演算処理することを可能としたものである。また、
流体の温度計測にはサーミスタ等を別に配置する方法が
考えられるが、前記の基準抵抗体12の両端電圧から流
体温度を求めることも可能である。基準抵抗体12の両
端電圧は流量によりそこを流れる電流が変化するため、
そのまま流体温度を得ることはできない。しかし、本実
施例ではcpu71 による演算処理が可能であり、また、流
量信号が得られるため、基準抵抗体12の両端電圧から
流量に対応した値を演算処理することにより流体温度に
対応した信号を求めることが可能となる。従って、A/
Dコンバータによりディジタル変換された流量信号の流
体の温度変化による計測誤差を前述のように流量によら
ず一定比率となるように調整しておき、cpu71によ
り流体の温度を基に補正することにより、温度誤差を低
減することが可能となる。
The electronic circuit 52 includes the control circuit 61, the reference voltage circuit 62, the output characteristic adjusting circuit 63, and the cp circuit.
The u71, the A / D converter 72, the memory 73, the interface 74, and the like are provided, which enables digital conversion and arithmetic processing in an electronic circuit. Also,
A method of separately disposing a thermistor or the like can be considered for measuring the temperature of the fluid, but it is also possible to obtain the fluid temperature from the voltage across the reference resistor 12. Since the current flowing through the reference resistor 12 changes depending on the flow rate,
It is not possible to obtain the fluid temperature as it is. However, in the present embodiment, the calculation processing by the cpu71 is possible, and since the flow rate signal is obtained, the signal corresponding to the fluid temperature is obtained by calculating the value corresponding to the flow rate from the voltage across the reference resistor 12. It becomes possible to ask. Therefore, A /
As described above, the measurement error due to the temperature change of the fluid of the flow rate signal digitally converted by the D converter is adjusted to be a constant ratio regardless of the flow rate, and the cpu 71 corrects it based on the temperature of the fluid. It is possible to reduce the temperature error.

【0036】また、本実施例では、回路基板52が主通
路42の内部に設置されているため、外部に置かれた場
合より回路温度も流体温度に近付くので、流体温度と回
路温度をほぼ等しいものとして、総合的に温度誤差を補
正することも可能である。しかし、回路温度は流体より
も外部の熱をハウジングを伝わる熱伝導により受けやす
いことや、回路の抵抗や素子等からの自己加熱もあるた
め、流体と回路は全く同じ温度とはならないので、前述
のように回路の温度特性は、個別に温度誤差がほぼ0%
となるように調整しておくことが望ましい。
Further, in the present embodiment, since the circuit board 52 is installed inside the main passage 42, the circuit temperature is closer to the fluid temperature than when it is placed outside, so that the fluid temperature and the circuit temperature are substantially equal. As a matter of course, it is also possible to comprehensively correct the temperature error. However, since the circuit temperature is more likely to receive external heat than the fluid due to heat conduction through the housing, and because there is self-heating from the circuit resistance and elements, the fluid and the circuit are not at the same temperature. As for the temperature characteristics of the circuit, the temperature error is about 0% individually.
It is desirable to adjust so that

【0037】このように、cpu71により演算補正さ
れた流量信号や、流体の温度信号は、インターフェース
74を介してコネクタターミナル75から外部機器へ出
力される。また、演算処理のための係数等の数値データ
はメモリ73に保管されているため、このメモリ73内
のデータを書き替えることで個別に調整することも可能
である。
The flow rate signal and the fluid temperature signal thus calculated and corrected by the cpu 71 are output from the connector terminal 75 to the external device via the interface 74. Further, since numerical data such as coefficients for arithmetic processing are stored in the memory 73, it is possible to individually adjust by rewriting the data in the memory 73.

【0038】最後に、本発明を内燃機関の制御に用いた
時の実施例を内燃機関の構成図である図17を基に説明
する。
Finally, an embodiment in which the present invention is used for controlling an internal combustion engine will be described with reference to FIG. 17 which is a configuration diagram of the internal combustion engine.

【0039】エンジンシリンダ101に吸入される空気
は、スロットルバルブ102及びアイドルコントロール
バルブ103により制御される。その吸入空気110は
外部よりエアクリーナ104に吸入され、フィルタ10
5を介して発熱抵抗式流量測定装置1,スロットルボデ
ィ115を通過して、エンジンシリンダ101に吸入さ
れ、燃焼後排気111として排出される。また、エアク
リーナ104の内部には吸気温度センサ106が、排気
管には空燃比センサ107が、またエンジンにはクラン
ク角センサ108が、スロットルボディ115にはスロ
ットル開度センサ109が設置され、コントロールユニ
ット112に、空気流量信号,吸気温度信号,空燃比信
号,クランク角度(エンジン回転数)信号,スロットル
開度信号が入力される。コントロールユニット112は
これらの入力信号を基に機関を最適に制御するためのイ
ンジェクタ113の燃料制御信号やアイドルコントロー
ルバルブ103の開度信号を出力するものである。
The air taken into the engine cylinder 101 is controlled by the throttle valve 102 and the idle control valve 103. The intake air 110 is drawn into the air cleaner 104 from the outside, and the filter 10
After passing through the heat generation resistance type flow rate measuring device 1 and the throttle body 115, the gas is sucked into the engine cylinder 101 and is discharged as post-combustion exhaust gas 111. Further, an intake air temperature sensor 106 is installed inside the air cleaner 104, an air-fuel ratio sensor 107 is installed in the exhaust pipe, a crank angle sensor 108 is installed in the engine, and a throttle opening sensor 109 is installed in the throttle body 115. An air flow rate signal, an intake air temperature signal, an air-fuel ratio signal, a crank angle (engine speed) signal, and a throttle opening signal are input to 112. The control unit 112 outputs a fuel control signal for the injector 113 and an opening signal for the idle control valve 103 for optimally controlling the engine based on these input signals.

【0040】ここで、発熱抵抗式流量測定装置1の吸気
温度変化により生じる計測誤差を流量によらず一定比率
となるように調整しておくことにより、コントロールユ
ニット112内で吸気温度信号を基に補正可能となるた
め、吸気温度による計測誤差を低減した流量値が得ら
れ、機関のより高精度な制御が可能となる。
Here, by adjusting the measurement error caused by the change in the intake air temperature of the heat generation resistance type flow rate measuring device 1 so as to have a constant ratio regardless of the flow rate, the control unit 112 is based on the intake air temperature signal. Since correction is possible, a flow rate value with reduced measurement error due to intake air temperature is obtained, and more accurate control of the engine becomes possible.

【0041】[0041]

【発明の効果】本発明によれば、流体の温度変化により
生じる発熱抵抗式流量測定装置の温度誤差を流体の温度
により容易に補正できる
According to the present invention, the temperature change of the fluid
The temperature error of the generated heat resistance type flow rate measuring device is
Can be corrected easily .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の代表的な実施例である制御システムの
構成図。
FIG. 1 is a configuration diagram of a control system that is a typical embodiment of the present invention.

【図2】本発明に用いる発熱抵抗式流量測定装置の一実
施例の横断面図。
FIG. 2 is a cross-sectional view of an embodiment of a heating resistance type flow rate measuring device used in the present invention.

【図3】図2を上流側から見た外観図。FIG. 3 is an external view of FIG. 2 viewed from the upstream side.

【図4】図2の発熱抵抗式流量測定装置の電子回路図。FIG. 4 is an electronic circuit diagram of the heating resistance type flow rate measuring device of FIG.

【図5】発熱抵抗式流量測定装置の流体温度による計測
誤差の一従来例。
FIG. 5 is a conventional example of a measurement error due to a fluid temperature of a heating resistance type flow rate measuring device.

【図6】発熱抵抗式流量測定装置の回路温度特性の一従
来例。
FIG. 6 shows a conventional example of circuit temperature characteristics of a heating resistance type flow rate measuring device.

【図7】発熱抵抗式流量測定装置の総合温度誤差の一従
来例。
FIG. 7 is a conventional example of a total temperature error of a heating resistance type flow rate measuring device.

【図8】発熱抵抗式流量測定装置の流体温度による計測
誤差の一従来例。
FIG. 8 is a conventional example of a measurement error due to a fluid temperature of a heat generation resistance type flow rate measuring device.

【図9】発熱抵抗式流量測定装置の回路温度特性の一従
来例。
FIG. 9 shows a conventional example of circuit temperature characteristics of a heating resistance type flow rate measuring device.

【図10】発熱抵抗式流量測定装置の総合温度誤差の一
従来例。
FIG. 10 is a conventional example of a total temperature error of a heating resistance type flow rate measuring device.

【図11】本発明の発熱抵抗式流量測定装置の流体温度
による計測誤差。
FIG. 11 is a measurement error due to the fluid temperature of the heating resistance type flow rate measuring device of the present invention.

【図12】本発明の発熱抵抗式流量測定装置の流体温度
と計測誤差の関係。
FIG. 12 shows the relationship between the fluid temperature and the measurement error of the heating resistance type flow rate measuring device of the present invention.

【図13】本発明の発熱抵抗式流量測定装置の回路温度
特性。
FIG. 13 is a circuit temperature characteristic of the heating resistance type flow rate measuring device of the present invention.

【図14】本発明の発熱抵抗式流量測定装置の補正前の
総合温度誤差。
FIG. 14 is a total temperature error before correction of the heating resistance type flow rate measuring device of the present invention.

【図15】本発明の発熱抵抗式流量測定装置の補正後の
総合温度誤差。
FIG. 15 is an overall temperature error after correction of the heating resistance type flow rate measuring device of the present invention.

【図16】本発明の補正処理部を有する発熱抵抗式流量
測定装置の一実施例の横断面図。
FIG. 16 is a cross-sectional view of an embodiment of a heating resistance type flow rate measuring device having a correction processing unit of the present invention.

【図17】本発明を用いた内燃機関の制御システム構成
図。
FIG. 17 is a control system configuration diagram of an internal combustion engine using the present invention.

【符号の説明】[Explanation of symbols]

1…発熱抵抗式流量測定装置、2…流体温度検出装置、
3…温度補正部、4…コントロールユニット、5…制御
部、6…流量変換部、7…A/Dコンバータ、8…イン
ターフェース、9…マイコン、11…発熱抵抗体、12
…基準抵抗体、13…抵抗、15…流量信号、16…電
源端子、17…ブリッジ抵抗1、18…ブリッジ抵抗
2、19…流量に対応したブリッジ信号、21…感温抵
抗体、22…温度信号、40…流体通路、41…ボデ
ィ、42…主通路、43…副通路、51…ハウジング、
53…ターミナル、54…リード、55…コネクタ、5
6…副通路構成部材、57…ワイヤ、61…制御回路、
63…出力特性調整回路、64…ツェナーダイオード、
65…ダイオード、66,67…抵抗、68…基準電
圧、69…オペアンプ、101…エンジンシリンダ、1
02…スロットルバルブ、103…アイドルコントロー
ルバルブ、104…エアクリーナ、105…フィルタ、
115…スロットルボディ、106…吸気温度センサ、
107…空燃比センサ、108…クランク角センサ、1
09…スロットル開度センサ、110…吸入空気、11
1…排気、112…コントロールユニット、113…イ
ンジェクタ。
1 ... Exothermic resistance type flow rate measuring device, 2 ... Fluid temperature detecting device,
3 ... Temperature correction part, 4 ... Control unit, 5 ... Control part, 6 ... Flow rate conversion part, 7 ... A / D converter, 8 ... Interface, 9 ... Microcomputer, 11 ... Heating resistor, 12
Reference resistor, 13 ... Resistance, 15 ... Flow signal, 16 ... Power supply terminal, 17 ... Bridge resistance 1, 18 ... Bridge resistance 2, 19 ... Bridge signal corresponding to flow rate, 21 ... Temperature sensitive resistor, 22 ... Temperature Signal, 40 ... Fluid passage, 41 ... Body, 42 ... Main passage, 43 ... Sub passage, 51 ... Housing,
53 ... Terminal, 54 ... Lead, 55 ... Connector, 5
6 ... Sub passage constituent member, 57 ... Wire, 61 ... Control circuit,
63 ... Output characteristic adjusting circuit, 64 ... Zener diode,
65 ... Diode, 66, 67 ... Resistance, 68 ... Reference voltage, 69 ... Operation amplifier, 101 ... Engine cylinder, 1
02 ... Throttle valve, 103 ... Idle control valve, 104 ... Air cleaner, 105 ... Filter,
115 ... Throttle body, 106 ... Intake air temperature sensor,
107 ... Air-fuel ratio sensor, 108 ... Crank angle sensor, 1
09 ... Throttle opening sensor, 110 ... Intake air, 11
1 ... Exhaust, 112 ... Control unit, 113 ... Injector.

フロントページの続き (72)発明者 太田 健治 茨城県ひたちなか市大字高場2520番地 株式会社 日立製作所 自動車機器事業 部内 (72)発明者 菅家 厚 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 角廣 崇 茨城県ひたちなか市高場2477番地 株式 会社 日立カーエンジニアリング内 (56)参考文献 特開 昭62−245924(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01F 1/68 Front page continued (72) Inventor Kenji Ota 2520 Takaba, Hitachinaka City, Ibaraki Prefecture Hitachi, Ltd. Automotive Equipment Division (72) Inventor Atsushi Sugaya 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi, Ltd. Works Hitachi Research Laboratory (72) Inventor Takashi Kakuhiro 2477 Takaba, Hitachinaka City, Ibaraki Hitachi Car Engineering Co., Ltd. (56) Reference JP 62-245924 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) G01F 1/68

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 副通路に設けられた発熱抵抗体と、 前記副通路に設けられ、前記発熱抵抗体の加熱基準とな
る基準抵抗体と、 温度を検出する温度検出手段と、 少なくともCPUとA/Dコンバータとを有する電子回
路と、 前記電子回路を内装するハウジングとを備え、 前記副通路が前記ハウジングに一体に形成された発熱抵
抗式流量測定装置であって、 前記A/Dコンバータによりデジタル変換された流量信
号が、流量に対する計測誤差が流体の温度によらずほぼ
一定の特性を有し、 前記CPUが前記温度検出手段が検出する温度に基づい
て、前記デジタル変換された流量信号を一次式で補正す
る発熱抵抗式流量測定装置。
1. A heating resistor provided in a sub-passage, a reference resistor provided in the sub-passage and serving as a heating reference of the heating resistor, a temperature detecting means for detecting a temperature, and at least a CPU and an A. An exothermic resistance type flow rate measuring device, comprising: an electronic circuit having an A / D converter; and a housing that houses the electronic circuit, wherein the auxiliary passage is integrally formed in the housing. The converted flow rate signal has a characteristic that the measurement error with respect to the flow rate is substantially constant irrespective of the temperature of the fluid, and the CPU converts the digitally converted flow rate signal into a primary value based on the temperature detected by the temperature detecting means. A heating resistance type flow rate measuring device that corrects with a formula.
【請求項2】 発熱抵抗体からの放熱量あるいは加熱され
た抵抗体の温度を基に流体の流量を計測する発熱抵抗式
流量測定手段からの流量信号を入力して補正する補正装
置であって、 前記流量信号は、流量に対する計測誤差が前記流体の温
度によらずほぼ一定の特性を有し、 前記発熱抵抗式流量測定手段が設置された流体通路内の
温度を検出する温度検出手段からの温度信号に基づいて
前記流量信号を一次式で補正する補正装置。
2. A correction device for inputting and correcting a flow rate signal from a heating resistance type flow rate measuring means for measuring the flow rate of a fluid based on the amount of heat radiated from the heating resistor or the temperature of the heated resistor. The flow rate signal has a characteristic that the measurement error with respect to the flow rate is substantially constant irrespective of the temperature of the fluid, and the temperature detection means for detecting the temperature in the fluid passage in which the heat generation resistance type flow rate measurement means is installed. A correction device that corrects the flow rate signal by a linear expression based on a temperature signal.
【請求項3】 請求項2において、 前記補正された流量に基づいた内燃機関の燃料制御信号
またはアイドルコントロールバルブの開度信号を出力す
ることを特徴とする補正装置。
3. The correction device according to claim 2, wherein a fuel control signal of the internal combustion engine or an opening signal of an idle control valve based on the corrected flow rate is output.
【請求項4】 請求項3において、 前記流量信号をデジタル値に変換するA/Dコンバータ
と、 変換された信号に対して前記補正をするマイコンとを備
えたことを特徴とする補正装置。
4. The method of claim 3, the correction device for an A / D converter for converting the flow signal into a digital value, characterized in that a microcomputer for the correction to the transformed signal.
【請求項5】 請求項2から4のいずれかにおいて、 前記流量信号は、少なくとも流体の温度が80℃および
−40℃で、流量に対する計測誤差がほぼ一定の特性を
有することを特徴とする補正装置。
5. The claim 2 4, wherein the flow rate signal, at least at the temperature of the fluid 80 ° C. and -40 ° C., the correction measurement error for the flow rate, characterized in that it has an approximately constant characteristics apparatus.
【請求項6】 請求項2において、 前記発熱抵抗式流量測定手段の副通路を形成するハウジ
ングに内装されたことを特徴とする補正装置。
6. The method of claim 2, the correction apparatus characterized by being furnished to a housing forming the auxiliary passage of the heating resistance flow rate measuring means.
【請求項7】 発熱抵抗体からの放熱量あるいは加熱され
た抵抗体の温度を基に、流体の流量に対応した流量信号
を出力する発熱抵抗式流量測定手段と、 前記発熱抵抗式流量測定手段が設置された流体通路内の
温度を検出する温度検出手段と、 前記発熱抵抗式流量測定手段からの流量信号を補正する
補正手段と、を備えた温度誤差補正システムであって、 前記流量信号は、流量に対する計測誤差が流体の温度に
よらずほぼ一定の特性を有し、 前記補正手段は、前記流体温度検出手段からの温度信号
に基づいて前記流量計測手段からの流量信号を一次式で
補正する温度誤差補正システム。
7. A heating resistance type flow rate measuring means for outputting a flow rate signal corresponding to the flow rate of a fluid based on the amount of heat radiated from the heating resistor or the temperature of the heated resistor, and the heating resistance type flow rate measuring means. A temperature error correction system including temperature detection means for detecting the temperature in the fluid passage in which is installed, and correction means for correcting the flow rate signal from the heating resistance type flow rate measurement means, wherein the flow rate signal is The measurement error with respect to the flow rate has a substantially constant characteristic regardless of the temperature of the fluid, and the correction means corrects the flow rate signal from the flow rate measurement means by a linear expression based on the temperature signal from the fluid temperature detection means. Temperature error correction system.
【請求項8】 請求項7において、 前記流量信号をデジタル値に変換するA/Dコンバータ
と、 変換された信号に対して前記補正をするマイコンとを備
えたことを特徴とする温度誤差補正システム。
8. The method of claim 7, the A / D converter for converting the flow signal into a digital value, the temperature error correction system characterized in that a microcomputer for the correction to the converted signal .
【請求項9】 請求項7または8において、 前記補正された流量に基づいた内燃機関の燃料制御信号
またはアイドルコントロールバルブの開度信号を出力す
ることを特徴とする温度誤差補正システム。
9. The temperature error correction system according to claim 7, wherein a fuel control signal of an internal combustion engine or an opening signal of an idle control valve based on the corrected flow rate is output.
【請求項10】 請求項1において、 前記流量信号は、少なくとも流体の温度が80℃および
−40℃で、流量に対する計測誤差がほぼ一定の特性を
有することを特徴とする温度誤差補正システム。
10. The temperature error correction system according to claim 1, wherein the flow rate signal has a characteristic that a measurement error with respect to a flow rate is substantially constant at least at a fluid temperature of 80 ° C. and −40 ° C.
JP18945097A 1997-07-08 1997-07-15 Heating resistance type flow measurement device, temperature error correction system and correction device Expired - Lifetime JP3394426B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP18945097A JP3394426B2 (en) 1997-07-15 1997-07-15 Heating resistance type flow measurement device, temperature error correction system and correction device
EP07003890A EP1793209A1 (en) 1997-07-08 1998-07-03 Thermal type flow measuring instrument and temperature-error correcting apparatus thereof
EP98112397A EP0890827A1 (en) 1997-07-08 1998-07-03 Thermal type flow measuring instrument and temperature-error correcting apparatus thereof
CNB981156886A CN1222759C (en) 1997-07-08 1998-07-07 Thermal type flow measuring instrument and temperature-error correcting apparatus thereof
CNB2004100877965A CN100347430C (en) 1997-07-08 1998-07-07 Thermal type flow measuring instrument and temperature-error correcting apparatus thereof
KR10-1998-0027205A KR100491488B1 (en) 1997-07-08 1998-07-07 Thermal flow measuring device and its temperature error correction means
US09/111,767 US6230559B1 (en) 1997-07-08 1998-07-08 Thermal type flow measuring instrument and temperature-error correcting apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18945097A JP3394426B2 (en) 1997-07-15 1997-07-15 Heating resistance type flow measurement device, temperature error correction system and correction device

Publications (2)

Publication Number Publication Date
JPH1137815A JPH1137815A (en) 1999-02-12
JP3394426B2 true JP3394426B2 (en) 2003-04-07

Family

ID=16241462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18945097A Expired - Lifetime JP3394426B2 (en) 1997-07-08 1997-07-15 Heating resistance type flow measurement device, temperature error correction system and correction device

Country Status (1)

Country Link
JP (1) JP3394426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936744B1 (en) * 2015-05-15 2016-06-22 三菱電機株式会社 Flow measuring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240620A (en) 2002-02-20 2003-08-27 Hitachi Ltd Gas flow measuring device
JP5577198B2 (en) 2010-09-08 2014-08-20 日立オートモティブシステムズ株式会社 Gas flow measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936744B1 (en) * 2015-05-15 2016-06-22 三菱電機株式会社 Flow measuring device

Also Published As

Publication number Publication date
JPH1137815A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
JP4177183B2 (en) Thermal air flow meter
US5635635A (en) Method and apparatus for detecting the intake air quantity of an engine
EP1698864B1 (en) Thermal flowmeter of fluid
KR100491488B1 (en) Thermal flow measuring device and its temperature error correction means
US7385161B2 (en) Method of estimating the temperature of an oxygen sensor heating element
US20030177843A1 (en) Method and device for determinig the throughput of a flowing medium
JP3609148B2 (en) Heat resistance air flow meter
JP3394426B2 (en) Heating resistance type flow measurement device, temperature error correction system and correction device
US7213455B2 (en) Thermal type gas flow measuring instrument
JP2957769B2 (en) Thermal air flow meter and engine controller
JP3383761B2 (en) Heating resistor type air flow measurement device
KR100436611B1 (en) Device for measuring fluid flow rate
US5656938A (en) Temperature compensation in mass flow sensors employing the hot-wire anemometer principle
JP3105609B2 (en) Heating resistor type air flow meter
US6756571B2 (en) System and method for compensation of contamination of a heated element in a heated element gas flow sensor
JPH0356409B2 (en)
JP3095322B2 (en) Thermal air flow detector
KR100236437B1 (en) Method and device for detecting suction air flow rate for engine
JP4914226B2 (en) Gas flow meter
JPH07229776A (en) Air flow rate measuring device
KR820002255B1 (en) Air flow rate measuring apparatus
JP2875948B2 (en) Intake air flow rate detection device
JPH08506418A (en) METHOD AND APPARATUS FOR DIGITAL MEASUREMENT OF VOLTAGE VARIABLE IN A REGIONAL VOLTAGE RANGE AND USE THEREOF
EP1014046A1 (en) Thermal air flow meter
JP2002116074A (en) Air flowmeter of heating resistance type

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

EXPY Cancellation because of completion of term