JP3393424B2 - Method for manufacturing solid-state imaging device and solid-state imaging device - Google Patents

Method for manufacturing solid-state imaging device and solid-state imaging device

Info

Publication number
JP3393424B2
JP3393424B2 JP32981595A JP32981595A JP3393424B2 JP 3393424 B2 JP3393424 B2 JP 3393424B2 JP 32981595 A JP32981595 A JP 32981595A JP 32981595 A JP32981595 A JP 32981595A JP 3393424 B2 JP3393424 B2 JP 3393424B2
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32981595A
Other languages
Japanese (ja)
Other versions
JPH09148550A (en
Inventor
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP32981595A priority Critical patent/JP3393424B2/en
Publication of JPH09148550A publication Critical patent/JPH09148550A/en
Application granted granted Critical
Publication of JP3393424B2 publication Critical patent/JP3393424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像装置の製
造方法及び固体撮像装置に関する。本発明は、例えば、
高度に微細化、高集積化されたCCD撮像装置の製造工
程或いはCCD撮像装置に適する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device manufacturing method and a solid-state imaging device. The present invention is, for example,
It is suitable for highly miniaturized and highly integrated CCD image pickup device manufacturing process or CCD image pickup device.

【0002】[0002]

【従来の技術】CCDと略称されている固体撮像装置
は、民生用としては例えば8mmビデオカメラの撮像部に
用いられている。その集積度は1/2 インチサイズで40万
画素数のものが市販ベースで市場に出されており、更に
高密度化、微細化が進んでいる。このような高密度化、
微細化が進むなか、その構造は図3に示すようなものが
一般的になって来ている。これらの製造プロセスを簡単
に説明すると以下のとおりである。
2. Description of the Related Art A solid-state image pickup device, which is abbreviated as CCD, is used for an image pickup section of an 8 mm video camera for consumer use, for example. The degree of integration is 1/2 inch and has 400,000 pixels on the market, and the density and miniaturization are progressing. Such high density,
Along with the progress of miniaturization, the structure thereof is generally as shown in FIG. A brief description of these manufacturing processes is as follows.

【0003】先ず基板100中に受光部101が形成さ
れ、その上に電荷転送用のpoly-Si(ポリシリコン)電
極102が形成される。その上に層間絶縁膜として、例
えば、PSG(ホスホ シリケイト ガラス(Phospho
Silicate Glass))と呼ばれる膜103が形成される。
次いで全面にAl (アルミニウム)膜が形成され、受光
部101の上のみがフォトリソグラフィーとドライエッ
チングで開口され、Al 遮光膜104が形成される。そ
してパシベーション膜105としてプラズマSi N膜が
形成され、スピンコート法で平坦化膜106が形成され
る。その後、オンチップレンズと言われる集光部107
が形成される。平坦化膜106がスピンコート法で形成
される他は一般的な製法が用いられる。
First, a light receiving portion 101 is formed in a substrate 100, and a poly-Si (polysilicon) electrode 102 for charge transfer is formed thereon. On top of that, as an interlayer insulating film, for example, PSG (phosphosilicate glass (Phospho
A film 103 called Silicate Glass)) is formed.
Then, an Al (aluminum) film is formed on the entire surface, and only the light receiving portion 101 is opened by photolithography and dry etching to form an Al light shielding film 104. Then, a plasma SiN film is formed as the passivation film 105, and a flattening film 106 is formed by spin coating. After that, the light collecting portion 107 called an on-chip lens
Is formed. A general manufacturing method is used except that the flattening film 106 is formed by spin coating.

【0004】[0004]

【発明が解決しようとする課題】しかし上記従来方法に
は解決すべき課題があった。即ち前記固体撮像装置の製
造プロセスの平坦化工程では、その平坦化形状を十分の
ものとするために、スピンコート膜をかなり厚く形成
し、その自己平坦化効果で平坦度を出している。この
為、この平坦化膜を光が通過する際に光の吸収が起り、
感度が低下してしまうという問題があった。
However, the above-mentioned conventional method has a problem to be solved. That is, in the flattening step of the manufacturing process of the solid-state imaging device, in order to make the flattened shape sufficient, the spin coat film is formed to be considerably thick, and the self-flattening effect is used to obtain flatness. Therefore, absorption of light occurs when light passes through the flattening film,
There was a problem that the sensitivity was lowered.

【0005】本発明の目的は、このような感度低下を防
止し、延いてはこれを上回る感度を有する固体撮像装置
を得ることにある。
An object of the present invention is to prevent such a decrease in sensitivity, and to obtain a solid-state image pickup device having a sensitivity higher than this.

【0006】[0006]

【課題を解決するための手段】上記目的達成のため、本
願固体撮像装置の製造方法の発明では、基板上に形成し
た少なくとも1層以上の薄膜を化学的機械研磨をして前
記基板の略水平方向に平坦化するに当たり、前記基板上
に形成された遮光膜を改質して前記化学的機械研磨の為
の研磨抑止層を形成する。また本願固体撮像装置の発明
では、基板上に少なくとも1層以上の薄膜が形成された
固体撮像装置に於て、前記基板上に形成された遮光膜が
化学的機械研磨の研磨抑止層として改質されており、該
改質された遮光膜の上端付近で前記基板が略水平方向に
平坦化されている。
In order to achieve the above object, in the invention of the method for manufacturing a solid-state image pickup device of the present application, at least one thin film formed on a substrate is subjected to chemical mechanical polishing to make the substrate substantially horizontal. In planarizing in the direction, the light-shielding film formed on the substrate is modified to form a polishing inhibiting layer for the chemical mechanical polishing. Further, according to the invention of the solid-state imaging device of the present application, in a solid-state imaging device in which at least one thin film is formed on a substrate, the light-shielding film formed on the substrate is modified as a polishing suppression layer for chemical mechanical polishing. The substrate is flattened in a substantially horizontal direction near the upper end of the modified light shielding film.

【0007】[0007]

【作用】本発明では、従来の平坦化方法に代え、シリコ
ン半導体製造プロセスで用いられつつある化学的機械研
磨を効果的に使用する。その際、良好な平坦化形状を得
るために、前記化学的機械研磨の為の抑止層を設ける。
ここに抑止層とは化学的機械研磨速度が被化学的機械研
磨膜のそれに比較して、充分小さい層のことをいう。そ
して更に、固体撮像装置で必ず形成しなければならない
遮光膜を改質してこの抑止層として活用することで工程
の簡略化を図る。
In the present invention, chemical mechanical polishing, which is being used in the silicon semiconductor manufacturing process, is effectively used instead of the conventional planarization method. At that time, in order to obtain a favorable flattened shape, a suppression layer for the chemical mechanical polishing is provided.
Here, the inhibition layer means a layer whose chemical mechanical polishing rate is sufficiently smaller than that of the chemical mechanical polishing film. Further, the process is simplified by modifying the light-shielding film that must be formed in the solid-state imaging device and using it as the suppression layer.

【0008】化学的機械研磨法は、例えばシリコンウェ
ハ(基板)のミラーポリッシュに使用されている。スラ
リーと呼ばれる研磨粒子の物理的作用と、それを懸濁さ
せている溶媒の化学的作用で薄膜を平坦化を図る。つま
り、基板の略水平方向に対して突出している部分を前記
作用で研磨し、平坦化を図る。この手法を用いれば、固
体撮像装置の絶縁膜等についても所望の形状に平坦化出
来る。従来の方法のように自己平坦化効果を利用しない
から、絶縁膜を厚く形成する必要がない。従って良好な
平坦化形状を有し、感度低下が少ない固体撮像素子構造
を得ることが出来る。
The chemical mechanical polishing method is used for, for example, mirror polishing of a silicon wafer (substrate). The physical action of abrasive particles called a slurry and the chemical action of the solvent that suspends it are used to flatten the thin film. In other words, the portion of the substrate protruding in the substantially horizontal direction is polished by the above action to achieve flatness. By using this method, the insulating film of the solid-state imaging device can be flattened to a desired shape. Since the self-planarizing effect is not used unlike the conventional method, it is not necessary to form the insulating film thick. Therefore, it is possible to obtain a solid-state image pickup device structure having a good flattening shape and having less deterioration in sensitivity.

【0009】しかし、この方法で完全平坦化を図るには
工夫がいる。何故なら、固体撮像装置の平坦化膜は、例
えばO3/TEOSで形成され、素材的に柔らかいからで
ある。これをそのまま研磨したのでは、研磨の停止位置
の制御が難しく、膜厚が安定しない。そこで本発明者は
固体撮像装置の形状に着目した。即ち前述のように、固
体撮像素子は受光部を囲むようにしてAl 遮光膜が突出
している。そこで本発明では、この遮光膜を化学的機械
研磨の抑止層として用いる。こうすれば、この抑止層膜
の上面が基準面となって容易に完全平坦化が図れる。
However, some measures have been taken to achieve perfect flattening by this method. This is because the flattening film of the solid-state imaging device is made of, for example, O 3 / TEOS, and is soft as a material. If this is polished as it is, it is difficult to control the polishing stop position and the film thickness is not stable. Therefore, the present inventor has focused on the shape of the solid-state imaging device. That is, as described above, in the solid-state imaging device, the Al light shielding film is projected so as to surround the light receiving portion. Therefore, in the present invention, this light-shielding film is used as a layer for suppressing chemical mechanical polishing. By doing so, the upper surface of the suppression layer film serves as a reference surface, and complete flattening can be easily achieved.

【0010】また、新たに抑止層を形成する手間が省け
るから、これが為に生産性が大幅低下するということも
無い。尤も、この遮光膜には一般的にアルミニウムが使
われており、膜自体の硬度が無い。従ってこの儘では、
研磨されるべき層との化学的機械研磨の速度比、即ち、
抑止能力が大きくとれない。そこで、本発明では更にこ
のアルミニウム膜を改質することとする。これで硬度が
向上して抑止層の抑止能力が向上する。
Further, since it is possible to save the trouble of forming a new deterrent layer, there is no possibility that productivity will be significantly lowered. However, aluminum is generally used for this light-shielding film, and the film itself has no hardness. Therefore, in this class,
The rate of chemical mechanical polishing with the layer to be polished, i.e.
The deterrent ability cannot be large. Therefore, in the present invention, the aluminum film is further modified. This improves hardness and improves the deterrence ability of the deterrent layer.

【0011】[0011]

【発明の実施の形態】以下に本発明の詳細を説明する。
始めに改質について説明する。遮光膜の改質は、例えば
アルミニウムのサイアロン化やベーマイト化で達成出来
る。先ずサイアロンは、アルミニウムの表面処理により
容易に形成することが出来る。しかも、その機械的強度
や硬度が大きい。またアルミニウムの水和物であるベー
マイト(Al OOH)は、アルミニウムを温水に浸漬す
ることで容易に形成出来る。サイアロン同様、機械的強
度や硬度も大きい。従ってこれらの改質処理を施せば、
化学的機械研磨の速度比、即ち抑止能力が大きくとれ、
再現性の良い平坦化形状が実現できる。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below.
First, the reforming will be described. The modification of the light-shielding film can be achieved, for example, by converting aluminum into sialon or boehmite. First, sialon can be easily formed by surface treatment of aluminum. Moreover, its mechanical strength and hardness are large. Boehmite (Al OOH), which is a hydrate of aluminum, can be easily formed by immersing aluminum in warm water. Like Sialon, it has high mechanical strength and hardness. Therefore, if these modification treatments are applied,
The rate of chemical mechanical polishing, that is, the deterrent ability is large,
A flattened shape with good reproducibility can be realized.

【0012】次に本発明を実施する為の研磨装置につい
て説明する。装置の一例を図2に概略で示す。プラテン
と呼ばれる研磨プレート3は、シャフト4を軸として回
転する。研磨プレート3上には、パッドと呼ばれる研磨
布9が載置されており、その上にスラリー供給系10が
配置されていて、ここにスラリー2が貯蔵されている。
このスラリー2がスラリー供給口1から研磨布9上に供
給される。
Next, a polishing apparatus for carrying out the present invention will be described. An example of the device is schematically shown in FIG. The polishing plate 3 called a platen rotates about the shaft 4. A polishing cloth 9 called a pad is placed on the polishing plate 3, and a slurry supply system 10 is arranged on the polishing cloth 9, and the slurry 2 is stored therein.
The slurry 2 is supplied onto the polishing cloth 9 from the slurry supply port 1.

【0013】キャリア6にはSi 基板5が取着されてい
る。キャリア6もシャフト7を軸にして回転し、これに
取着された基板5は、回転しながら研磨プレート3に押
圧される。研磨プレート3やキャリア6の回転数、研磨
圧力調整器8の圧力、スラリー2の供給量などが調整さ
れ研磨が行なわれる。なおこれらはあくまでも一例で、
基板載置の方法、プラテン、キャリアの数や構成および
パッドの構造など、この例示によって本発明が限定され
るというものではない。以下に具体的実施例を挙げる。
The Si substrate 5 is attached to the carrier 6. The carrier 6 also rotates about the shaft 7, and the substrate 5 attached thereto is pressed against the polishing plate 3 while rotating. The number of rotations of the polishing plate 3 and the carrier 6, the pressure of the polishing pressure adjuster 8, the supply amount of the slurry 2 and the like are adjusted to perform polishing. These are just examples,
The present invention is not limited to these examples such as the substrate mounting method, the platen, the number and configuration of carriers, and the structure of pads. Specific examples will be given below.

【0014】[0014]

【実施例1】本実施例では、平坦化膜としてO3/TEO
S膜、抑止層として遮光膜の素材Al をサイアロンに改
質したものを、化学的機械研磨方法で平坦化した。平坦
化加工前の断面の概略を図1(a)に、同じく平坦化加
工後の断面の概略を図1(b)に示す。即ちSi 基板1
00中に受光部101を形成し、その上に電荷転送用の
poly-Si 電極102を形成し、その上に層間絶縁膜と
してPSG膜を形成した。前面にAl 膜を形成した後、
受光部上のみをフォトリソグラフィーとドライエッチン
グで開口し、Al 遮光膜104を形成した。このAl 遮
光膜104をリソグラフィーとドライエッチング法を用
いて、パターニング化した。
Example 1 In this example, O 3 / TEO is used as a planarizing film.
The S film and the light-shielding film material Al used as the suppression layer were modified into sialon, and were flattened by the chemical mechanical polishing method. FIG. 1A shows a schematic cross section before the flattening process, and FIG. 1B shows a schematic cross section after the flattening process. That is, Si substrate 1
00 to form a light receiving portion 101 on which a charge transfer layer is formed.
A poly-Si electrode 102 was formed, and a PSG film was formed thereon as an interlayer insulating film. After forming an Al film on the front surface,
Only the light receiving portion was opened by photolithography and dry etching to form an Al light shielding film 104. The Al light shielding film 104 was patterned by using the lithography and the dry etching method.

【0015】このAl 遮光膜104を次の条件でプラズ
マ処理し、表面をサイアロン化膜108とした。このサ
イアロン化膜108の厚さは凡そ50nmであった。 ガス : Si H4/O2/N2 O=10/30/50sccm 温度 : 380 ℃ 圧力 : 6.7 Pa RF密度 : 0.08W/cm2 更にバシベーション膜105としてプラズマSi N膜を
形成した。Al 膜のサイアロン化以外、全て通常の方法
で行った。
The Al light-shielding film 104 was plasma-treated under the following conditions to form a sialon film 108 on the surface. The thickness of the sialonized film 108 was about 50 nm. Gas: Si H 4 / O 2 / N 2 O = 10/30/50 sccm Temperature: 380 ° C. Pressure: 6.7 Pa RF density: 0.08 W / cm 2 Further, a plasma Si N film was formed as the passivation film 105. All were carried out by the usual method except for sialonization of the Al film.

【0016】次に常圧CVD装置で平坦化膜106を形
成した。条件は以下のような条件で行なった。 ガス : O3/TEOS=350/14sccm 温度 : 380 ℃ 圧力 : 大気圧 この時の形状はその成膜特性が出て、セルフリフローの
形状になり、図1(a)のようになった。
Next, a flattening film 106 was formed by an atmospheric pressure CVD apparatus. The conditions were as follows. Gas: O 3 / TEOS = 350/14 sccm Temperature: 380 ° C. Pressure: Atmospheric pressure At this time, the film had the film-forming characteristics and became a self-reflow shape, as shown in FIG. 1 (a).

【0017】次に図2に示す研磨装置を用い、以下の条
件で平坦化膜106の化学的機械研磨を行なった。この
時、前記抑止膜であるサイアロン化膜108の位置で化
学的機械研磨が停止するように研磨時間を設定した(平
坦化膜106の厚みtの研磨所要時間プラスアルフ
ァ)。 研磨プレート回転数 : 50 rpm キャリアー回転数 : 17 rpm 研磨圧力 : 8 psi 研磨パッド温度 : 30〜40℃ スラリー流量 : 225ml/min
Next, using the polishing apparatus shown in FIG. 2, the planarization film 106 was chemically mechanically polished under the following conditions. At this time, the polishing time was set so that the chemical mechanical polishing was stopped at the position of the sialonized film 108 which was the restraining film (the polishing time required for the thickness t of the flattening film 106 plus alpha). Polishing plate speed: 50 rpm Carrier speed: 17 rpm Polishing pressure: 8 psi Polishing pad temperature: 30-40 ° C Slurry flow rate: 225 ml / min

【0018】この研磨条件は絶縁膜の研磨条件としては
一般的なものである。ここでは塩基性の雰囲気で研磨を
行なうため、KOH/水/アルコールにスラリーを懸濁
させて用いた。結果は、前記サイアロン化した遮光膜1
08で研磨が停止し、図1(b)に示すとおりの良好な
平坦化加工ができた。
This polishing condition is a general polishing condition for the insulating film. Since polishing is performed in a basic atmosphere here, the slurry was used by suspending it in KOH / water / alcohol. The result is that the sialonized light-shielding film 1
Polishing stopped at 08, and good flattening processing as shown in FIG. 1B was completed.

【0019】[0019]

【実施例2】本実施例は、平坦化膜にO3/TEOS膜を
用い、遮光膜のAl 膜をベーマイトに改質して抑止層と
して用いたものである。構造的には図1に示した実施例
1と同様になる。同じ図1を引用する。先ずAl 遮光膜
104を形成する迄は実施例1と同じにした。
Embodiment 2 In this embodiment, an O 3 / TEOS film is used as a flattening film, and an Al film as a light-shielding film is modified into boehmite and used as a suppression layer. The structure is the same as that of the first embodiment shown in FIG. The same FIG. 1 is cited. First, the same process as in Example 1 was performed until the Al light-shielding film 104 was formed.

【0020】次にこのAl 遮光膜104を次の条件で温
水処理し、表面をベーマイト化した(108)。このベ
ーマイト化膜108の厚さは凡そ50nmであった(実施例
1では、符号108は「サイアロン化」膜であるが、同
じ図1を引用するので、この「ベーマイト化」膜につい
ても同じ符号108を使用する)。なお温水の温度は80
℃である。必要に応じ温水にアルミン酸ナトリウムを添
加するのも良い。
Next, the Al light-shielding film 104 was treated with hot water under the following conditions to boehmite the surface (108). The thickness of the boehmite film 108 was about 50 nm (in Example 1, reference numeral 108 is a “sialonized” film, but since the same FIG. 1 is cited, the same reference numeral is applied to this “boehmite” film). 108 is used). The temperature of hot water is 80
℃. It is also possible to add sodium aluminate to warm water as needed.

【0021】このあと、実施例1と同じ手順、条件でパ
シベーション膜105、平坦化膜106の形成を行っ
た。このときの形状は、図1(a)のようになった。更
に実施例1と同じ手順、条件でこの平坦化膜106の化
学的機械研磨を行なった。この時、同じように前記抑止
膜であるベーマイト化膜108の位置で化学的機械研磨
が停止するよう研磨時間を調整した。その結果、このベ
ーマイト化膜108で研磨が停止し、図1(b)に示す
とおりの良好な平坦化加工ができた。
After that, the passivation film 105 and the planarization film 106 were formed under the same procedure and conditions as in Example 1. The shape at this time was as shown in FIG. Further, the chemical mechanical polishing of the flattening film 106 was performed under the same procedure and conditions as in Example 1. At this time, similarly, the polishing time was adjusted so that the chemical mechanical polishing was stopped at the position of the boehmite conversion film 108, which was the above-mentioned inhibition film. As a result, polishing was stopped at this boehmite film 108, and good planarization processing as shown in FIG.

【0022】尚、本発明は当然のことながら以上説明し
た3つの実施例に限定されるものではなく、本発明の主
旨を逸脱しない範囲内で構造、条件等を適宜変更可能で
ある。
The present invention is of course not limited to the three embodiments described above, and the structure, conditions, etc. can be changed as appropriate without departing from the spirit of the present invention.

【0023】[0023]

【発明の効果】以上説明したように本発明では、基板上
に形成された遮光膜を改質し、化学的機械研磨の為の研
磨抑止層に利用した。従って従来の方法で隘路となって
いた良好な平坦化形状を形成することが出来るうえ、安
定な研磨抑止層の存在で、それが再現性良く実現出来
る。また大幅なプロセスの追加も必要ない。これによ
り、平坦化形状を有する高性能の固体撮像素子を信頼性
高く且つ低コストで量産出来る。
As described above, in the present invention, the light-shielding film formed on the substrate is modified and used as the polishing inhibiting layer for chemical mechanical polishing. Therefore, it is possible to form a good flattened shape, which was a bottleneck by the conventional method, and to realize it with good reproducibility due to the existence of the stable polishing inhibiting layer. In addition, there is no need to add significant processes. As a result, a high-performance solid-state imaging device having a flattened shape can be mass-produced with high reliability and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態の一例を概略で示す断面図。FIG. 1 is a sectional view schematically showing an example of an embodiment.

【図2】化学的機械研磨装置の一例を概略で示す正面
図。
FIG. 2 is a front view schematically showing an example of a chemical mechanical polishing apparatus.

【図3】従来の固体撮像素子の構成を概略で示す断面
図。
FIG. 3 is a sectional view schematically showing the configuration of a conventional solid-state image sensor.

【符号の説明】[Explanation of symbols]

1 スラリー供給口 2 スラリー 3 研磨プレート 1 Slurry supply port 2 slurry 3 Polishing plate

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 27/14 H01L 27/146 H01L 27/148 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 27/14 H01L 27/146 H01L 27/148

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成した少なくとも1層以上の
薄膜を化学的機械研磨をして前記基板の略水平方向に平
坦化する固体撮像装置の製造方法に於て、 前記基板上に形成された遮光膜を硬度を向上する改質
して前記化学的機械研磨の為の研磨抑止層を形成する工
程が含まれることを特徴とする固体撮像装置の製造方
法。
1. A method of manufacturing a solid-state imaging device, comprising: performing chemical mechanical polishing on at least one thin film formed on a substrate to planarize the substrate in a substantially horizontal direction. method for manufacturing a solid-state imaging device by <br/> modified, characterized in that includes the step of forming an abrasive preventing layer for the chemical mechanical polishing a light-shielding film improves the hardness was.
【請求項2】 前記遮光膜がアルミニウム又はアルミニ
ウム合金であり、前記改質が該アルミニウムのサイアロ
ン化であることを特徴とする請求項1記載の固体撮像装
置の製造方法。
2. The method for manufacturing a solid-state imaging device according to claim 1, wherein the light-shielding film is aluminum or an aluminum alloy, and the modification is sialonization of the aluminum.
【請求項3】 前記遮光膜がアルミニウム又はアルミニ
ウム合金であり、前記改質が該アルミニウムのベーマイ
ト化であることを特徴とする請求項1記載の固体撮像装
置の製造方法。
3. The method for manufacturing a solid-state imaging device according to claim 1, wherein the light shielding film is aluminum or an aluminum alloy, and the modification is boehmite conversion of the aluminum.
【請求項4】 基板上に少なくとも1層以上の薄膜が形
成された固体撮像装置に於て、 前記基板上に形成された遮光膜が化学的機械研磨の研磨
抑止層として硬度を向上する改質されており、 該改質された遮光膜の上端を基準面として前記1層以上
の薄膜が略水平方向に平坦化されていることを特徴とす
る固体撮像装置。
4. In a solid-state imaging device having at least one thin film formed on a substrate, a light-shielding film formed on the substrate is modified to improve hardness as a polishing inhibiting layer for chemical mechanical polishing. The one or more layers with the upper end of the modified light-shielding film as a reference surface.
Solid-state imaging device , wherein the thin film is planarized in a substantially horizontal direction.
【請求項5】 前記改質された遮光膜がサイアロンであ
ることを特徴とする請求項4記載の固体撮像装置。
5. The solid-state imaging device according to claim 4, wherein the modified light-shielding film is sialon.
【請求項6】 前記改質された遮光膜がベーマイトであ
ることを特徴とする請求項4記載の固体撮像装置。
6. The solid-state imaging device according to claim 4, wherein the modified light-shielding film is boehmite.
JP32981595A 1995-11-24 1995-11-24 Method for manufacturing solid-state imaging device and solid-state imaging device Expired - Fee Related JP3393424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32981595A JP3393424B2 (en) 1995-11-24 1995-11-24 Method for manufacturing solid-state imaging device and solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32981595A JP3393424B2 (en) 1995-11-24 1995-11-24 Method for manufacturing solid-state imaging device and solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH09148550A JPH09148550A (en) 1997-06-06
JP3393424B2 true JP3393424B2 (en) 2003-04-07

Family

ID=18225548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32981595A Expired - Fee Related JP3393424B2 (en) 1995-11-24 1995-11-24 Method for manufacturing solid-state imaging device and solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3393424B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7139028B2 (en) 2000-10-17 2006-11-21 Canon Kabushiki Kaisha Image pickup apparatus

Also Published As

Publication number Publication date
JPH09148550A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
US6635574B2 (en) Method of removing material from a semiconductor substrate
US7534642B2 (en) Methods of manufacturing an image device
JPH06310478A (en) Surface flattening method
US5880039A (en) Method for forming interlayer insulating film of a semiconductor device
CN101335232B (en) CMP method of semiconductor device
JPH0997774A (en) Dielectric coating flattening method
JP3430759B2 (en) Method for manufacturing solid-state imaging device and solid-state imaging device
US6242730B1 (en) Semiconductor color image sensor
JP3393424B2 (en) Method for manufacturing solid-state imaging device and solid-state imaging device
JP3702611B2 (en) Solid-state imaging device and manufacturing method thereof
US5906949A (en) Chemical-mechanical polishing process
US8188560B2 (en) Optical color sensor system
JP3654336B2 (en) Semiconductor image sensor
JP3107009B2 (en) Polishing method and polishing apparatus for metal film
JP3626252B2 (en) Method for manufacturing solid-state imaging device
JPH08288245A (en) Polishing apparatus and method
JPH08323614A (en) Chemical and mechanical abrasion method and device
JP2003234465A (en) Method for fabricating semiconductor device
JP3353539B2 (en) Method for manufacturing semiconductor device
US20080176403A1 (en) Method of polishing a layer and method of manufacturing a semiconductor device using the same
JPH09148285A (en) Chemical-mechanical polishing particles and manufacture of semiconductor device
JPH07183278A (en) Flattening of wafer surface
KR100693785B1 (en) Method for forming interlayer dielectric in semiconductor memory device
TW434798B (en) Method to prevent the over-etch of trench isolation oxide layer
JPH08330398A (en) Wafer processing method and device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees