JP3393362B2 - Method for producing organic compound-clay composite - Google Patents

Method for producing organic compound-clay composite

Info

Publication number
JP3393362B2
JP3393362B2 JP27510897A JP27510897A JP3393362B2 JP 3393362 B2 JP3393362 B2 JP 3393362B2 JP 27510897 A JP27510897 A JP 27510897A JP 27510897 A JP27510897 A JP 27510897A JP 3393362 B2 JP3393362 B2 JP 3393362B2
Authority
JP
Japan
Prior art keywords
organic
carbon dioxide
clay
treatment
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27510897A
Other languages
Japanese (ja)
Other versions
JPH1192132A (en
Inventor
亮 石井
英男 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP27510897A priority Critical patent/JP3393362B2/en
Publication of JPH1192132A publication Critical patent/JPH1192132A/en
Application granted granted Critical
Publication of JP3393362B2 publication Critical patent/JP3393362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、特定の機能をもつ
有機化合物をテトラアルキルアンモニウムイオンを層間
支柱として有する粘土、いわゆるピラードクレー(pi
llard clay)と複合化して、その機能を保持
したまま安定な複合体とする方法に関するものである。 【0002】 【従来の技術】有機化合物は、その本来有する機能に基
づき、光機能材料をはじめとして各種材料に広く利用さ
れているが、一般に、耐熱性が低く、また大気中の酸素
により変質されやすいという欠点を有している。このた
め、ゼオライトのような多孔質無機物質中に吸着させた
り、ガラスやプラスチックに封入して安定化することが
行われている。しかし多孔質無機物質に吸着させるに
は、有機化合物を適当な溶媒に溶かし、この溶液を多孔
質無機物質に含浸させ、溶媒を蒸発させるという煩雑な
操作を必要とする。また、溶媒の表面張力のため、微細
な空隙に浸透させて均一に複合化することがむずかしい
上に、必ずしも満足しうる安定化が得られないという欠
点がある。一方、ガラスやプラスチックに封入する場合
は、加熱により変質するのを免れないという欠点があ
り、これまで、実用上十分に満足しうる方法は知られて
いなかった。 【0003】 【発明が解決しようとする課題】本発明は、有機化合物
の本来の機能をそこなうことなく、簡単な処理でしかも
十分に安定化された有機化合物の含有割合の高い有機化
合物−粘土複合体を製造する方法を提供することを目的
としてなされたものである。 【0004】 【課題を解決するための手段】本発明者らは、有機化合
物をゲスト分子とした層状粘土との複合体について種々
研究を重ねた結果、先に二酸化炭素の超臨界状態を利用
して、有機ゲスト分子を層状粘土と複合化することによ
り、有機化合物の機能性と粘土の安定性を併有する複合
体を製造した。 【0005】しかしながら、このような方法により得ら
れる複合体は、有機ゲスト化合物の含有割合が低く、そ
の利用分野が制限されるのを免れない。このため、本発
明者らは、有機ゲスト化合物の含有割合の高い有機化合
物−粘土複合体を得る方法について、さらに研究を重ね
た結果、有機ゲスト化合物の導入用媒体として超臨界状
態にある二酸化炭素を用いるとともに、層状粘土とし
て、テトラアルキルアンモニウムイオンからなる層間支
柱を有する粘土、いわゆるピラードクレーを用いること
により、その有機ゲスト化合物の含有量を著しく増大し
うることを見出し、この知見に基づいて本発明をなすに
至った。 【0006】すなわち、本発明は、層状粘土をテトラア
ルキルアンモニウム塩の水溶液に浸せきして、テトラア
ルキルアンモニウムイオンからなる層間支柱を有する層
状粘土を形成させ、次いでこれに超臨界状態にある二酸
化炭素に溶解した有機ゲスト化合物接触させて層間の
空隙に有機ゲスト化合物を吸着させることを特徴とする
有機化合物−粘土複合体の製造方法を提供するものであ
る。ここで、有機ゲスト化合物とは、層状粘土の層間空
隙中に導入される、所定の機能をもった有機化合物のこ
とをいう。また、超臨界状態の二酸化炭素とは臨界温度
Tc(31.7℃)及び臨界圧力Pc(7.13MP
a)以上にある二酸化炭素をいい、これは液体と気体の
中間の性質、すなわち液体に近い密度と溶解性及び気体
に近い粘性、表面張力、拡散性を有している。 【0007】 【発明の実施の形態】本発明においては、層状粘土とし
て層間支柱を有する粘土を用いることが必要である。こ
のものは、例えばモンモリロナイト、スメクタイト、ヘ
クトライト、サポナイト、バーミキュライト、タルク、
パイロフィライト、ハイデライト、雲母などの層状粘土
の層間陽イオンを支柱となるテトラアルキルアンモニウ
イオン交換することにより得ることができる。 【0008】この中で支柱としてテトラアルキルアンモ
ニウムイオンを含むものは、例えばテトラアルキルアン
モニウム塩の水溶液に所定の粘土を浸せきし、必要に応
じ50〜90℃の温度に加温しながら1〜10時間かき
まぜたのち、十分に水洗し乾燥することにより調製され
る。 【0009】に、この層状粘土の層間に取り入れられ
る有機ゲスト化合物としては、炭化水素類、アミン類、
アルコール類、ケトン類、アルデヒド類、カルボン酸
類、エーテル類、ニトリル類など広範囲のものが用いら
れるが、特定の機能をもつ有機化合物、例えば4‐フェ
ニルアゾアニリン、ローダミン、スピロピラン、アゾベ
ンゼンのような色素を用いると、その色相を変えること
なく安定性を向上しうるので好ましい。 【0010】本発明方法においては、前記の層状粘土
有機ゲスト化合物分子とを、超臨界状態にある二酸化炭
素の存在下で接触させることが必要である。この二酸化
炭素の超臨界状態は、二酸化炭素を温度35〜50℃、
圧力10〜20MPa、好ましくは温度40〜45℃、
圧力13〜17MPaに維持することによりもたらされ
る。例えば耐圧密閉容器中に二酸化炭素を導入し、いっ
たん冷却して二酸化炭素を液化したのち、温度を徐々に
上げて温度40℃、圧力14.5MPaに維持すると超
臨界状態になる。このようにして得られる超臨界状態の
二酸化炭素は気体のような流動性と液体に近い密度、溶
解性を有している。 【0011】超臨界状態の二酸化炭素が有機ゲスト化合
物分子と接触すると、有機ゲスト化合物分子は、超臨界
二酸化炭素に溶解する。そして、超臨界二酸化炭素が、
その低い粘性、小さい表面張力、高い拡散性により、
状粘土の層間支柱を有する微細な空隙のすみずみまで浸
透するに伴い、これらの有機ゲスト化合物分子もそれら
の空隙に運ばれる。有機ゲスト化合物分子が空隙のすみ
ずみにまで行き渡った後に、圧力を低下させると、超臨
界二酸化炭素の密度が低下し、それに伴い有機ゲスト化
合物分子の溶解度が低下し、有機ゲスト化合物分子は空
隙の各部に一様に析出し、吸着される。このようにして
吸着された有機ゲスト化合物分子は空隙表面に強く保持
される。 【0012】本発明方法における層状粘土と有機ゲスト
化合物分子との使用割合は、層状粘土の種類やそれに取
り入れられる有機ゲスト化合物分子の種類に左右される
が、通常は層状粘土100重量部当り、有機ゲスト化合
物分子1〜5重量部の範囲内である。また、層状粘土
有機ゲスト化合物分子との接触時間は少なくとも1時
間、通常6〜24時間の範囲内である。 【0013】 【発明の効果】本発明方法によると、従来の有機溶媒に
有機ゲスト化合物を溶解し、無機担体に含浸させたの
ち、有機溶媒を除去して複合体を製造する場合に比べ、
有機ゲスト化合物がより均一に分散し、強固に結合し、
安定性の良好な複合体を、しかも機能の低下を伴うこと
なく短時間で製造することができる。また、層間支柱を
有する層状粘土を用いるため、非常に多量の有機ゲスト
化合物を含有した複合体を得ることができる。 【0014】 【実施例】次に実施例により本発明をさらに詳細に説明
する。 【0015】参考例 モンモリロナイト500mgを濃度5mg/mlの塩化
テトラメチルアンモニウム溶液100mlに懸濁さ
せ、70℃で3時間撹拌した。ろ過後、硝酸銀試験で塩
化物イオンが検出されなくなるまで純水で繰り返し洗浄
し、次いで1日室温で真空乾燥して、モンモリロナイト
の層間に支柱を導入した。 【0016】実施例 参考例で得たテトラメチルアンモニウムイオンからなる
層間支柱を有するモンモリロナイトと4‐フェニルアゾ
アニリン粉末を高圧容器中に分離して置き、この容器を
冷却しながら二酸化炭素ガスを導入しいったん二酸化炭
素を液化させた。次に温度を徐々に上昇させて、二酸化
炭素を温度40℃、圧力14.5MPaの超臨界状態と
した。この状態を1、6、12時間保った後、圧力を徐
々に下げて、二酸化酸素を揮発・除去した。残った層間
支柱を有するモンモリロナイトをn‐ヘキサンで数回洗
浄して試料を得た。この試料中の窒素量、有機炭素量を
TN−TOC分析装置で求めた。これより計算した超臨
界二酸化炭素処理による窒素の増加量(ΔN)及び有機
炭素の増加量(ΔC)を表1に示す。表1にはそれらの
比(ΔN/ΔC)も合わせ示した。超臨界二酸化炭素処
理による窒素の増加量は1時間では少ないが、6時間以
降では明らかな増大が認められる。ΔN/ΔC比は各処
理時間で0.25、0.23、0.20と、4‐フェニ
ルアゾアニリン中のN/C比(0.25)とほぼ等し
い。すなわち超臨界二酸化炭素で処理することにより、
4‐フェニルアゾアニリンが化学変化することなく、モ
ンモリロナイトに吸収されたことが分かる。これに対応
して、試料の色が灰色から赤褐色に変化した。 【0017】また、図1に得られた試料のX線回折パタ
ーンを示した。2θ=6.3°付近の回折線は、層状構
造を持つ粘土鉱物であるモンモリロナイトの層間距離に
対応する。図1から超臨界二酸化炭素による処理の時間
が1時間では2θ=6.3°付近の回折線が処理前とあ
まり変わらないのに対して、6、12時間処理したもの
は、この回折線が明らかに低角側にシフトしていること
がわかる。すなわち、超臨界二酸化炭素処理によりモン
モリロナイトの層間距離が増大している。また図2には
超臨界二酸化炭素処理の前後における、モンモリロナイ
トの窒素吸着等温線を示す。処理前の試料は50〜70
ml/g程度の細孔容積を持っているのに対して、処理
後の試料の細孔容積は10ml/g以下である。X線回
折で層間距離が増大しているにもかかわらず、層間の空
隙を示す細孔容積が大きく減少していることは、4‐フ
ェニルアゾアニリンが層間支柱を有するモンモリロナイ
トの層間に挿入されたことを示している。すなわち、超
臨界二酸化炭素を用いた処理により、4‐フェニルアゾ
アニリンとモンモリロナイトからなる有機化合物−粘土
複合体が得られたことが分かる。 【0018】なお、反応時間12時間の超臨界二酸化炭
素処理における媒質中の4‐フェニルアゾアニリン濃度
を、処理前後の4‐フェニルアゾアニリンの重量減少と
反応容器の容積から求めたところ、0.33mg/ml
であった。これは、反応容器中の4‐フェニルアゾアニ
リン濃度の上限値であると考えられる。 【0019】比較例1 4‐フェニルアゾアニリンをエタノール又はアセトンに
濃度が1mg/mlとなるように懸濁し、溶解したもの
50mlに、実施例で用いた層間支柱を有するモンモリ
ロナイト100mgを加え、40℃で12時間撹拌し、
ろ過後、n‐ヘキサンで数回洗浄した。この溶液処理に
よる窒素及び有機炭素の増大量をTN−TOC分析装置
で求めた結果を表1に示す。 【0020】表1よりメタノールやアセトンを使用した
場合には、処理による窒素や有機炭素の増加量はごくわ
ずかである。そして、この表1の結果は、媒質中の4‐
フェニルアゾアニリンの濃度が超臨界二酸化炭素処理の
場合よりも高いことを考えると、溶液処理による有機ゲ
スト化合物分子のモンモリロナイトへの挿入反応が遅い
か、又は一部しか進行しないことを示している。 【0021】 【表1】 【0022】比較例2 層間支柱を有するモンモリロナイトの代りに、単に熱処
理したモンモリロナイトを用いて、実施例1と同様に、
超臨界二酸化炭素による処理を1時間行った。得られた
処理試料中の窒素濃度をTN−TOCで分析した結果、
0.04mg/g(0.29×10-4mol/g)であ
った。このことより、層間支柱を有するモンモリロナイ
トを用いることにより、4‐フェニルアゾアニリンの吸
収量は4倍以上増大することが分かる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a clay having an organic compound having a specific function and a tetraalkylammonium ion as an interlayer support , a so-called pillared clay (pi).
The present invention relates to a method of forming a stable complex while retaining its function by complexing with the compound of the present invention. [0002] Organic compounds are widely used in various materials including optical functional materials based on their inherent functions. However, in general, organic compounds have low heat resistance and are deteriorated by oxygen in the atmosphere. It has the disadvantage of being easy. For this reason, stabilization is carried out by adsorbing in a porous inorganic substance such as zeolite or enclosing in glass or plastic. However, the adsorption to the porous inorganic substance requires a complicated operation of dissolving the organic compound in an appropriate solvent, impregnating the solution with the porous inorganic substance, and evaporating the solvent. In addition, due to the surface tension of the solvent, it is difficult to penetrate into fine voids to form a uniform composite, and furthermore, there is a drawback that satisfactory stabilization cannot be obtained. On the other hand, in the case of encapsulation in glass or plastic, there is a disadvantage that it is unavoidable to deteriorate by heating, and there has been no known practically satisfactory method. [0003] [0008] The present invention, original function without deteriorating high organophilic of the content of simple organic compounds only are also sufficiently stabilized in the process of organic compounds
The purpose of the present invention is to provide a method for producing a compound- clay composite. The present inventors have conducted various studies on a complex with a layered clay using an organic compound as a guest molecule, and as a result, have first utilized the supercritical state of carbon dioxide. Thus, a complex having both the functionality of the organic compound and the stability of the clay was produced by complexing the organic guest molecule with the layered clay . [0005] However, the composite obtained by such a method has a low content ratio of the organic guest compound, and it is inevitable that the field of use is restricted. Therefore, the present inventors have found that the content of high organic compounds organic guest compound
As a result of further study on the method of obtaining the material-clay complex, carbon dioxide in a supercritical state was used as a medium for introducing an organic guest compound, and as a layered clay , tetraalkylammonium ions were used. clay having become interlayer pillar, by using a so-called Piradokure found that can significantly increase the content of the organic guest compound, leading to completion of the present invention based on this finding. That is, the present invention provides a method of forming a layered clay having an interlayer support composed of tetraalkylammonium ions by immersing the layered clay in an aqueous solution of a tetraalkylammonium salt, and then converting the layered clay into carbon dioxide in a supercritical state. It is contacted with an organic guest compound dissolved in the interlayer
An object of the present invention is to provide a method for producing an organic compound-clay composite , which comprises adsorbing an organic guest compound into a void . Here, the organic guest compound refers to an organic compound having a predetermined function, which is introduced into an interlayer gap of the layered clay. The supercritical carbon dioxide is defined as a critical temperature Tc (31.7 ° C.) and a critical pressure Pc (7.13MP).
a) Carbon dioxide as described above, which has properties intermediate between liquids and gases, namely, density and solubility close to liquids, and viscosity, surface tension, and diffusivity close to gases. DETAILED DESCRIPTION OF THE INVENTION In the present invention, it is necessary to use a clay having an interlayer support as the layered clay . These include, for example, montmorillonite, smectite, hectorite, saponite, vermiculite, talc,
Tetraalkylammonium, which supports interlayer cations of layered clay such as pyrophyllite, hydrite, and mica
It can be obtained by exchanging the beam ions. Among them, those containing tetraalkylammonium ions as pillars are prepared, for example, by immersing a predetermined clay in an aqueous solution of a tetraalkylammonium salt and, if necessary, heating to a temperature of 50 to 90 ° C. After stirring for 1 to 10 hours, the mixture is thoroughly washed with water and dried. [0009] Next, as an organic guest compound to be incorporated into layers of the layered clay, hydrocarbons, amines,
A wide range of compounds such as alcohols, ketones, aldehydes, carboxylic acids, ethers, and nitriles are used, but organic compounds having a specific function, for example, dyes such as 4-phenylazoaniline, rhodamine, spiropyran, and azobenzene Is preferred because the stability can be improved without changing the hue. In the method of the present invention, it is necessary to bring the layered clay into contact with the organic guest compound molecule in the presence of carbon dioxide in a supercritical state. This supercritical state of carbon dioxide is a temperature of 35 to 50 ° C.
Pressure 10 to 20 MPa, preferably temperature 40 to 45 ° C.,
It is brought about by maintaining the pressure at 13-17 MPa. For example, carbon dioxide is introduced into a pressure-resistant closed vessel, and once cooled to liquefy carbon dioxide, the temperature is gradually increased to maintain a temperature of 40 ° C. and a pressure of 14.5 MPa, thereby bringing the supercritical state. The supercritical carbon dioxide thus obtained has fluidity like a gas, density and solubility close to those of a liquid. When the supercritical carbon dioxide comes into contact with the organic guest compound molecules, the organic guest compound molecules dissolve in the supercritical carbon dioxide. And supercritical carbon dioxide
Its low viscosity, low surface tension, the high diffusivity, the layer
These organic guest compound molecules are also carried into the voids as they penetrate into the fine voids having interlayer pillars of the clayey clay . When the pressure is reduced after the organic guest compound molecules have spread to all corners of the void, the density of the supercritical carbon dioxide decreases, and the solubility of the organic guest compound molecules decreases accordingly, and the organic guest compound molecules Precipitates uniformly on each part and is adsorbed. The organic guest compound molecules thus adsorbed are strongly held on the surface of the void. [0012] The ratio of the present invention a method layered clay with an organic guest compound molecule in will depend on the type of the organic guest compound molecules incorporated into it and the kind of layered clay, usually a layered clay, per 100 parts by weight of an organic Guest compound molecules are in the range of 1 to 5 parts by weight. The contact time between the layered clay and the organic guest compound molecule is at least 1 hour, usually in the range of 6 to 24 hours. According to the method of the present invention, an organic guest compound is dissolved in a conventional organic solvent and impregnated into an inorganic carrier, and then the organic solvent is removed to produce a composite.
Organic guest compounds are more evenly dispersed and tightly bound,
A composite having good stability can be produced in a short time without deteriorating the function. In addition, since a layered clay having an interlayer support is used, a composite containing a very large amount of an organic guest compound can be obtained. Next, the present invention will be described in more detail by way of examples. [0015] Reference Example montmorillonite 500mg was suspended tetramethylammonium chloride aqueous solution 100ml of concentration 5 mg / ml, and stirred for 3 h at 70 ° C.. After filtration, the resultant was repeatedly washed with pure water until no chloride ion was detected in the silver nitrate test, and then dried in a vacuum at room temperature for one day to introduce columns between the layers of montmorillonite. [0016] placed to separate the montmorillonite and 4 phenylazoaniline powder having <br/> interlayer pillar consisting of tetramethylammonium ions from Example Reference example during high pressure vessel, the carbon dioxide while cooling the vessel Once gas was introduced, carbon dioxide was once liquefied. Next, the temperature was gradually increased to bring carbon dioxide into a supercritical state at a temperature of 40 ° C. and a pressure of 14.5 MPa. After maintaining this state for 1, 6, and 12 hours, the pressure was gradually lowered to volatilize and remove oxygen dioxide. The montmorillonite having the remaining interlayer support was washed several times with n-hexane to obtain a sample. The amount of nitrogen and the amount of organic carbon in this sample were determined with a TN-TOC analyzer. Table 1 shows the calculated increase in nitrogen (ΔN) and increase in organic carbon (ΔC) due to the supercritical carbon dioxide treatment. Table 1 also shows their ratio (ΔN / ΔC). The amount of increase in nitrogen by the supercritical carbon dioxide treatment is small in one hour, but a clear increase is observed after 6 hours. The ΔN / ΔC ratios at each treatment time were 0.25, 0.23, 0.20, almost equal to the N / C ratio in 4-phenylazoaniline (0.25). That is, by treating with supercritical carbon dioxide,
It can be seen that 4-phenylazoaniline was absorbed by montmorillonite without any chemical change. Correspondingly, the color of the sample changed from gray to reddish brown. FIG. 1 shows an X-ray diffraction pattern of the obtained sample. The diffraction line near 2θ = 6.3 ° corresponds to the interlayer distance of montmorillonite which is a clay mineral having a layered structure. From FIG. 1, the diffraction line near 2θ = 6.3 ° is not much different from that before the treatment when the time of the treatment with the supercritical carbon dioxide is 1 hour, whereas the diffraction line after the treatment for 6 or 12 hours has It can be seen that it is clearly shifted to the lower angle side. That is, the interlayer distance of the montmorillonite is increased by the supercritical carbon dioxide treatment. FIG. 2 shows nitrogen adsorption isotherms of montmorillonite before and after the supercritical carbon dioxide treatment. 50-70 samples before treatment
While the sample has a pore volume of about ml / g, the sample after treatment has a pore volume of 10 ml / g or less. Despite the increase in interlayer distance in X-ray diffraction, the large decrease in pore volume, which indicates voids between layers, indicates that 4-phenylazoaniline was inserted between layers of montmorillonite having interlayer supports. It is shown that. That is, it can be seen that an organic compound-clay composite composed of 4-phenylazoaniline and montmorillonite was obtained by the treatment using supercritical carbon dioxide. The concentration of 4-phenylazoaniline in the medium in the supercritical carbon dioxide treatment for a reaction time of 12 hours was determined from the weight loss of 4-phenylazoaniline before and after the treatment and the volume of the reaction vessel. 33mg / ml
Met. This is considered to be the upper limit of the concentration of 4-phenylazoaniline in the reaction vessel. Comparative Example 1 4-Phenylazoaniline was suspended in ethanol or acetone to a concentration of 1 mg / ml and dissolved in 50 ml, and 100 mg of montmorillonite having an interlayer support used in the example was added. And stir for 12 hours,
After filtration, it was washed several times with n-hexane. Table 1 shows the results obtained by using a TN-TOC analyzer to determine the increase in nitrogen and organic carbon due to this solution treatment. From Table 1, when methanol or acetone is used, the amount of increase in nitrogen and organic carbon by the treatment is very small. The results in Table 1 show that 4-
Considering that the concentration of phenylazoaniline is higher than that in the case of the supercritical carbon dioxide treatment, it indicates that the insertion reaction of the organic guest compound molecule into the montmorillonite by the solution treatment is slow or progresses only partially. [Table 1] COMPARATIVE EXAMPLE 2 Instead of montmorillonite having an interlayer support, a heat-treated montmorillonite was used in the same manner as in Example 1,
The treatment with supercritical carbon dioxide was performed for one hour. As a result of analyzing the nitrogen concentration in the obtained processed sample by TN-TOC,
It was 0.04 mg / g (0.29 × 10 −4 mol / g). This indicates that the use of montmorillonite having an interlayer support increases the absorption amount of 4-phenylazoaniline four times or more.

【図面の簡単な説明】 【図1】 実施例で得た超臨界処理したモンモリロナイ
トのX線回折パターン。 【図2】 超臨界二酸化炭素処理の前後における窒素吸
着等温線。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an X-ray diffraction pattern of montmorillonite subjected to supercritical treatment obtained in an example. FIG. 2 is a nitrogen adsorption isotherm before and after supercritical carbon dioxide treatment.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−293315(JP,A) 特開 平4−74708(JP,A) 石井亮ら,粘土鉱物への超臨界流体を 用いた有機物のインターカレーションの 試み,日本化学会第72春季年会−講演予 稿集I,日本,1997年3月12日,p.10 (58)調査した分野(Int.Cl.7,DB名) C01B 33/20 - 33/44 C07B 61/00 - 63/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-293315 (JP, A) JP-A-4-74708 (JP, A) Ryo Ishii et al. Intercalation Attempt, The 72nd Annual Meeting of the Chemical Society of Japan-Proceedings of the Lecture I, Japan, March 12, 1997, p. 10 (58) Field surveyed (Int.Cl. 7 , DB name) C01B 33/20-33/44 C07B 61/00-63/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 層状粘土をテトラアルキルアンモニウム
塩の水溶液に浸せきして、テトラアルキルアンモニウム
イオンからなる層間支柱を有する層状粘土を形成させ、
次いでこれに超臨界状態にある二酸化炭素に溶解した
機ゲスト化合物接触させて層間の空隙に有機ゲスト化
合物を吸着させることを特徴とする有機化合物−粘土複
合体の製造方法。
(57) Claims 1. The layered clay is immersed in an aqueous solution of a tetraalkylammonium salt to form a layered clay having an interlayer support composed of tetraalkylammonium ions.
Then, it is brought into contact with an organic guest compound dissolved in carbon dioxide in a supercritical state to convert the organic guest into a void between the layers.
A method for producing an organic compound-clay composite , which comprises adsorbing a compound.
JP27510897A 1997-09-22 1997-09-22 Method for producing organic compound-clay composite Expired - Lifetime JP3393362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27510897A JP3393362B2 (en) 1997-09-22 1997-09-22 Method for producing organic compound-clay composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27510897A JP3393362B2 (en) 1997-09-22 1997-09-22 Method for producing organic compound-clay composite

Publications (2)

Publication Number Publication Date
JPH1192132A JPH1192132A (en) 1999-04-06
JP3393362B2 true JP3393362B2 (en) 2003-04-07

Family

ID=17550859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27510897A Expired - Lifetime JP3393362B2 (en) 1997-09-22 1997-09-22 Method for producing organic compound-clay composite

Country Status (1)

Country Link
JP (1) JP3393362B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428635B1 (en) * 2000-05-09 2004-04-30 주식회사 엘지화학 Method for preparing organoclay nanocomposites using super critical fluid
EP1484357A1 (en) * 2003-06-06 2004-12-08 Université de Liège Process to prepare biodegradable polyester foams, polyester foams obtained thereby, their use, and process to modify nanofillers
JP5436841B2 (en) * 2007-11-13 2014-03-05 株式会社巴川製紙所 Method for producing clay dispersion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石井亮ら,粘土鉱物への超臨界流体を用いた有機物のインターカレーションの試み,日本化学会第72春季年会−講演予稿集I,日本,1997年3月12日,p.10

Also Published As

Publication number Publication date
JPH1192132A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
Ameloot et al. Silica–MOF composites as a stationary phase in liquid chromatography
Li et al. The solvent induced inter‐dimensional phase transformations of cobalt zeolitic‐imidazolate frameworks
Croft Lamellar compounds of graphite
Villacañas et al. Adsorption of simple aromatic compounds on activated carbons
Zou et al. Microwave‐assisted synthesis of HKUST‐1 and functionalized HKUST‐1‐@ H3PW12O40: selective adsorption of heavy metal ions in water analyzed with synchrotron radiation
Haque et al. Synthesis of isostructural metal–organic frameworks, CPO-27s, with ultrasound, microwave, and conventional heating: Effect of synthesis methods and metal ions
Hossain et al. Intraframework Metal Ion Adsorption in Ligand‐Functionalized Mesoporous Silica
Canham et al. Characterization of microporous Si by flow calorimetry: Comparison with a hydrophobic SiO2 molecular sieve
Furtado et al. Mesoporous silica–metal organic composite: synthesis, characterization, and ammonia adsorption
Zhu et al. Metal–organic frameworks with boronic acid suspended and their implication for cis‐diol moieties binding
Chang et al. Application of graphene as a sorbent for preconcentration and determination of trace amounts of chromium (III) in water samples by flame atomic absorption spectrometry
JP5835787B2 (en) Microporous carbon material, method for producing microporous carbon material, and hydrogen storage method using microporous carbon material
CN106669612A (en) Aluminum-based metal organic frame-graphene oxide composite material, as well as preparation method and application thereof
Bai et al. Modifiable diyne-based covalent organic framework: a versatile platform for in situ multipurpose functionalization
Yang et al. Selective adsorption and extraction of C70 and higher fullerenes on a reusable metal–organic framework MIL-101 (Cr)
US5837741A (en) Composite microporous carbons for fuel gas storage
JPH07257917A (en) Preparation of active composite and active composite manufactured by said method
CN110482487A (en) A kind of Zr-MOFs/ graphene oxide is composite porous and its preparation method and application
Ren et al. CO 2 adsorption performance of CuBTC/graphene aerogel composites
JP3393362B2 (en) Method for producing organic compound-clay composite
WO1997011923A1 (en) A method of producing a composite, more precisely a nanoporous body and a nanoporous body produced thereby
Meljac et al. Creation of active sites by impregnation of carbon fibers: application to the fixation of hydrogen sulfide
Jiang et al. Electrochemical characterization of the host-guest nanocomposite material MCM-41-based iron and ruthenium complexes with bipyridine and phenanthroline
Bogatyrov et al. Effect of the surface properties of resorcinol–formaldehyde resin/carbon nanocomposites and their carbonization products on the solid-phase extraction of explosives
Sharafutdinova et al. Chiral recognition during adsorption on MOF [{Cu 12 I (trz) 8}· 4 Cl· 8 H 2 O] n, obtained from achiral building blocks without an external source of chirality

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term