JP3392566B2 - Floating bush bearing - Google Patents

Floating bush bearing

Info

Publication number
JP3392566B2
JP3392566B2 JP5036595A JP5036595A JP3392566B2 JP 3392566 B2 JP3392566 B2 JP 3392566B2 JP 5036595 A JP5036595 A JP 5036595A JP 5036595 A JP5036595 A JP 5036595A JP 3392566 B2 JP3392566 B2 JP 3392566B2
Authority
JP
Japan
Prior art keywords
floating bush
oil groove
oil
bearing
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5036595A
Other languages
Japanese (ja)
Other versions
JPH08219148A (en
Inventor
邦夫 佐木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5036595A priority Critical patent/JP3392566B2/en
Publication of JPH08219148A publication Critical patent/JPH08219148A/en
Application granted granted Critical
Publication of JP3392566B2 publication Critical patent/JP3392566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、浮動ブッシュ軸受が用
いられる二重反転プロペラ用軸受、ディーゼル機関の吸
排気動弁系のローラ軸受、ターボ機械主軸の軸受に関す
る。 【0002】 【従来の技術】図4に浮動ブッシュ軸受の従来例を示
す。図において1′は回転軸、2′は軸受であり、該軸
受2′は図示省略しているが、ハウジングに固定されて
いる。 【0003】3′は浮動ブッシュであり、回転軸1′と
軸受2′との間に、それぞれすきまを有して装着されて
いる。 【0004】そして、回転軸1′の回転にともない、摩
擦トルクによって浮動ブッシュ3′も回転できるように
構成されている。 【0005】4′は軸受2′の中央位置に穿設された潤
滑油供給用油穴であり、また浮動ブッシュ3′の外周
面、内周面には、幅方向の中央に円周方向油溝5′、
6′がそれぞれ設けられている。 【0006】そして浮動ブッシュ3′の外周面の油溝
5′と内周面の油溝6′とは、複数個の連通穴7′で結
ばれている。 【0007】つぎにその作用について説明すると、浮動
ブッシュ3′の外周面および内周面への潤滑油の供給は
次のルートを通じてなされる。すなわち潤滑油供給ポン
プより圧送された潤滑油はまず軸受2′の油穴4′に供
給され、潤滑油は浮動ブッシュ3′の外周面、内周面の
油溝5′,6′に達する。 【0008】そして油溝内の油は軸受2′と浮動ブッシ
ュ3′とのすきま、浮動ブッシュ3′と回転軸1′との
すきまを通って、軸方向に流れて軸受すきまに供給され
る。 【0009】 【発明が解決しようとする課題】ところで前述のような
従来の浮動ブッシュ軸受は軸受すきま内へ必要な油を供
給するのが容易でないという欠点を有している。その理
由を以下に説明する。 【0010】軸受に必要な油量は次のように表わされ
る。浮動ブッシュの内周面側に必要な油量qi は qi ∝(NS +NF )Ci …(1) 【0011】浮動ブッシュの外周面側に必要な油量qo
は qo ∝NF o …(2) 【0012】ここでNS は回転軸の回転数(rpm)、
F は浮動ブッシュの回転数(rpm)、Ci は浮動ブ
ッシュ3′と回転軸1′との間の直径すきま、Co は浮
動ブッシュ3′と軸受2′との間の直径すきまを示す。 【0013】一方、各すきまに油溝5′,6′から供給
可能な油量Qi ,Qo は次のようにあらわせる。 【0014】浮動ブッシュの内周面側に供給可能な油量
i は Qi ∝Ci 3 s /(μL) …(3) 【0015】浮動ブッシュの外周面側に供給可能な油量
o は Qo ∝Co 3 s /(μL) …(4) 【0016】ここで、Ps は潤滑油供給油圧、μは油の
粘度、Lは浮動ブッシュ3′の軸方向長さを示す。 【0017】円滑な潤滑を行なうためには、必要油量以
上の油量が供給されなければならない。これを式であら
わすと Qi ≧qi ,Qo ≧qo …(5) 【0018】上記(1)式と(3)式、あるいは(2)
式と(4)式より、次のような場合には(5)式が成立
しない場合があり油量不足となる。 【0019】(a)供給油圧Ps が低い場合 (b)直径すきまCi ,Co が小さすぎる場合 【0020】これをさけるために、高い供給油圧を必要
とする。また直径すきまを大きくしなければならない。 【0021】とくに(1),(2)式よりわかるよう
に、回転数が大きくなると、必要油量qi ,qo が大き
くなり、これを満たすために、給油圧Ps や、直径すき
まCi,Co をますます大きくしなければならない欠点
を有している。 【0022】本発明は、上記不具合点を解消し給油圧P
s ならびに直径すきまCi ,Co を大きくすることな
く、高速回転においても、必要な油量を供給できる浮動
ブッシュ軸受を提供することを目的としている。 【0023】 【課題を解決するための手段】前記目的を達成するため
の構成として本発明の浮動ブッシュ装置は、軸と、軸受
との間に浮動ブッシュが装着された浮動ブッシュ軸受に
おいて、前記浮動ブッシュが内周面及び外周面の幅方向
中央に内周側及び外周側の円周油溝を有し、外周側の前
記円周油溝により2つの軸受面に分割された前記浮動ブ
ッシュ外周面の一つの軸受面に、前記外周側円周油溝と
連通した外周側第1軸方向油溝を等間隔位置に設けると
ともに、前記浮動ブッシュ外周面の他の片幅の軸受面
に、前記外周側第1軸方向油溝とは半間隔ずらした位置
に外周側第2軸方向油溝を前記外周側円周油溝に連通さ
せて設け、内周側の前記円周油溝により2つの軸受面に
分割された前記浮動ブッシュ内周面の一つの軸受面に、
前記内周側円周油溝と連通した内周側第1軸方向油溝を
等間隔位置に設けるとともに、前記浮動ブッシュ内周面
の他の片幅の軸受面に、前記内周側第1軸方向油溝とは
半間隔ずらした位置に内周側第2軸方向油溝を前記内周
側円周油溝に連通させて設け、前記浮動ブッシュ外周面
の前記第1、第2の軸方向油溝と前記浮動ブッシュ内周
面の前記第1、第2の軸方向油溝は円周方向の同一位相
に設けたことを特徴としている。 【0024】 【0025】 【0026】 【作用】上記構成よりなる本発明の浮動ブッシュ軸受の
作用を図1、図2に示す実施例により説明すると、潤滑
油ポンプより圧送された油は軸受2の油穴4に供給さ
れ、該潤滑油は油穴4を通り浮動ブッシュの幅方向中央
に設けた円周油溝5,6を満たす。 【0027】円周油溝に供給された潤滑油はさらに該円
周油溝とつながる軸方向油溝8a,8b,8c,8d,
9a,9b,9c,9dに送られ自動的に潤滑油で満た
される。 【0028】したがって前述説明の(3)式あるいは
(4)式で示したように高い油圧をかける必要もなく、
また直径すきまが小さくても油溝の深さが大きいため
に、容易に浮動ブッシュのほぼ全幅にわたって油が供給
される。 【0029】また2つの軸受面に分割された浮動ブッシ
ュの軸受面に設けた軸方向油溝に位相差を設けたことに
より、1回転中にかわってくる浮動ブッシュの荷重を受
ける面(以下負荷面と云う)内に軸方向油溝がきた場合
には、くさび作用あるいはスクイズ作用による動圧範囲
が制限されるため、流体潤滑負荷能力が小さくなるが、
本発明では軸方向油溝8aと8cとの位相がずれている
ため、一方の油溝8aが負荷面になっても、片幅面には
軸方向油溝がないため動圧発生が阻害されない。 【0030】同様なことは、油溝8cが負荷面になった
場合にも云える。すなわち、この場合にも他の片幅側に
は軸方向油溝が無いために流体潤滑が可能である。 【0031】以上のように軸方向油溝8a〜8dは、相
互に位相をずらして設けられているため、浮動ブッシュ
3が回転し油溝が負荷面に入って来ても、他の残りの片
幅側で流体潤滑作用があり焼付損傷を回避できる。 【0032】さらに、浮動ブッシュ3の外周面の軸方向
油溝8a〜8dと、内周面の軸方向油溝9a〜9dを表
裏の円周方向同一位相に設けたことにより、図3(a)
に示すように動圧発生個所が内、外面で同一個所になる
ために、浮動ブッシュ3を軸方向に傾けるモーメントの
発生がない。 【0033】従って浮動ブッシュ3の片当りがなく、焼
付き損傷が生じにくくなる効果がある。 【0034】 【実施例】以下図面により本発明の実施例について説明
する。図1は本発明の第1実施例に係る浮動ブッシュ軸
受の断面図、図2は同実施例における浮動ブッシュ外周
面の展開図、図3は浮動ブッシュの内面、外面に発生す
る動圧分布と片当りの説明図で(a)は本実施例の場
合、(b)は軸方向油溝が内外面で同一個所にない場合
を示す。 【0035】図1及び図2に示す第1実施例は、軸が回
転し軸受が固定する場合のもので、図において、1は回
転軸、2はハウジングに固定された軸受、3は回転軸1
と軸受2との間に装着された浮動ブッシュで、該ブッシ
ュは回転軸1の回転にともない摩擦トルクによって回転
するよう構成されている。 【0036】4は軸受2の中央位置に穿設された油穴で
ある。 【0037】浮動ブッシュ3の外周面及び内周面の幅方
向中央には円周方向の油溝5,6が設けられ、該油溝
5,6は図2に示すように円周方向に亘り複数個等間隔
で穿設された連通穴7により連通している。 【0038】浮動ブッシュ3の外周面には軸方向の油溝
8a,8b,8c,8dが設けられ、外周側円周油溝5と
つながっている。そして、外周側第1軸方向油溝8a,
8bと、外周側第2軸方向油溝8c,8dとは半間隔ず
らした位置にそれぞれ設けられている。 【0039】また浮動ブッシュ3の内周面にも軸方向の
油溝9a,9b,9c,9dが設けられ、同様に内周側第
1軸方向油溝9a,9bと内周側軸方向第2油溝9c,9
dが半間隔ずらした位置にそれぞれ設けられ、内周側
周油溝6とつながっている。 【0040】なお、8c,8d,9c,9dは図1では
図示されていない。 【0041】図2は浮動ブッシュの外周面の展開図を示
し、円周油溝5,6により2つの軸受面に分割された浮
動ブッシュにおける一方の軸受面の外周面に設けられた
軸方向油溝8aと8bとは片側の180°異なった位置
関係に設けられており、油溝の終端には、チャンファ1
0a,10bが設けられている。 【0042】一方、円周油溝5,6により2つの軸受面
に分割された浮動ブッシュの片側の軸受面の外周面に設
けられた軸方向油溝8c,8dは、前記軸方向油溝8a,
8bと180°異なった位置関係に設けられており、油
溝の終端には、チャンファ10c,10dが設けられて
いる。 【0043】油溝8aと油溝8cは、円周方向に90°
異なった位置関係にあるよう設けられる。 【0044】浮動ブッシュ3の内周面の展開図は、図2
と類似であるので省略するが8a,8b,8c,8dに
相当する位置関係に軸方向油溝9a,9b,9c,9d
の油溝が設けられている。たとえば図1に示すように油
溝8aの裏側が油溝9aになっている。 【0045】なお、軸方向油溝は180°の位置関係に
限ることなく、等間隔であればよく120°にしてもよ
く、この場合これに対応する他の側には60°ずらして
120°毎に軸方向油溝を設ければよい。 【0046】このように本実施例では、円周油溝に加え
て軸方向油溝を設けたもので、ただし、浮動ブッシュ3
の全幅にわたる軸方向油溝を設けるのではなく、半幅の
軸方向油溝を内周面、外周面に各4本設けるものであ
る。 【0047】そして4本の軸方向油溝は、次のように配
置する。すなわち、円周油溝によって分けられた片幅に
各2本配置し、円周油溝と連通させる。 【0048】そしてこの片幅の2本は円周方向に180
°離れた位置に設ける。 【0049】また残りの片幅の2本の軸方向油溝は、前
記他の側の油溝とは90°ずらした位置に設けるもので
ある。 【0050】そして内周面と外周面の軸方向油溝の位置
関係は円周方向の同一位相とする。すなわち、外周面の
軸方向油溝位置に相当する円周面側にも軸方向油溝が設
けられている。 【0051】つぎに本実施例装置の作用について説明す
る。本実施例では軸方向油溝8a〜8dにそれぞれ位相
差を設けているが、浮動ブッシュ3は回転軸1の回転に
伴ない回転するために、浮動ブッシュの荷重をうける面
(負荷面)は1回転中にかわってくる。 【0052】負荷面内に軸方向油溝がきた場合には、く
さび作用あるいはスクイズ作用による動圧範囲が制限さ
れるために、流体潤滑負荷能力が小さくなる。 【0053】たとえば、油溝8aと8cとが、同一線上
にあり、負荷面となった場合には、浮動ブッシュの全幅
にわたり、発生動圧は小さく、そのため負荷能力はほと
んどなく焼付損傷を生じやすくなる。 【0054】これに対して本実施例の浮動ブッシュ軸受
では、油溝8aと油溝8cとは90°位相がずれている
ために、油溝8aが負荷面になっても、片幅面には軸方
向油溝がないために動圧発生が阻害されない。 【0055】同様なことは油溝8cが負荷面になった場
合にもいえる。すなわち、この場合にも他の片幅側には
軸方向油溝がないために流体潤滑が可能である。 【0056】以上のように軸方向油溝8a〜8dは相互
90°ずれているために、浮動ブッシュが回転し、油
溝が負荷面にはいってきても、他の残りの片幅側で流体
潤滑作用があり、焼付損傷を回避できる。 【0057】次に、外周面の油溝8a〜8dと内周面の
油溝9a〜9dを表裏の同一個所に設けることの作用・
効果について説明する。 【0058】図3は浮動ブッシュの外周面、内周面に発
生する動圧分布を示す。 【0059】図3(a)は本発明の場合であり、動圧発
生位置が内、外面で同一個所となるために浮動ブッシュ
を軸方向に傾けるモーメントの発生はない。 【0060】これに対し、軸方向油溝が内、外面で同一
個所にない場合には、図3(b)に示すような動圧分布
となり、浮動ブッシュを傾けるモーメントが発生する。
このため、浮動ブッシュは片あたりを生じ焼付き損傷を
発生しやすい。 【0061】 【0062】 【0063】 【0064】 【0065】 【0066】 【0067】 【0068】 【0069】 【0070】 【0071】 【0072】 【0073】 【0074】 【発明の効果】本発明によれば、浮動ブッシュの片あた
りを防ぎ、流体潤滑作用を良好に保ち、焼付損傷を回避
できる効果がある。また低圧給油が可能となり、設備の
低コスト化を図ることができる。さらに、直径すきまを
不必要に大きくする必要がなく、くさび作用やスクイズ
作用の適正化の観点のみから軸受すきまを選定すること
ができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing for a contra-rotating propeller using a floating bush bearing, a roller bearing for an intake / exhaust valve system of a diesel engine, and a spindle for a turbomachine. About bearings. FIG . 4 shows a conventional example of a floating bush bearing. In the figure, reference numeral 1 'denotes a rotating shaft, 2' denotes a bearing, and the bearing 2 'is fixed to a housing, not shown. A floating bush 3 'is mounted between the rotary shaft 1' and the bearing 2 'with a clearance. [0004] With the rotation of the rotating shaft 1 ', the floating bush 3' can be rotated by friction torque. Reference numeral 4 'denotes a lubricating oil supply oil hole formed at the center of the bearing 2'. The outer circumferential surface and the inner circumferential surface of the floating bush 3 'are provided with a circumferential oil hole at the center in the width direction. Groove 5 ',
6 'are provided. The oil groove 5 'on the outer peripheral surface of the floating bush 3' and the oil groove 6 'on the inner peripheral surface are connected by a plurality of communication holes 7'. Next, the operation will be described. Lubricating oil is supplied to the outer peripheral surface and the inner peripheral surface of the floating bush 3 'through the following route. That is, the lubricating oil pumped from the lubricating oil supply pump is first supplied to the oil hole 4 'of the bearing 2', and the lubricating oil reaches the oil grooves 5 ', 6' on the outer peripheral surface and the inner peripheral surface of the floating bush 3 '. The oil in the oil groove flows in the axial direction through the clearance between the bearing 2 'and the floating bush 3' and the clearance between the floating bush 3 'and the rotating shaft 1', and is supplied to the bearing clearance. However, the conventional floating bush bearing as described above has a disadvantage that it is not easy to supply necessary oil into the bearing clearance. The reason will be described below. [0010] The amount of oil required for the bearing is expressed as follows. The oil amount q i required on the inner peripheral surface side of the floating bush is q i ∝ (N S + N F ) C i (1) The oil amount q o required on the outer peripheral surface side of the floating bush
The q o αN F C o ... ( 2) [0012] where N S is the number of rotations of the rotary shaft (rpm),
N F denotes the diameter gap between the floating bush rpm (rpm), C i is 'the rotary shaft 1' floating bushing 3 diameter gap between the, C o floating bush 3 'and bearing 2' and . On the other hand, the oil amounts Q i and Q o that can be supplied from the oil grooves 5 ′ and 6 ′ to the respective clearances are expressed as follows. The amount of oil Q i that can be supplied to the inner peripheral surface of the floating bush is Q i ∝C i 3 P s / (μL) (3) The amount of oil that can be supplied to the outer peripheral surface of the floating bush Q o is Q o ∝C o 3 P s / (μL) (4) where P s is the lubricating oil supply oil pressure, μ is the viscosity of the oil, and L is the axial length of the floating bush 3 ′. Is shown. In order to perform smooth lubrication, an amount of oil greater than the required amount of oil must be supplied. This can be expressed by the following equation: Q i ≧ q i , Q o ≧ q o (5) Equations (1) and (3) or (2)
From the expressions and the expression (4), in the following case, the expression (5) may not be satisfied and the oil amount becomes insufficient. (A) When the supply oil pressure P s is low (b) When the diameter clearances C i and C o are too small To avoid this, a high supply oil pressure is required. Also, the diameter clearance must be increased. In particular, as can be seen from the equations (1) and (2), when the number of rotations increases, the required oil amounts q i and q o increase, and in order to satisfy these, the supply oil pressure P s and the diameter clearance C It has the disadvantage that i and Co must be made larger and larger. The present invention solves the above problems and solves the problem of the supply hydraulic pressure P.
It is an object of the present invention to provide a floating bush bearing capable of supplying a required amount of oil even at a high rotation speed without increasing s and the diameter clearances C i and C o . According to a first aspect of the present invention, there is provided a floating bush device comprising a floating bush mounted between a shaft and a bearing. Bush in width direction of inner and outer peripheral surfaces
It has inner and outer circumferential oil grooves in the center, and
The floating block divided into two bearing surfaces by a circumferential oil groove;
One of the bearing surfaces on the outer peripheral surface of the
When the communicating outer peripheral first axial oil grooves are provided at equal intervals,
In both cases, the bearing surface of the other half width of the outer peripheral surface of the floating bush
At a position shifted by a half interval from the outer peripheral side first axial oil groove.
The second outer circumferential oil groove communicates with the outer circumferential oil groove.
And provided on two bearing surfaces by the circumferential oil groove on the inner peripheral side.
On one bearing surface of the divided inner peripheral surface of the floating bush,
An inner circumferential first axial oil groove communicating with the inner circumferential oil groove
At the same interval, the inner surface of the floating bush
The inner peripheral side first axial oil groove is formed on the bearing surface having the other one width.
A second axial oil groove on the inner circumference side is shifted to the inner circumference at a position shifted by a half interval.
The floating bush is provided so as to communicate with the side circumferential oil groove.
The first and second axial oil grooves and the inner periphery of the floating bush
The first and second axial oil grooves on the surface are provided in the same phase in the circumferential direction. The operation of the floating bush bearing of the present invention having the above-described structure will be described with reference to the embodiment shown in FIGS. The lubricating oil is supplied to the oil hole 4 and fills the circumferential oil grooves 5 and 6 provided at the center in the width direction of the floating bush through the oil hole 4. The lubricating oil supplied to the circumferential oil groove is further subjected to axial oil grooves 8a, 8b, 8c, 8d,
It is sent to 9a, 9b, 9c, 9d and automatically filled with lubricating oil. Therefore, there is no need to apply a high oil pressure as shown in the above-mentioned equation (3) or (4).
Even if the diameter clearance is small, the oil groove can be easily supplied over almost the entire width of the floating bush because the oil groove has a large depth. Also, by providing a phase difference in the axial oil groove provided on the bearing surface of the floating bush divided into two bearing surfaces, a surface receiving the load of the floating bush changing during one rotation (hereinafter referred to as load) When the oil groove in the axial direction comes within the surface), the dynamic pressure range due to the wedge action or the squeeze action is limited, and the fluid lubrication load capacity is reduced.
In the present invention, since the phases of the axial oil grooves 8a and 8c are shifted, even if one of the oil grooves 8a becomes a load surface, the generation of dynamic pressure is not hindered because there is no axial oil groove on one width surface. The same can be said for the case where the oil groove 8c becomes the load surface. That is, also in this case, since there is no axial oil groove on the other one width side, fluid lubrication is possible. As described above, since the axial oil grooves 8a to 8d are provided with their phases shifted from each other, even if the floating bush 3 rotates and the oil grooves enter the load surface, the other remaining oil grooves 8a to 8d remain. There is a fluid lubrication effect on one side, and seizure damage can be avoided. Further, by providing the axial oil grooves 8a to 8d on the outer peripheral surface of the floating bush 3 and the axial oil grooves 9a to 9d on the inner peripheral surface in the same phase in the front and rear circumferential directions, FIG. )
As shown in (1), since the dynamic pressure is generated at the same location on the inner and outer surfaces, there is no generation of a moment for tilting the floating bush 3 in the axial direction. Therefore, there is an effect that the floating bush 3 does not come into contact with one side and seizure damage hardly occurs. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a floating bush bearing according to a first embodiment of the present invention, FIG. 2 is a developed view of an outer peripheral surface of the floating bush in the embodiment, and FIG. 3 is a graph showing dynamic pressure distributions generated on inner and outer surfaces of the floating bush. (A) shows the case of the present embodiment, and (b) shows the case where the axial oil grooves are not located at the same position on the inner and outer surfaces. The first embodiment shown in FIGS. 1 and 2 is for a case in which a shaft rotates and a bearing is fixed. In the figures, 1 is a rotating shaft, 2 is a bearing fixed to a housing, and 3 is a rotating shaft. 1
A floating bush mounted between the bearing and the bearing 2, the bush being configured to rotate by friction torque with the rotation of the rotating shaft 1. Reference numeral 4 denotes an oil hole formed at the center of the bearing 2. At the center in the width direction of the outer peripheral surface and the inner peripheral surface of the floating bush 3, circumferential oil grooves 5, 6 are provided, and the oil grooves 5, 6 extend in the circumferential direction as shown in FIG. A plurality of communication holes 7 are formed at equal intervals to communicate with each other. On the outer peripheral surface of the floating bush 3, axial oil grooves 8a, 8b, 8c and 8d are provided, and are connected to the outer circumferential oil groove 5. Then, the outer peripheral side first axial oil groove 8a,
8b and the outer peripheral side second axial oil grooves 8c and 8d are not spaced half a distance apart.
It is provided at each of the above positions. Also, oil grooves 9a, 9b, 9c, 9d are provided in the inner peripheral surface of the floating bush 3 in the axial direction .
One axial oil grooves 9a, 9b and the inner peripheral second axial oil grooves 9c, 9
d are provided at positions shifted by a half interval, and are connected to the inner circumferential oil groove 6. Incidentally, 8c, 8d, 9c and 9d are not shown in FIG. FIG. 2 is a development view of the outer peripheral surface of the floating bush, in which the axial oil provided on the outer peripheral surface of one bearing surface of the floating bush divided into two bearing surfaces by circumferential oil grooves 5 and 6. The grooves 8a and 8b are provided on one side in a positional relationship different from each other by 180 °.
0a and 10b are provided. On the other hand, the axial oil grooves 8c and 8d provided on the outer peripheral surface of one bearing surface of the floating bush divided into two bearing surfaces by the circumferential oil grooves 5 and 6 are the same as the axial oil grooves 8a. ,
8b is provided in a positional relationship different by 180 ° , and chamfers 10c and 10d are provided at the ends of the oil grooves. The oil groove 8a and the oil groove 8c are 90 ° in the circumferential direction .
They are provided in different positional relationships. FIG. 2 is a development view of the inner peripheral surface of the floating bush 3.
Although the description is omitted because it is similar to the axial oil grooves 9a, 9b, 9c, 9d, the positional relationship corresponding to 8a, 8b, 8c, 8d is omitted.
Oil grooves are provided. For example, as shown in FIG. 1, the back side of the oil groove 8a is an oil groove 9a. The axial oil grooves are not limited to the positional relationship of 180 °, but may be 120 ° if they are equally spaced. In this case, the other corresponding side is shifted by 60 ° to 120 °. An axial oil groove may be provided for each. As described above, in this embodiment, the axial oil groove is provided in addition to the circumferential oil groove.
Instead of providing an axial oil groove over the entire width of the groove, four axial oil grooves each having a half width are provided on the inner peripheral surface and the outer peripheral surface. Then, the four axial oil grooves are arranged as follows. That is, two pieces are arranged at one width divided by the circumferential oil groove, and communicate with the circumferential oil groove. The two pieces each having a single width are 180 degrees in the circumferential direction .
° Provide at a distance . The two axial oil grooves of the remaining one width are provided at positions shifted by 90 ° from the oil grooves on the other side. The positional relationship between the axial oil grooves on the inner peripheral surface and the outer peripheral surface is the same in the circumferential direction. That is, the axial oil groove is also provided on the circumferential surface side corresponding to the axial oil groove position on the outer peripheral surface. Next, the operation of the present embodiment will be described. In this embodiment, a phase difference is provided in each of the axial oil grooves 8a to 8d. However, since the floating bush 3 rotates with the rotation of the rotary shaft 1, the surface (load surface) that receives the load of the floating bush is It changes during one revolution. When the oil groove in the axial direction comes within the load surface, the dynamic pressure range due to the wedge action or the squeeze action is limited, so that the fluid lubrication load capacity is reduced. For example, when the oil grooves 8a and 8c are on the same line and serve as a load surface, the generated dynamic pressure is small over the entire width of the floating bush, so that the load capacity is scarce and the seizure damage easily occurs. Become. On the other hand, in the floating bush bearing of this embodiment , since the oil groove 8a and the oil groove 8c are out of phase by 90 ° , even if the oil groove 8a becomes the load surface, Since there is no axial oil groove on one side, the generation of dynamic pressure is not hindered. The same can be said for the case where the oil groove 8c becomes the load surface. That is, also in this case, since there is no axial oil groove on the other one width side, fluid lubrication is possible. As described above, since the axial oil grooves 8a to 8d are shifted from each other by 90 °, even if the floating bush rotates and the oil grooves enter the load surface, the remaining one width side remains. It has a fluid lubrication function and can avoid seizure damage. Next, the operation of providing the oil grooves 8a to 8d on the outer peripheral surface and the oil grooves 9a to 9d on the inner peripheral surface at the same position on the front and back sides is explained.
The effect will be described. FIG. 3 shows a distribution of dynamic pressure generated on the outer peripheral surface and the inner peripheral surface of the floating bush. FIG. 3 (a) shows the case of the present invention, in which the dynamic pressure generating position is the same at the inner and outer surfaces, so that no moment is generated for tilting the floating bush in the axial direction. On the other hand, when the axial oil grooves are not located at the same position on the inner and outer surfaces, the dynamic pressure distribution is as shown in FIG.
For this reason, the floating bush is liable to bend, causing seizure damage. The following is an explanation of the present invention. The effect of the present invention is as follows. According to this, there is an effect that the floating bush can be prevented from coming into contact with one another, the fluid lubricating action can be kept good, and seizure damage can be avoided. Also, low-pressure lubrication becomes possible, and the cost of the equipment can be reduced. Further, it is not necessary to unnecessarily increase the diameter clearance, and the bearing clearance can be selected only from the viewpoint of appropriate wedge action and squeeze action.

【図面の簡単な説明】 【図1】本発明の一実施例に係る浮動ブッシュ軸受の断
面図である。 【図2】同実施例における浮動ブッシュの外周面の展開
図である。 【図3】浮動ブッシュ軸受の内面、外面に発生する動圧
分布と片あたりの説明図で、(a)は本実施例の場合、
(b)は軸方向油溝が内外面で同一個所にない場合を示
す。 【図4】従来の浮動ブッシュ軸受の1例を示す断面図で
ある。 【符号の説明】 1 軸 2 軸受 3 浮動ブッシュ 4 油穴5 外周側円周油溝 6 内周側円周油溝 7 連通穴8a、8b 外周側第1軸方向油溝 8c、8d 外周側第2軸方向油溝 9a、9b 内周側第1軸方向油溝 9c、9d 内周側第2軸方向油溝 10a〜10d チャンファ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a floating bush bearing according to one embodiment of the present invention. FIG. 2 is a development view of the outer peripheral surface of the floating bush in the embodiment . FIG. 3 is an explanatory diagram of a distribution of dynamic pressure generated on an inner surface and an outer surface of a floating bush bearing and a part thereof; FIG.
(B) shows a case where the axial oil grooves are not at the same location on the inner and outer surfaces. FIG. 4 is a sectional view showing an example of a conventional floating bush bearing.
is there. [Description of Signs] 1 shaft 2 bearing 3 floating bush 4 oil hole 5 outer circumferential oil groove 6 inner circumferential oil groove 7 communication holes 8a, 8b outer first axial oil groove 8c, 8d outer first Biaxial oil grooves 9a, 9b Inner peripheral first axial oil grooves 9c, 9d Inner peripheral second axial oil grooves 10a to 10d

Claims (1)

(57)【特許請求の範囲】 【請求項1】 軸と、軸受との間に浮動ブッシュが装着
された浮動ブッシュ軸受において、前記浮動ブッシュが内周面及び外周面の幅方向中央に内
周側及び外周側の円周油溝を有し、 外周側の前記円周油溝により2つの軸受面に分割された
前記浮動ブッシュ外周面の一つの軸受面に、前記外周側
円周油溝と連通した外周側第1軸方向油溝を等間隔位置
に設けるとともに、 前記浮動ブッシュ外周面の他の片幅の軸受面に、前記外
周側第1軸方向油溝とは半間隔ずらした位置に外周側第
2軸方向油溝を前記外周側円周油溝に連通させて設け、 内周側の前記円周油溝により2つの軸受面に分割された
前記浮動ブッシュ内周面の一つの軸受面に、前記内周側
円周油溝と連通した内周側第1軸方向油溝を等間隔位置
に設けるとともに、 前記浮動ブッシュ内周面の他の片幅の軸受面に、前記内
周側第1軸方向油溝とは半間隔ずらした位置に内周側第
2軸方向油溝を前記内周側円周油溝に連通させて設け、 前記浮動ブッシュ外周面の前記第1、第2の軸方向油溝
と前記浮動ブッシュ内周面の前記第1、第2の軸方向油
溝は 円周方向の同一位相に設けたことを特徴とする浮動
ブッシュ軸受。
(57) [Claims 1] A floating bush is mounted between a shaft and a bearing.
In the floating bush bearing described above, the floating bush is located at the center in the width direction of the inner and outer peripheral surfaces.
It has a circumferential oil groove on the circumferential side and the outer circumferential side, and is divided into two bearing surfaces by the circumferential oil groove on the outer circumferential side
On one bearing surface of the floating bush outer peripheral surface, the outer peripheral side
The first axial oil groove on the outer peripheral side communicating with the circumferential oil groove is positioned at equal intervals
At the other end of the floating bush outer peripheral surface.
The outer circumferential side first groove is located at a position shifted by half a space from the circumferential side first axial oil groove.
A biaxial oil groove is provided so as to communicate with the outer circumferential oil groove, and is divided into two bearing surfaces by the inner oil groove on the inner circumferential side.
On one bearing surface of the inner peripheral surface of the floating bush, the inner peripheral side
The first axial oil groove on the inner peripheral side communicating with the circumferential oil groove is positioned at equal intervals
At the other end of the floating bush inner peripheral surface.
The inner peripheral side oil groove is located at a position shifted by a half interval from the peripheral side first axial oil groove.
A biaxial oil groove is provided in communication with the inner circumferential oil groove, and the first and second axial oil grooves on the outer peripheral surface of the floating bush are provided.
And the first and second axial oils on the inner peripheral surface of the floating bush
A floating bush bearing in which the grooves are provided in the same phase in the circumferential direction.
JP5036595A 1995-02-16 1995-02-16 Floating bush bearing Expired - Fee Related JP3392566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5036595A JP3392566B2 (en) 1995-02-16 1995-02-16 Floating bush bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5036595A JP3392566B2 (en) 1995-02-16 1995-02-16 Floating bush bearing

Publications (2)

Publication Number Publication Date
JPH08219148A JPH08219148A (en) 1996-08-27
JP3392566B2 true JP3392566B2 (en) 2003-03-31

Family

ID=12856871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5036595A Expired - Fee Related JP3392566B2 (en) 1995-02-16 1995-02-16 Floating bush bearing

Country Status (1)

Country Link
JP (1) JP3392566B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321527A1 (en) * 2014-02-27 2018-05-16 Mitsubishi Heavy Industries, Ltd. Floating bush bearing device, and turbocharger provided with said bearing device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10165027C5 (en) 2000-10-27 2019-10-02 Nsk Ltd. Rolling bearing and spindle device for machine tool
JP2002323048A (en) * 2000-10-27 2002-11-08 Nsk Ltd Bearing device and main spindle of machine tool
DE102011077137A1 (en) * 2011-06-07 2012-12-13 Bosch Mahle Turbo Systems Gmbh & Co. Kg Slide bearing assembly for turbocharger, has axial grooves which are evenly distributed with respect to bearing tunnel so as to inhibit or eliminate circulation of lubricant in the circumferential direction of the bearing tunnel
DE102011121562A1 (en) * 2011-12-20 2013-06-20 Robert Bosch Gmbh bearings
US20150252850A1 (en) * 2014-03-10 2015-09-10 Universal City Studios Llc System and method for lubricating rolling bearing elements
US9422975B2 (en) 2014-03-10 2016-08-23 Universal City Studios Llc System and method for lubricating plain bearings
CN105508443A (en) * 2014-10-14 2016-04-20 摩尔动力(北京)技术股份有限公司 Large-gap bearing system
EP3258123B1 (en) 2015-02-10 2018-09-05 Mitsubishi Heavy Industries, Ltd. Floating bush bearing device and supercharger provided with same
WO2018029838A1 (en) * 2016-08-10 2018-02-15 三菱日立パワーシステムズ株式会社 Journal bearing and rotary machine
TWI616601B (en) * 2017-05-31 2018-03-01 峰安車業股份有限公司 Floating bearing
CN108692052A (en) * 2018-06-19 2018-10-23 湖南机油泵股份有限公司 It is avoided that the pressure limiting valve plunger and engine oil pump pressure-limiting valve of clamping stagnation
JP7269706B2 (en) * 2018-07-30 2023-05-09 三菱重工マリンマシナリ株式会社 Bearing device and turbocharger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321527A1 (en) * 2014-02-27 2018-05-16 Mitsubishi Heavy Industries, Ltd. Floating bush bearing device, and turbocharger provided with said bearing device
US10330152B2 (en) 2014-02-27 2019-06-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Floating bush bearing device and turbocharger provided with the bearing device

Also Published As

Publication number Publication date
JPH08219148A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
JP3392566B2 (en) Floating bush bearing
US4558960A (en) Radial friction bearing assembly
JP4874491B2 (en) bearing
JP2516967B2 (en) Bearing device
EP0723633B1 (en) Journal bearing
US6634791B2 (en) Shaft bearing member
US7553086B2 (en) Hydrodynamic journal bearing
US7153030B2 (en) Rolling bearing system
US5518319A (en) Non-linear hydrodynamic bearing
JP2000027850A (en) Bearing device
CN113056618A (en) Foil air sliding bearing
US6241392B1 (en) Hybrid bearing
JPS6113018A (en) Tilt segment type radial bearing
US4971459A (en) Journal bearing with high stiffness
JPH0727127A (en) Crank lubricating device for engine
US5199797A (en) Oil ring and oil-ring guide system for sleeve bearings
CN213628520U (en) Lubrication improved sliding bearing
JPH0452527Y2 (en)
EP3904677B1 (en) Fluid film bearing and wind turbine
JPH0781584B2 (en) Bearing device
JPH08296637A (en) Bearing of rotating machine
JPH102227A (en) Floating bearing structure for supercharger
JPH0419232Y2 (en)
JP4124510B2 (en) Grooved plain bearing
US3510179A (en) Journal bearing system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021224

LAPS Cancellation because of no payment of annual fees