JP3391104B2 - Automatic voltage regulator - Google Patents

Automatic voltage regulator

Info

Publication number
JP3391104B2
JP3391104B2 JP20214294A JP20214294A JP3391104B2 JP 3391104 B2 JP3391104 B2 JP 3391104B2 JP 20214294 A JP20214294 A JP 20214294A JP 20214294 A JP20214294 A JP 20214294A JP 3391104 B2 JP3391104 B2 JP 3391104B2
Authority
JP
Japan
Prior art keywords
voltage
transformer
power supply
polarity
switching means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20214294A
Other languages
Japanese (ja)
Other versions
JPH0864437A (en
Inventor
雅之 今井
二郎 藤井
治 蓑輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20214294A priority Critical patent/JP3391104B2/en
Publication of JPH0864437A publication Critical patent/JPH0864437A/en
Application granted granted Critical
Publication of JP3391104B2 publication Critical patent/JP3391104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電源電圧を調整する
自動電圧調整器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic voltage regulator for adjusting a power supply voltage.

【0002】[0002]

【従来の技術】従来、負荷端の電圧を調整するのに誘導
形電圧調整器を自動制御する自動電圧調整器があった。
図5は、自動電圧調整器の全体の系統図を示すもので、
図5において、U、Vは入力端子、u2、v2は出力端
子、V1は入力電圧、V2は出力電圧、50は誘導形電圧
調整器で、この誘導形電圧調整器50は鉄心にスロット
を設けた回転子に一次巻線51aを巻いて、同様な固定
子に二次巻線51bを巻いて、両巻線間の結合関係を変
化させ、出力電圧を変化させている。誘導形電圧調整器
50の出力電圧V2はV2=V1+V21cosθで示され
る。ここに、V21cosθは電圧補償分の固定子巻線間
に発生する電圧、θは回転子の回転角度である。従っ
て、回転角度θを0〜πラジアンまで変化させることに
より、出力電圧V2は最大値V1+V21から最小値V1−
V21まで変化できるように構成されている。52は出力
電圧V2を検出する電圧検出部、53は制御部で、この
制御部53は電圧検出部52によって検出した電圧値と
予め定めた基準電圧と比較して偏差を演算し、更に、モ
ータの回転子と機械的に結合された回転角度検出器56
の出力値と比較して制御指令を出力するものである。5
4は制御部53によって出力された制御指令に基づきモ
ータ55を駆動制御するモータ制御部である。
2. Description of the Related Art Conventionally, there has been an automatic voltage regulator that automatically controls an inductive voltage regulator to regulate the voltage at the load end.
Fig. 5 shows the overall system diagram of the automatic voltage regulator.
In FIG. 5, U and V are input terminals, u2 and v2 are output terminals, V1 is an input voltage, V2 is an output voltage, 50 is an induction type voltage regulator, and this induction type voltage regulator 50 has a slot in an iron core. The primary winding 51a is wound around the rotor, and the secondary winding 51b is wound around the same stator to change the coupling relationship between both windings to change the output voltage. The output voltage V2 of the induction type voltage regulator 50 is represented by V2 = V1 + V21 cos θ. Here, V21cos θ is the voltage generated between the stator windings for the voltage compensation, and θ is the rotation angle of the rotor. Therefore, the output voltage V2 is changed from the maximum value V1 + V21 to the minimum value V1− by changing the rotation angle θ from 0 to π radians.
It is configured so that it can be changed up to V21. Reference numeral 52 is a voltage detection unit for detecting the output voltage V2, 53 is a control unit, and the control unit 53 compares the voltage value detected by the voltage detection unit 52 with a predetermined reference voltage to calculate a deviation and further Angle detector 56 mechanically coupled to the rotor of
The control command is output in comparison with the output value of. 5
Reference numeral 4 denotes a motor control unit that drives and controls the motor 55 based on the control command output by the control unit 53.

【0003】上記のように構成された自動電圧調整器の
動作を図5を参照して説明する。今、入力電圧V1がU
−V端子間に印加されると、出力電圧V2を発生し、電
圧検出部52は出力電圧V2を検出し、制御部53によ
り予め定められた基準電圧と比較する。更に、制御部5
3では、基準電圧と出力電圧V2との偏差を求め、この
偏差に応じて回転角度θを演算する。該演算結果と回転
角度検出器56の出力と比較し、モータ制御部54にモ
ータ回転角度に応じた指令を与えてモータ55を駆動さ
せる。更に、回転角度検出器56によって回転角度θを
検出して制御部53に帰還制御される。
The operation of the automatic voltage regulator configured as described above will be described with reference to FIG. Now the input voltage V1 is U
When it is applied between the −V terminals, an output voltage V2 is generated, the voltage detection unit 52 detects the output voltage V2, and compares it with a reference voltage predetermined by the control unit 53. Furthermore, the control unit 5
At 3, the deviation between the reference voltage and the output voltage V2 is obtained, and the rotation angle θ is calculated according to this deviation. The calculation result is compared with the output of the rotation angle detector 56, and a command according to the motor rotation angle is given to the motor control unit 54 to drive the motor 55. Further, the rotation angle detector 56 detects the rotation angle θ and feedback control is performed to the control unit 53.

【0004】[0004]

【発明が解決しようとする課題】以上、説明したように
自動電圧調整器50の出力電圧V2の調整は、モータ5
5により回転子の回転角度θを0〜πラジアンまで変化
させて所定の電圧に制御していた。しかし、出力電圧V
2を制御するのにモータ55等の回転機構を要するため
複雑な構造となっており、高価であった。また、従来の
自動電圧調整器の一種として特開昭60−206013
号公報に開示された半導体式タップ切換装置もある。し
かし、タップ切換時の橋絡渡り電流を小さくするために
サイリスタの制御角を大きくしなければならない等の制
限があるためタップ切換時の制御が複雑であった。
As described above, the output voltage V2 of the automatic voltage regulator 50 is adjusted by the motor 5 as described above.
5, the rotation angle θ of the rotor is changed from 0 to π radians to control it to a predetermined voltage. However, the output voltage V
Since a rotating mechanism such as a motor 55 is required to control the motor 2, the structure is complicated and expensive. Further, as a kind of conventional automatic voltage regulator, Japanese Patent Laid-Open No. 206013/1985.
There is also a semiconductor type tap changer disclosed in the publication. However, the control at the time of tap switching is complicated because there are restrictions such as that the control angle of the thyristor must be increased in order to reduce the bridge crossover current at the time of tap switching.

【0005】この発明の目的は、回転機構を必要としな
い簡易な自動電圧調整器を提供するものである。
An object of the present invention is to provide a simple automatic voltage regulator which does not require a rotating mechanism.

【0006】[0006]

【課題を解決するための手段】第1の発明に係る自動電
圧調整器は、電源電圧の極性を切替可能にする極性切替
手段と、上記極性切替手段を介して上記電源に一次側巻
線が接続されるとともに、二次巻線の一端を上記電源の
一端に接続し、上記二次巻線を負荷電圧の一部として利
用する変圧器と、上記電源又は上記負荷の電圧を検出す
る電圧検出手段と、上記電圧検出手段によって検出した
電圧値を予め定めた基準電圧値と比較する比較手段とを
備え、上記電圧検出手段の検出電圧が予め定めた第1の
基準電圧値よりも高い場合、上記変圧器の二次巻線の電
圧が上記電源電圧に対して減算されるように上記極性切
替手段によって上記変圧器の一次巻線に電圧を印加さ
せ、上記電圧検出手段の検出電圧が予め定めた第2の基
準電圧値よりも低い場合、上記変圧器の二次電圧が上記
電源電圧に対して加算させるように上記極性切替手段に
よって上記変圧器の一次巻線に電圧を印加させる制御手
段とを備えたことを特徴とするものである。
SUMMARY OF THE INVENTION An automatic voltage regulator according to a first aspect of the present invention includes a polarity switching means for switching the polarity of a power supply voltage, and a primary side winding for the power source via the polarity switching means. A transformer that is connected and that connects one end of the secondary winding to one end of the power supply and uses the secondary winding as part of the load voltage, and voltage detection that detects the voltage of the power supply or the load. Means and a comparing means for comparing the voltage value detected by the voltage detecting means with a predetermined reference voltage value, and when the detected voltage of the voltage detecting means is higher than the predetermined first reference voltage value, A voltage is applied to the primary winding of the transformer by the polarity switching means so that the voltage of the secondary winding of the transformer is subtracted from the power supply voltage, and the detection voltage of the voltage detecting means is predetermined. Lower than the second reference voltage value In this case, the control means for applying a voltage to the primary winding of the transformer by the polarity switching means so that the secondary voltage of the transformer is added to the power supply voltage. is there.

【0007】第2の発明に係る自動電圧調整器は、電源
電圧の極性を切替可能にする極性切替手段と、上記極性
切替手段を介して上記電源に一次側巻線が接続されると
ともに、二次巻線の一端を上記電源の一端に接続し、上
記二次巻線を負荷電圧の一部として利用する変圧器と、
上記電源又は上記負荷の電圧を検出する電圧検出手段
と、上記電圧検出手段によって検出した電圧値を予め定
めた基準電圧値と比較する比較手段とを備え、上記電圧
検出手段の検出電圧が予め定めた基準電圧値よりも高い
場合、上記変圧器の二次巻線の電圧が上記電源電圧に対
して減算されるように上記極性切替手段によって上記変
圧器の一次巻線に電圧を印加させ、上記電圧検出手段の
検出電圧が予め定めた基準電圧値よりも低い場合、上記
変圧器の二次電圧が上記電源電圧に対して加算させるよ
うに上記極性切替手段によって上記変圧器の一次巻線に
電圧を印加させる制御手段とを備えたことを特徴とする
ものである。
In the automatic voltage regulator according to the second aspect of the present invention, the polarity switching means for switching the polarity of the power supply voltage, the primary side winding connected to the power source via the polarity switching means, and A transformer in which one end of a secondary winding is connected to one end of the power source and the secondary winding is used as a part of load voltage,
The power supply or the load is provided with voltage detection means for detecting the voltage, and the comparison means for comparing the voltage value detected by the voltage detection means with a predetermined reference voltage value, and the detection voltage of the voltage detection means is predetermined. When the voltage is higher than the reference voltage value, the voltage is applied to the primary winding of the transformer by the polarity switching means so that the voltage of the secondary winding of the transformer is subtracted from the power supply voltage. When the detected voltage of the voltage detection means is lower than a predetermined reference voltage value, the polarity switching means applies a voltage to the primary winding of the transformer so that the secondary voltage of the transformer is added to the power supply voltage. And a control means for applying a voltage.

【0008】第3の発明に係る自動電圧調整器は、電圧
検出手段の検出電圧が予め定めた範囲内の場合、変圧器
の一次側巻線間を開放から閉成させる開閉手段を備えた
ことを特徴とするものである。
The automatic voltage regulator according to the third aspect of the present invention comprises switching means for opening and closing the primary winding of the transformer when the voltage detected by the voltage detecting means is within a predetermined range. It is characterized by.

【0009】第4の発明に係る自動電圧調整器は、変圧
器が二次巻線を二つ備え、電源の一端に上記第1の二次
巻線の一端が接続され、電源の他端に上記第2の二次巻
線の一端が接続され、上記第1の二次巻線及び上記第2
の二次巻線を負荷の電圧の一部として利用することを特
徴とするものである。
In the automatic voltage regulator according to the fourth aspect of the invention, the transformer has two secondary windings, one end of the first secondary winding is connected to one end of the power supply, and the other end of the power supply is connected to the other end. One end of the second secondary winding is connected to the first secondary winding and the second secondary winding.
The secondary winding is used as a part of the load voltage.

【0010】第5の発明に係る自動電圧調整器は、極性
切替手段が電源電圧の極性を切替可能にすると共に、上
記電源の電圧を位相制御することを特徴とするものであ
る。
An automatic voltage regulator according to a fifth aspect of the invention is characterized in that the polarity switching means can switch the polarity of the power source voltage and the phase of the voltage of the power source is controlled.

【0011】第6の発明に係る自動電圧調整器は、極性
切替手段が電源電圧の極性を切替可能にすると共に、上
記電源の電圧を可変制御するインバータからなること特
徴とするものである。
An automatic voltage regulator according to a sixth aspect of the present invention is characterized in that the polarity switching means is capable of switching the polarity of the power supply voltage and comprises an inverter that variably controls the voltage of the power supply.

【0012】第7の発明に係る自動電圧調整器は、順変
換部と逆変換部とを含むインバータからなり、順変換部
は平滑コンデンサを有しない全波ブリッジからなること
を特徴とするものである。
An automatic voltage regulator according to a seventh aspect of the present invention comprises an inverter including a forward conversion unit and an inverse conversion unit, and the forward conversion unit is a full wave bridge having no smoothing capacitor. is there.

【0013】[0013]

【作用】第1の発明に係る自動電圧調整器によれば、極
性切替手段は電源の電圧位相を切替可能にし、電圧検出
手段は電源又は負荷の電圧を検出し、比較手段は上記検
出した電圧値を予め定めた基準電圧値と比較し、制御手
段は上記検出電圧が予め定めた第1の基準電圧値よりも
高い場合、変圧器の二次巻線の電圧が電源電圧に対して
減算されるように極性切替によって上記変圧器の一次巻
線に電圧を印加させ、上記検出電圧が予め定めた第2の
基準電圧値よりも低い場合、上記変圧器の二次電圧が上
記電源電圧に対して加算させるように極性切替によって
上記変圧器の一次巻線に電圧を印加させるものである。
According to the automatic voltage regulator of the first invention, the polarity switching means can switch the voltage phase of the power source, the voltage detecting means detects the voltage of the power source or the load, and the comparing means detects the detected voltage. The value is compared with a predetermined reference voltage value, and the control means subtracts the voltage of the secondary winding of the transformer from the power supply voltage when the detected voltage is higher than the predetermined first reference voltage value. When a voltage is applied to the primary winding of the transformer by polarity switching so that the detected voltage is lower than a predetermined second reference voltage value, the secondary voltage of the transformer is different from the power supply voltage. The voltage is applied to the primary winding of the transformer by polarity switching so that the voltage is added.

【0014】第2の発明に係る自動電圧調整器によれ
ば、極性切替手段は電源の電圧位相を切替可能にし、電
圧検出手段は電源又は負荷の電圧を検出し、比較手段は
上記検出した電圧値を予め定めた基準電圧値と比較し、
制御手段は上記検出電圧が予め定めた基準電圧値よりも
高い場合、変圧器の二次巻線の電圧が電源電圧に対して
減算されるように極性切替によって上記変圧器の一次巻
線に電圧を印加させ、上記検出電圧が予め定めた基準電
圧値よりも低い場合、上記変圧器の二次電圧が上記電源
電圧に対して加算させるように極性切替によって上記変
圧器の一次巻線に電圧を印加させるものである。
According to the automatic voltage regulator of the second invention, the polarity switching means makes it possible to switch the voltage phase of the power source, the voltage detecting means detects the voltage of the power source or the load, and the comparing means detects the detected voltage. Compare the value with a predetermined reference voltage value,
When the detected voltage is higher than a predetermined reference voltage value, the control means changes the polarity of the primary winding of the transformer so that the voltage of the secondary winding of the transformer is subtracted from the power supply voltage. When the detected voltage is lower than a predetermined reference voltage value, the voltage is applied to the primary winding of the transformer by polarity switching so that the secondary voltage of the transformer is added to the power supply voltage. It is applied.

【0015】第3の発明に係る自動電圧調整器によれ
ば、開閉手段は電源電圧が予め定めた範囲内の場合、変
圧器の一次巻線間を閉成するものである。
According to the automatic voltage regulator of the third invention, the switching means closes the primary winding of the transformer when the power supply voltage is within a predetermined range.

【0016】第4の発明に係る自動電圧調整器によれ
ば、変圧器の第1の二次巻線及び第2の二次巻線をそれ
ぞれの負荷の電圧の一部として利用して各負荷を独立し
て電圧補償する。
According to the automatic voltage regulator of the fourth invention, each load is utilized by using the first secondary winding and the second secondary winding of the transformer as a part of the voltage of each load. Voltage compensation independently.

【0017】第5の発明に係る自動電圧調整器によれ
ば、電源の電圧位相を切替可能にするとともに、上記電
源の電圧を位相制御して連続的に変圧器の一次巻線に印
加される電圧を調整する。
According to the automatic voltage regulator of the fifth aspect of the present invention, the voltage phase of the power source can be switched, and the voltage of the power source is phase-controlled and continuously applied to the primary winding of the transformer. Adjust the voltage.

【0018】第6の発明に係る自動電圧調整器によれ
ば、インバータによって電源電圧の極性を切替可能にす
ると共に、電源電圧を可変制御する。
According to the automatic voltage regulator of the sixth invention, the polarity of the power supply voltage can be switched by the inverter and the power supply voltage is variably controlled.

【0019】第7の発明に係る自動電圧調整器によれ
ば、インバータの順変換部は脈流電圧を発生し、インバ
ータの逆変換部は該脈流電圧を利用して交流電圧を発生
する。
According to the automatic voltage regulator of the seventh invention, the forward converter of the inverter generates a pulsating voltage and the inverse converter of the inverter uses the pulsating voltage to generate an AC voltage.

【0020】[0020]

【実施例】【Example】

実施例1.図1はこの発明の自動電圧調整器を示す全体
結線図、図1において、1は電源電圧を発生する主変圧
器で、この主変圧器1は一次端子U、Vと二次端子u、
vとを備えている。1a、1b、1cは電線で、電線1
a、1bは端子u−u1間、端子v−v1間をそれぞれ接
続し、電線1cは主変圧器1の二次側巻線の中央から端
子Nに接続されている。2は補償変圧器で、補償変圧器
2の二つの二次側巻線はそれぞれ端子u1−u2間、v1
−v2間に接続されている。補償変圧器2の極性は主変
圧器1の出力電圧すなわち電源電圧と同一位相の電圧を
印加すると二次側にも同一位相の電圧が発生する極性と
なっており、補償変圧器2の二次側定格電圧はeVであ
る。3a〜3dは位相切替手段で、位相切替手段3a〜
3dは指令信号に基づき電気的にオン、オフする双方向
制御整流素子からなり、双方向制御整流素子3a、3c
と双方向制御整流素子3b、3dがそれぞれ1組づつ直
列に接続されている。更に、双方向制御整流素子3a、
3bの一端が端子u1に接続され、双方向制御整流素子
3c、3dの一端が端子v1に接続されている。
Example 1. FIG. 1 is an overall connection diagram showing an automatic voltage regulator of the present invention. In FIG. 1, reference numeral 1 is a main transformer that generates a power supply voltage. The main transformer 1 has primary terminals U and V and a secondary terminal u.
v and. Wires 1a, 1b, and 1c are wires 1
a and 1b connect between terminals u and u1 and between terminals v and v1, respectively, and the electric wire 1c is connected to the terminal N from the center of the secondary winding of the main transformer 1. 2 is a compensation transformer, and the two secondary windings of the compensation transformer 2 are between terminals u1 and u2, and v1
It is connected between -v2. The polarity of the compensating transformer 2 is such that when the output voltage of the main transformer 1, that is, the voltage having the same phase as the power supply voltage is applied, the voltage having the same phase is generated on the secondary side as well. The side rated voltage is eV. 3a to 3d are phase switching means, and the phase switching means 3a to
Reference numeral 3d is a bidirectional control rectifying element that is turned on and off electrically according to a command signal.
And the bidirectional control rectifying elements 3b and 3d are connected in series one by one. Further, the bidirectional control rectifying element 3a,
One end of 3b is connected to the terminal u1, and one ends of the bidirectional control rectifiers 3c and 3d are connected to the terminal v1.

【0021】直列にされた1組の双方向制御整流素子3
a、3cと双方向制御整流素子3b、3dとのそれぞれ
の中央点から補償変圧器2の一次巻線の一端と他端に接
続している。従って、双方向制御整流素子3a、3dが
オンすることにより補償変圧器2の一次巻線に主変圧器
1の出力電圧と同一の極性の電圧が印加される。なお、
双方向制御整流素子3b、3cはオフしている。又、双
方向制御整流素子3b、3cがオンすることにより、補
償変圧器2の一次巻線に主変圧器1の出力電圧電源と位
相が180゜異なる電圧が印加される。なお、双方向制
御整流素子3a、3dはオフしている。3eは開閉手段
で、この開閉手段3eは指令信号に基づき電気的にオ
ン、オフする双方向制御整流素子からなり、双方向制御
整流素子3eの両端が補償変圧器2の一次巻線間に接続
されている。4はオン・オフ制御部で、このオン・オフ
制御部4は端子u1−v1間に接続され、該端子間の電圧
を検出して双方向制御整流素子3a〜3eをオン、オフ
制御するものである。なお、図示していない第1の負荷
は、端子u2−v2間に接続され、又、図示していない第
2の負荷、第3の負荷は端子u2−N間、端子v2−N間に
それぞれ接続されている。従って、第2の負荷、第3の
負荷には第1の負荷に印加される電圧のほぼ1/2が印
加される。
A set of bidirectional controlled rectifying elements 3 in series
a and 3c and bidirectional control rectifiers 3b and 3d are connected to one end and the other end of the primary winding of the compensating transformer 2 from the respective center points. Therefore, when the bidirectional control rectifying elements 3a and 3d are turned on, a voltage having the same polarity as the output voltage of the main transformer 1 is applied to the primary winding of the compensation transformer 2. In addition,
The bidirectional control rectifying elements 3b and 3c are off. When the bidirectional control rectifying elements 3b and 3c are turned on, a voltage having a phase difference of 180 ° from the output voltage power supply of the main transformer 1 is applied to the primary winding of the compensation transformer 2. The bidirectional control rectifying elements 3a and 3d are off. Reference numeral 3e is an opening / closing means, and this opening / closing means 3e is composed of a bidirectional control rectifying element that is turned on and off electrically based on a command signal, and both ends of the bidirectional control rectifying element 3e are connected between the primary windings of the compensation transformer 2. Has been done. An on / off control unit 4 is connected between the terminals u1 and v1 and detects the voltage between the terminals to control the bidirectional control rectifying elements 3a to 3e on and off. Is. A first load (not shown) is connected between terminals u2 and v2, and a second load and a third load (not shown) are connected between terminals u2 and N and between terminals v2 and N, respectively. It is connected. Therefore, about half of the voltage applied to the first load is applied to the second load and the third load.

【0022】次に、オン・オフ制御部の構成を図2によ
って説明する。図2において、11は絶縁用の変圧器
で、この変圧器11は一次巻線が端子u1、v1間に接続
され、二次巻線が全波整流回路12の入力に接続されて
いる。全波整流回路12の出力にコンデンサ13が接続
されるとともに、直列に接続された抵抗14と抵抗15
のそれぞれの一端に接続され、抵抗15の他端が接地さ
れている。従って、端子u1−v1間の電圧を変成し、抵
抗15の両端に検出電圧Vpが生じる。抵抗14と抵抗
15の直列接続の中央部から抵抗16a、16bを介し
てそれぞれコンパレータ17a、17bの入力の一方に
接続されている。又、抵抗18aと抵抗19aは直列に
接続されるとともに、該接続部がコンパレータ17aの
入力の他方に接続されている。抵抗19aは一端が接地
され、抵抗18aの一端がプラス電源に接続されてい
る。従って、抵抗19aの両端には基準電圧Vr1を得て
いる。該基準電圧Vr1は線路端子u1−v1間の電圧が上
昇した場合、双方向制御整流素子3b、3cをオン動作
させるための基準となる第1の基準電圧Vr1である。抵
抗18bと抵抗19bは直列に接続されるとともに、該
接続部がコンパレータ17bの入力の他方に接続されて
いる。抵抗19bは一端が接地され、抵抗18bの一端
がプラス電源に接続されている。従って、抵抗19bの
両端に基準電圧Vr2を得ている。該基準電圧Vr2は端子
u1−v1間の電圧が下降した場合、双方向制御整流素子
3a、3dをオン動作させるための基準となる第2の基
準電圧Vr2である。ここで、第1の基準電圧Vr1と第2
の基準電圧Vr2との間にはVr1>Vr2の関係がある。
Next, the structure of the on / off controller will be described with reference to FIG. In FIG. 2, reference numeral 11 is a transformer for insulation. The transformer 11 has a primary winding connected between terminals u1 and v1, and a secondary winding connected to the input of the full-wave rectification circuit 12. A capacitor 13 is connected to the output of the full-wave rectifier circuit 12, and a resistor 14 and a resistor 15 are connected in series.
Of the resistor 15 and the other end of the resistor 15 is grounded. Therefore, the voltage between the terminals u1 and v1 is transformed, and the detection voltage Vp is generated across the resistor 15. The resistor 14 and the resistor 15 are connected in series to the one of the inputs of the comparators 17a and 17b through the resistors 16a and 16b, respectively. The resistor 18a and the resistor 19a are connected in series, and the connecting portion is connected to the other input of the comparator 17a. One end of the resistor 19a is grounded, and one end of the resistor 18a is connected to a positive power source. Therefore, the reference voltage Vr1 is obtained across the resistor 19a. The reference voltage Vr1 is the first reference voltage Vr1 that serves as a reference for turning on the bidirectionally controlled rectifying elements 3b and 3c when the voltage between the line terminals u1 and v1 rises. The resistor 18b and the resistor 19b are connected in series, and the connection portion is connected to the other input of the comparator 17b. One end of the resistor 19b is grounded, and one end of the resistor 18b is connected to the positive power source. Therefore, the reference voltage Vr2 is obtained across the resistor 19b. The reference voltage Vr2 is a second reference voltage Vr2 that serves as a reference for turning on the bidirectionally controlled rectifying elements 3a and 3d when the voltage between the terminals u1 and v1 drops. Here, the first reference voltage Vr1 and the second reference voltage Vr1
There is a relationship of Vr1> Vr2 with the reference voltage Vr2.

【0023】コンパレータ17aの出力は抵抗25aを
介してフォトカプラ31bの入力に供給される。フォト
カプラ31bとフォトカプラ31cの入力側は直列接続
され、フォトカプラ31cの入力の一端は接地され、フ
ォトカプラ31b、31cの出力はそれぞれ双方向制御
整流素子3b、3cを内臓した制御整流ユニット33
b、33cの入力に接続されている。コンパレータ17
bの出力はノットゲート22bと抵抗25bを介してト
ランジスタ28のベースに供給される。又、トランジス
タ28のコレクタはフォトカプラ31dの入力の一端に
接続され、フォトカプラ31a、31dの入力側が直列
接続されて抵抗29を介し、プラス電源に接続されてい
る。フォトカプラ31a、31dの出力はそれぞれ双方
向制御整流素子3a、3dを内臓した制御整流ユニット
33a、33dの入力に接続されている。更に、コンパ
レータ17bの出力は論理和を求めるアンドゲート26
の入力の一方に供給され、コンパレータ17aの出力は
ノットゲート22aを介してアンドゲート26の入力の
他方に供給される。アンドゲート26の出力は抵抗27
を介してフォトカプラ31eの入力に供給される。又、
フォトカプラ31eの入力の一端は接地され、フォトカ
プラ31eの出力は双方向制御整流素子3eを内臓した
制御整流ユニット33eの入力に接続されている。
The output of the comparator 17a is supplied to the input of the photocoupler 31b via the resistor 25a. The input sides of the photocoupler 31b and the photocoupler 31c are connected in series, one end of the input of the photocoupler 31c is grounded, and the outputs of the photocouplers 31b and 31c are the control rectification unit 33 including the bidirectional control rectification elements 3b and 3c, respectively.
It is connected to the inputs of b and 33c. Comparator 17
The output of b is supplied to the base of the transistor 28 via the knot gate 22b and the resistor 25b. The collector of the transistor 28 is connected to one end of the input of the photocoupler 31d, and the input sides of the photocouplers 31a and 31d are connected in series and connected to the positive power source via the resistor 29. The outputs of the photocouplers 31a and 31d are connected to the inputs of control rectification units 33a and 33d, which incorporate bidirectional control rectification elements 3a and 3d, respectively. Further, the output of the comparator 17b is an AND gate 26 for obtaining a logical sum.
Of the AND gate 26a and the output of the comparator 17a is supplied to the other input of the AND gate 26 via the NOT gate 22a. The output of the AND gate 26 is a resistor 27.
Is supplied to the input of the photocoupler 31e via. or,
One end of the input of the photocoupler 31e is grounded, and the output of the photocoupler 31e is connected to the input of the control rectification unit 33e including the bidirectional control rectification element 3e.

【0024】なお、4aは端子u1−v1間の電圧を検出
する電圧検出回路であり、以下の3種類の信号を各出力
から供給する。即ち、Vr1<VPの場合はコンパレータ
17aの出力、Vr2>VPの場合はノットゲート22b
の出力、Vr2≦Vp≦Vr1の場合はアンドゲート26の
出力、からそれぞれ出力電圧「H」を供給する。
Reference numeral 4a is a voltage detection circuit for detecting the voltage between the terminals u1 and v1 and supplies the following three types of signals from the respective outputs. That is, the output of the comparator 17a when Vr1 <VP, and the not gate 22b when Vr2> VP.
, And the output of the AND gate 26 in the case of Vr2 ≦ Vp ≦ Vr1, the output voltage “H” is supplied.

【0025】次に、上記のように構成された自動電圧調
整器の動作を図1、図2を参照して説明する。端子u1
−v1間の電圧が何等かの原因によって上昇した場合、
即ち、Vr1<VPの場合、まず該端子u1−v1間の電圧
を所定の電圧比で変圧器11によって変成させ、全波整
流回路12によって整流し、コンデンサ13によって電
圧を平滑させ、抵抗14、15によって分圧された電圧
VPが生じる。該電圧VPと基準電圧Vr1とを比較する。
まず、Vr1<VPのためコンパレータ17aが出力電圧
「H」を発生し、抵抗25aを通じてフォトカプラ31
b、31cのダイオードに電流を流してフォトカプラ3
1b、31cをオンさせ、制御整流ユニット33b、3
3cの入力に電流を流す。従って、図1に示すように主
変圧器1によって発生した二次電圧は、以下のような回
路により、補償変圧器2の一次巻線に印加される。即
ち、主変圧器1の二次電圧は、端子u、電線1a、端子
u1を介し、双方向制御整流素子3bがオンして補償変
圧器2の一次巻線を通じ、双方向制御整流素子3cがオ
ンし、端子v1、電線1a、端子vの回路を循環する。
従って、補償変圧器2の一次巻線に端子u1−v1間の電
圧が印加される。補償変圧器2の二次巻線である端子u
1−u2間、v1−v2間にはそれぞれほぼeVの電圧が発
生する。該eVの電圧は主変圧器1の二次電圧と極性が
異なるので、端子u2−v2間の電圧は端子u1−v1間の
電圧をほぼ2eV低下させて、電圧の上昇を抑制する。
Next, the operation of the automatic voltage regulator configured as described above will be described with reference to FIGS. Terminal u1
If the voltage between -v1 rises for some reason,
That is, when Vr1 <VP, first, the voltage between the terminals u1 and v1 is transformed by the transformer 11 at a predetermined voltage ratio, rectified by the full-wave rectifier circuit 12, the voltage is smoothed by the capacitor 13, and the resistor 14, A voltage VP divided by 15 is generated. The voltage VP is compared with the reference voltage Vr1.
First, because Vr1 <VP, the comparator 17a generates the output voltage "H", and the photocoupler 31a passes through the resistor 25a.
Apply current to the diodes of b and 31c and photocoupler 3
1b and 31c are turned on, and control rectification units 33b and 3
Apply current to the input of 3c. Therefore, the secondary voltage generated by the main transformer 1 as shown in FIG. 1 is applied to the primary winding of the compensating transformer 2 by the following circuit. That is, the secondary voltage of the main transformer 1 passes through the terminal u, the electric wire 1a, and the terminal u1, the bidirectional control rectifying element 3b is turned on, passes through the primary winding of the compensation transformer 2, and the bidirectional control rectifying element 3c is turned on. It is turned on and circulates in the circuit of terminal v1, electric wire 1a and terminal v.
Therefore, the voltage between the terminals u1 and v1 is applied to the primary winding of the compensation transformer 2. The terminal u, which is the secondary winding of the compensation transformer 2.
A voltage of approximately eV is generated between 1 and u2 and between v1 and v2. Since the voltage of the eV has a polarity different from that of the secondary voltage of the main transformer 1, the voltage between the terminals u2 and v2 lowers the voltage between the terminals u1 and v1 by approximately 2 eV and suppresses the voltage rise.

【0026】一方、ノットゲート22aの出力電圧は
「L」となるので、アンドゲート26の出力電圧は
「L」となり、フォトカプラ31eのダイオードに電流
が流れず、フォトカプラ31eはオフしている。従っ
て、双方向制御整流素子3eもオフする。なお、Vr1>
Vr2であるからVP>Vr2となり、コンパレータ17の
出力電圧は「H」となる。ノットゲート22bの出力電
圧は「L」となるので、抵抗25bに電流が流れない。
従って、トランジスタ28はオフとなり、フォトカプラ
31a、31dのダイオードに電流が流れず、フォトカ
プラ31a、31dはオフしているので、双方向制御整
流素子3a、3dはオフしている。
On the other hand, since the output voltage of the knot gate 22a is "L", the output voltage of the AND gate 26 is "L", no current flows through the diode of the photocoupler 31e, and the photocoupler 31e is off. . Therefore, the bidirectional control rectifying element 3e is also turned off. Vr1>
Since it is Vr2, VP> Vr2, and the output voltage of the comparator 17 becomes "H". Since the output voltage of the knot gate 22b becomes "L", no current flows through the resistor 25b.
Therefore, the transistor 28 is turned off, no current flows through the diodes of the photocouplers 31a and 31d, and the photocouplers 31a and 31d are turned off, so that the bidirectional control rectification elements 3a and 3d are turned off.

【0027】次に、端子u1−v1間の電圧が何等かの原
因によって下降した場合、上昇と同様に、電圧VPが抵
抗15の両端に生じる。該電圧Vpと基準電圧Vr2とを
比較し、Vr2>VPのためコンパレータ17bの出力電
圧は「L」となり、ノットゲート22bの出力電圧が
「H」となり、抵抗25bを通じてトランジスタ28を
オンさせる。従って、フォトカプラ31a、31dをオ
ンさせ、制御整流ユニット33a、33dのそれぞれの
入力に電流を流す。従って、図1に示すように主変圧器
1によって発生した二次電圧は、以下のような回路によ
り、補償変圧器2の一次巻線に印加される。即ち、主変
圧器1の二次電圧は、端子u、電線1a、端子u1を介
し、双方向制御整流素子3aがオンし、補償変圧器2の
一次巻線を通じ、双方向制御整流素子3dがオンし、端
子v1、電線1a、端子vの回路を循環する。従って、
補償変圧器2の端子u1−u2間、v1−v2間にはそれぞ
れほぼeV程度の電圧が発生し、該eVの電圧が主変圧
器1の出力電圧と極性が同一であるので、主変圧器1の
二次側電圧をほぼ2eV上昇させて、電圧が低くなるこ
とを補償する。なお、主変圧器1の二次側巻線の中央を
接地し、補償変圧器2の二つの各二次巻線をそれぞれ端
子u1−u2間、端子v1−v2間に接続したので、二次側
巻線の端子u2−v2の両端から全電圧を第1の負荷に供
給し、端子u2−N間と端子v2−N間にそれぞれ第2の負
荷、第3の負荷を接続して、同時に、第2の負荷、第3
の負荷に該全電圧の1/2電圧を供給する場合、第2の
負荷、第3の負荷同士の電圧不平衡を少なくできる。
Next, when the voltage between the terminals u1 and v1 drops for some reason, the voltage VP is generated across the resistor 15 in the same manner as the voltage rises. The voltage Vp is compared with the reference voltage Vr2. Since Vr2> VP, the output voltage of the comparator 17b becomes "L", the output voltage of the knot gate 22b becomes "H", and the transistor 28 is turned on through the resistor 25b. Therefore, the photocouplers 31a and 31d are turned on, and a current is supplied to the respective inputs of the control rectification units 33a and 33d. Therefore, the secondary voltage generated by the main transformer 1 as shown in FIG. 1 is applied to the primary winding of the compensating transformer 2 by the following circuit. That is, the secondary voltage of the main transformer 1 turns on the bidirectional control rectifying element 3a via the terminal u, the electric wire 1a, and the terminal u1, and passes through the primary winding of the compensating transformer 2 to the bidirectional control rectifying element 3d. It is turned on and circulates in the circuit of terminal v1, electric wire 1a and terminal v. Therefore,
Since a voltage of approximately eV is generated between the terminals u1 and u2 of the compensation transformer 2 and between v1 and v2, and the voltage of the eV has the same polarity as the output voltage of the main transformer 1, The secondary voltage of 1 is increased by almost 2 eV to compensate for the lower voltage. Since the center of the secondary winding of the main transformer 1 is grounded and the two secondary windings of the compensation transformer 2 are connected between terminals u1 and u2 and between terminals v1 and v2 respectively, At the same time, the entire voltage is supplied to the first load from both ends of the side winding terminal u2-v2, and the second load and the third load are connected between the terminals u2-N and v2-N, respectively. , The second load, the third
In the case where half the total voltage is supplied to the load, the voltage imbalance between the second load and the third load can be reduced.

【0028】更に、端子u1−v1間の電圧が正常な範囲
内にある場合、即ち、Vr2≦Vp≦Vr1の場合、Vp≦V
r1のためコンパレター17aの出力電圧は「L」とな
り、ノットゲート22aの出力電圧は「H」となる。一
方、Vr2≦Vpのためコンパレター17bの出力電圧は
「H」であるからアンドゲート26の出力電圧は「H」
となり、フォトカプラ31eを介して双方向制御整流素
子3eをオンさせる。なお、コンパレータ17aの出力
電圧は「L」であるので、上記と同様の動作により双方
向制御整流素子3b、3cはオフしており、コンパレタ
ー17bの出力電圧は「H」であるので、上記と同様の
動作により双方向制御整流素子3a、3dをオフであ
る。従って、双方向制御整流素子3a、3b、3c、3
dがオフするので、補償変圧器2の一次側には電圧が印
加されない。一方、双方向制御整流素子3eがオンする
ので、該オンによって補償変圧器2の一次巻線を短絡さ
せ、補償変圧器2の二次側から見たインピーダンスが低
くなり、補償用変圧器2による著しい電圧降下を生じな
い。
Further, when the voltage between the terminals u1 and v1 is within the normal range, that is, when Vr2≤Vp≤Vr1, Vp≤V
Because of r1, the output voltage of the comparator 17a becomes "L" and the output voltage of the knot gate 22a becomes "H". On the other hand, since Vr2≤Vp, the output voltage of the comparator 17b is "H", and the output voltage of the AND gate 26 is "H".
Then, the bidirectionally controlled rectifying element 3e is turned on via the photocoupler 31e. Since the output voltage of the comparator 17a is "L", the bidirectional control rectifying elements 3b and 3c are turned off by the same operation as described above, and the output voltage of the comparator 17b is "H". The bidirectional control rectifying elements 3a and 3d are turned off by the same operation as the above. Therefore, the bidirectional control rectifying elements 3a, 3b, 3c, 3
Since d is turned off, no voltage is applied to the primary side of the compensation transformer 2. On the other hand, since the bidirectional control rectifying element 3e turns on, the primary winding of the compensating transformer 2 is shorted by the turning on, and the impedance seen from the secondary side of the compensating transformer 2 becomes low. No significant voltage drop.

【0029】実施例2.この発明の他の実施例を図3に
よって説明する。図3において、41は順変換部、この
順変換部41は端子u1−V1の交流電圧を整流する全波
ブリッジからなる。42は整流された電圧を交流の可変
電圧にする逆変換部、ここで、順変換部41と逆変換部
42によってインバータを構成する。逆変換部42はト
ランジスタT1〜T4と帰還用のダイオードD1〜D4によ
って構成されている。4aは図2に示す電圧検出回路、
43は逆変換部42を制御する公知のインバータ制御回
路、44はインバータ制御回路43の出力を増幅するベ
ースアンプである。
Example 2. Another embodiment of the present invention will be described with reference to FIG. In FIG. 3, reference numeral 41 is a forward converter, and this forward converter 41 is a full-wave bridge that rectifies the AC voltage at the terminals u1-V1. Reference numeral 42 denotes an inverse conversion unit that converts the rectified voltage into an AC variable voltage. Here, the forward conversion unit 41 and the inverse conversion unit 42 form an inverter. The inverse conversion unit 42 is composed of transistors T1 to T4 and feedback diodes D1 to D4. 4a is the voltage detection circuit shown in FIG.
Reference numeral 43 is a known inverter control circuit that controls the inverse conversion unit 42, and 44 is a base amplifier that amplifies the output of the inverter control circuit 43.

【0030】この実施例の動作を図3及び図4を参照し
て説明する。まず、端子u1−v1間の電圧を電圧検出回
路4aによって検出し(ステップ100)、端子u1−v1
間の電圧が何等かの原因によって下降した場合、即ち、
Vr2>VPの場合、電圧検出回路4aの図2に示すコン
パレータ17aの出力電圧「H」がインバータ制御回路4
3に供給され、該電圧「H」によりインバータ制御回路4
3が逆変換部42の動作信号を生成し、該動作信号をベ
ースアンプ44に供給し、逆変換部42のトランジスタ
T1〜T4を電源電圧を加算する極性に動作させる(ステ
ップ101)。従って、実施例1と同様に、端子u2−v
2間の電圧の下降を抑制する。次に、端子u1−v1間の
電圧が正常な範囲内にある場合、即ち、Vr2≦Vp≦Vr
1の場合、電圧検出回路4aの図2に示すアンドゲート
26の出力電圧「H」がインバータ制御回路43に供給さ
れ、インバータ制御回路43が逆変換部42の動作信号
を生成し、該動作信号をベースアンプ44に供給し、ト
ランジスタT1、T2又はトランジスタT3、T4をオンさ
せて補償変圧器2の一次側を短絡する(ステップ10
2)。従って、実施例1と同様に、補償用変圧器2自体
による著しい電圧降下を防止する。なお、Vr2≦Vp≦
Vr1の場合、インバータを用いずに実施例1と同様に、
図1の双方向制御整流素子3eを接続した構成として、
双方向制御整流素子3eをオンしても良い。かかる場
合、逆変換部42の制御がやや簡単になる。更に、端子
u1−v1間の電圧が何等かの原因によって上昇した場
合、即ち、Vr1<VPの場合、電圧検出回路4aの図2
に示すコンパレータ17aの出力電圧「H」がインバータ
制御回路43に供給され、該電圧「H」によりインバータ
制御回路43が逆変換部42の動作信号を生成し、該動
作信号をベースアンプ44に供給し、逆変換部42のト
ランジスタT1〜T4を動作させて電源電圧を減算する極
性に動作させる(ステップ103)。従って、実施例1と
同様に、端子u2−v2間の電圧の上昇を抑制する。
The operation of this embodiment will be described with reference to FIGS. First, the voltage between the terminals u1 and v1 is detected by the voltage detection circuit 4a (step 100), and the terminals u1 and v1 are detected.
If the voltage between them drops for some reason, that is,
When Vr2> VP, the output voltage "H" of the comparator 17a shown in FIG.
3 is supplied to the inverter control circuit 4 by the voltage "H".
3 generates an operation signal of the inverse conversion unit 42, supplies the operation signal to the base amplifier 44, and operates the transistors T1 to T4 of the inverse conversion unit 42 to the polarity for adding the power supply voltage (step 101). Therefore, as in the first embodiment, the terminal u2-v
Suppress the voltage drop between the two. Next, when the voltage between the terminals u1 and v1 is within the normal range, that is, Vr2≤Vp≤Vr
In the case of 1, the output voltage “H” of the AND gate 26 shown in FIG. 2 of the voltage detection circuit 4a is supplied to the inverter control circuit 43, and the inverter control circuit 43 generates the operation signal of the inverse conversion unit 42, and the operation signal To the base amplifier 44 to turn on the transistors T1 and T2 or the transistors T3 and T4 to short-circuit the primary side of the compensation transformer 2 (step 10).
2). Therefore, as in the first embodiment, a significant voltage drop due to the compensating transformer 2 itself is prevented. In addition, Vr2 ≦ Vp ≦
In the case of Vr1, without using an inverter, as in Example 1,
As a configuration in which the bidirectional control rectifying element 3e of FIG. 1 is connected,
The bidirectional control rectifying element 3e may be turned on. In such a case, the control of the inverse conversion unit 42 becomes slightly easier. Further, when the voltage between the terminals u1 and v1 rises for some reason, that is, when Vr1 <VP, the voltage detection circuit 4a shown in FIG.
The output voltage “H” of the comparator 17a shown in FIG. 2 is supplied to the inverter control circuit 43, the inverter control circuit 43 generates the operation signal of the inverse conversion unit 42 by the voltage “H”, and the operation signal is supplied to the base amplifier 44. Then, the transistors T1 to T4 of the inverse converter 42 are operated to operate in the polarity for subtracting the power supply voltage (step 103). Therefore, as in the first embodiment, the increase in the voltage between the terminals u2 and v2 is suppressed.

【0031】なお、端子u1−v1間の電圧に応じてイン
バータを制御し、出力電圧を無段階とすることにより補
償変圧器2の2次電圧を無段階に発生させて端子u2−
v2間の電圧を補償することもできる。又、端子u1−v
1間の電圧と同一周波数により逆変換部42を駆動でき
るため順変換部41に平滑用コンデンサを設ける必要が
なく、装置の小型化、長寿命化が図れる。
The inverter is controlled according to the voltage between the terminals u1 and v1, and the output voltage is made stepless so that the secondary voltage of the compensation transformer 2 is generated steplessly and the terminal u2−
It is also possible to compensate for the voltage across v2. Also, terminals u1-v
Since the inverse converter 42 can be driven at the same frequency as the voltage between terminals 1, there is no need to provide a smoothing capacitor in the forward converter 41, and the device can be downsized and its life can be extended.

【0032】又、以上述べたのは、この発明の一実施例
であり、この発明は以下のような変更が加えられても良
い。例えば、極性切替手段及び該開閉手段は双方向制御
整流素子で説明したが、トランジスタ等の制御整流素子
を逆並列にして構成しても良く、電磁接触器の接点を用
いても良い。又、補償変圧器2の二次巻線数を2つにて
説明したが、一つの巻線でも良い。又、基準電圧はVr1
とVr2の2種類で説明したが、1種類でも良い。基準電
圧が1種類の場合以下の動作とする。即ち、補償変圧器
2の一次側検出電圧が基準電圧よりも高い場合、補償変
圧器2の二次巻線の電圧が減算されるように双方向制御
整流素子3b、3cをオンさせ、一方、補償変圧器2の
一次側検出電圧が基準電圧よりも低い場合、補償変圧器
2の二次巻線の電圧が加算されるように双方向制御整流
素子3a、3dをオンさせも良い。更に、オン・オフ制
御部4による電圧検出は、補償変圧器2の一次側を検出
したが、補償変圧器2の二次側でも良く、主変圧器1の
電源側や二次側でも良い。
The above description is one embodiment of the present invention, and the present invention may be modified as follows. For example, although the polarity switching means and the opening / closing means are described as bidirectional control rectification elements, control rectification elements such as transistors may be arranged in antiparallel, or contacts of an electromagnetic contactor may be used. Further, although the number of secondary windings of the compensating transformer 2 is two, the number of secondary windings may be one. The reference voltage is Vr1
And Vr2, two types have been described, but one type may be used. The operation is as follows when there is only one reference voltage. That is, when the primary detection voltage of the compensation transformer 2 is higher than the reference voltage, the bidirectional control rectifier elements 3b and 3c are turned on so that the voltage of the secondary winding of the compensation transformer 2 is subtracted, while When the primary detection voltage of the compensation transformer 2 is lower than the reference voltage, the bidirectional control rectifying elements 3a and 3d may be turned on so that the voltage of the secondary winding of the compensation transformer 2 is added. Further, the voltage detection by the on / off control unit 4 detects the primary side of the compensation transformer 2, but it may be the secondary side of the compensation transformer 2 or the power source side or the secondary side of the main transformer 1.

【0033】更に、極性切替手段に用いた双方向制御整
流素子3a〜3dの制御は、単にオンオフ制御で説明し
たが、位相制御して連続的に補償用変圧器2の二次電圧
を変化させても良い。即ち、双方向制御整流素子3a、
3d又は双方向制御整流素子3b、3cをオンする代わ
りに、該双方向制御整流素子を位相制御させながら動作
させて補償用変圧器2の一次側に電圧を印加させ、補償
用変圧器2の二次電圧を連続的に変化させても良い。
Further, the control of the bidirectional control rectifying elements 3a to 3d used for the polarity switching means has been described as the on / off control, but the secondary voltage of the compensating transformer 2 is continuously changed by phase control. May be. That is, the bidirectional control rectifying element 3a,
3d or the bidirectionally controlled rectifying elements 3b and 3c are turned on, the bidirectionally controlled rectifying element is operated while the phase is controlled to apply a voltage to the primary side of the compensating transformer 2, and The secondary voltage may be changed continuously.

【0034】[0034]

【発明の効果】以上のように第1の発明によれば、電源
電圧の極性を切替可能にする極性切替手段と、上記極性
切替手段を介して上記電源に一次側巻線が接続されると
共に、二次巻線の一端を上記電源の一端に接続し、上記
二次巻線を負荷の電圧の一部として利用する変圧器と、
上記電源又は上記負荷の電圧を検出する電圧検出手段
と、上記電圧検出手段によって検出した電圧値を予め定
めた基準電圧値と比較する比較手段とを備え、上記電圧
検出手段の検出電圧が予め定めた第1の基準電圧値より
も高い場合、上記変圧器の二次巻線の電圧が上記電源電
圧に対して減算されるように上記極性切替手段によって
上記変圧器の一次巻線に電圧を印加させ、上記電圧検出
手段の検出電圧が予め定めた第2の基準電圧値よりも低
い場合、上記変圧器の二次電圧が上記電源電圧に対して
加算させるように上記極性切替手段によって上記変圧器
の一次巻線に電圧を印加させる制御手段とを備えたの
で、簡易に電圧を自動調整できる効果がある。
As described above, according to the first aspect of the present invention, the polarity switching means for switching the polarity of the power supply voltage and the primary side winding are connected to the power source via the polarity switching means. , A transformer in which one end of the secondary winding is connected to one end of the power supply, and the secondary winding is used as a part of the load voltage,
The power supply or the load is provided with voltage detection means for detecting the voltage, and the comparison means for comparing the voltage value detected by the voltage detection means with a predetermined reference voltage value, and the detection voltage of the voltage detection means is predetermined. If the voltage is higher than the first reference voltage value, the voltage is applied to the primary winding of the transformer by the polarity switching means so that the voltage of the secondary winding of the transformer is subtracted from the power supply voltage. When the detected voltage of the voltage detecting means is lower than the second reference voltage value set in advance, the polarity switching means adds the secondary voltage of the transformer to the power supply voltage. Since the control means for applying the voltage to the primary winding is provided, there is an effect that the voltage can be easily and automatically adjusted.

【0035】第2の発明によれば、電源電圧の極性を切
替可能にする極性切替手段と、上記極性切替手段を介し
て上記電源に一次側巻線が接続されるとともに、二次巻
線の一端を上記電源の一端に接続し、上記二次巻線を負
荷電圧の一部として利用する変圧器と、上記電源又は上
記負荷の電圧を検出する電圧検出手段と、上記電圧検出
手段によって検出した電圧値を予め定めた基準電圧値と
比較する比較手段とを備え、上記電圧検出手段の検出電
圧が予め定めた基準電圧値よりも高い場合、上記変圧器
の二次巻線の電圧が上記電源電圧に対して減算されるよ
うに上記極性切替手段によって上記変圧器の一次巻線に
電圧を印加させ、上記電圧検出手段の検出電圧が予め定
めた基準電圧値よりも低い場合、上記変圧器の二次電圧
が上記電源電圧に対して加算させるように上記極性切替
手段によって上記変圧器の一次巻線に電圧を印加させる
制御手段とを備えたので、簡易に電圧を自動調整でき、
且つ、制御手段が簡易になる効果がある。
According to the second aspect of the present invention, the polarity switching means for switching the polarity of the power supply voltage, the primary winding is connected to the power supply via the polarity switching means, and the secondary winding One end is connected to one end of the power supply, a transformer that uses the secondary winding as a part of the load voltage, a voltage detection unit that detects the voltage of the power supply or the load, and the voltage detection unit. Comparing means for comparing a voltage value with a predetermined reference voltage value, and when the detection voltage of the voltage detecting means is higher than the predetermined reference voltage value, the voltage of the secondary winding of the transformer is the power supply. When a voltage is applied to the primary winding of the transformer by the polarity switching means so as to be subtracted from the voltage and the detected voltage of the voltage detecting means is lower than a predetermined reference voltage value, Secondary voltage is the above power supply voltage Since a control means for applying a voltage to the primary winding of the transformer by said polarity switching means so as to be added to, the voltage can be automatically adjusted easily,
Moreover, the control means can be simplified.

【0036】第3の発明によれば、電圧検出手段の検出
電圧が予め定めた範囲内の場合、変圧器の一次側巻線間
を開放から閉成させる開閉手段を備えたので、変圧器自
体の二次側の巻線電圧降下を抑制できる効果がある。
According to the third aspect of the invention, when the voltage detected by the voltage detecting means is within a predetermined range, the switching means for opening and closing the primary winding of the transformer is provided. This has the effect of suppressing the winding voltage drop on the secondary side.

【0037】第4の発明によれば、変圧器は二次巻線を
二つ備え、電源の一端に上記第1の二次巻線の一端が接
続され、電源の他端に上記第2の二次巻線の一端が接続
され、上記第1の二次巻線及び上記第2の二次巻線を負
荷の電圧の一部として利用したので、負荷の電圧不平衡
を少なくできる効果がある。
According to the fourth invention, the transformer is provided with two secondary windings, one end of the first secondary winding is connected to one end of the power supply, and the second secondary winding is connected to the other end of the power supply. Since one end of the secondary winding is connected and the first secondary winding and the second secondary winding are used as a part of the load voltage, there is an effect that the load voltage imbalance can be reduced. .

【0038】第5の発明によれば、極性切替手段は電源
の極性を切替可能にするとともに、上記電源の電圧を位
相制御するので、簡易に、電圧を連続的に自動調整でき
る効果がある。
According to the fifth aspect of the invention, the polarity switching means can switch the polarity of the power supply and controls the phase of the voltage of the power supply. Therefore, there is an effect that the voltage can be continuously and automatically adjusted.

【0039】第6の発明によれば、極性切替手段は電源
電圧の極性を切替可能にすると共に、上記電源の電圧を
可変制御するインバータにしたので、高調波の発生を抑
制しながら簡易に、電圧を連続的に自動調整できる効果
がある。
According to the sixth aspect of the invention, the polarity switching means is capable of switching the polarity of the power supply voltage and is an inverter for variably controlling the voltage of the power supply, so that the generation of harmonics can be suppressed and easily. It has the effect of automatically adjusting the voltage continuously.

【0040】第7の発明によれば、極性切替手段は順変
換部と逆変換部とを含むインバータからなり、順変換部
は平滑コンデンサを有しない全波ブリッジからなるの
で、平滑用コンデンサを設ける必要がなく、自動電圧調
整器の小型化、長寿命化が図れる効果がある。
According to the seventh aspect of the invention, the polarity switching means comprises an inverter including a forward conversion section and an inverse conversion section, and the forward conversion section comprises a full-wave bridge having no smoothing capacitor, so that a smoothing capacitor is provided. There is no need, and there is an effect that the automatic voltage regulator can be downsized and its life can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例による電圧自動調整器の
全体結線図を示す。
FIG. 1 shows an overall wiring diagram of an automatic voltage regulator according to an embodiment of the present invention.

【図2】 この発明のオン・オフ制御部の結線図を示
す。
FIG. 2 shows a wiring diagram of an on / off control unit according to the present invention.

【図3】 この発明の他の実施例を示す全体結線図を示
す。
FIG. 3 is an overall connection diagram showing another embodiment of the present invention.

【図4】 この発明の他の実施例を示すフローチャート
を示す。
FIG. 4 shows a flowchart showing another embodiment of the present invention.

【図5】 従来の電圧自動調整器を示す全体図を示す。FIG. 5 is an overall view showing a conventional automatic voltage regulator.

【符号の説明】[Explanation of symbols]

1・・・主変圧器、2・・・補償用変圧器、 3a〜3d・・・双方向制御整流素子(極性切替手段) 3e・・・双方向制御整流素子(開閉手段) 4・・・オン・オフ制御部(電圧検出手段、比較手段、
制御手段) 41・・・順変換部、42・・・逆変換部
DESCRIPTION OF SYMBOLS 1 ... Main transformer, 2 ... Compensation transformer, 3a-3d ... Bidirectional control rectifier (polarity switching means) 3e ... Bidirectional control rectifier (switching means) 4 ... ON / OFF control unit (voltage detection means, comparison means,
Control means) 41 ... Forward conversion unit, 42 ... Inverse conversion unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−111917(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 29/02 G05F 1/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-111917 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 29/02 G05F 1/24

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電源電圧の極性を切替可能にする極性切
替手段と、上記極性切替手段を介して上記電源に一次側
巻線が接続されるとともに、二次巻線の一端を上記電源
の一端に接続し、上記二次巻線を負荷の電圧の一部とし
て利用する変圧器と、上記電源又は上記負荷の電圧を検
出する電圧検出手段と、上記電圧検出手段によって検出
した電圧値を予め定めた基準電圧値と比較する比較手段
とを備え、 上記電圧検出手段の検出電圧が予め定めた第1の基準電
圧値よりも高い場合、上記変圧器の二次巻線の電圧が上
記電源電圧に対して減算されるように上記極性切替手段
によって上記変圧器の一次巻線に電圧を印加させ、 上記電圧検出手段の検出電圧が予め定めた第2の基準電
圧値よりも低い場合、上記変圧器の二次電圧が上記電源
電圧に対して加算させるように上記極性切替手段によっ
て上記変圧器の一次巻線に電圧を印加させる制御手段と
を備えたことを特徴とする自動電圧調整器。
1. A polarity switching means for switching the polarity of a power supply voltage, a primary winding is connected to the power supply via the polarity switching means, and one end of a secondary winding is connected to one end of the power supply. And a transformer that uses the secondary winding as a part of the load voltage, a voltage detection unit that detects the voltage of the power supply or the load, and a voltage value that is detected by the voltage detection unit. Comparing means for comparing with the reference voltage value, the voltage of the secondary winding of the transformer is equal to the power supply voltage when the detected voltage of the voltage detecting means is higher than a predetermined first reference voltage value. A voltage is applied to the primary winding of the transformer by the polarity switching means so as to be subtracted, and the voltage detected by the voltage detecting means is lower than a second reference voltage value determined in advance, the transformer The secondary voltage of Automatic voltage regulator, characterized in that a control means for applying a voltage to the primary winding of the transformer by said polarity switching means so as to be added.
【請求項2】 電源電圧の極性を切替可能にする極性切
替手段と、上記極性切替手段を介して上記電源に一次側
巻線が接続されるとともに、二次巻線の一端を上記電源
の一端に接続し、上記二次巻線を負荷の電圧の一部とし
て利用する変圧器と、上記電源又は上記負荷の電圧を検
出する電圧検出手段と、上記電圧検出手段によって検出
した電圧値を予め定めた基準電圧値と比較する比較手段
とを備え、 上記電圧検出手段の検出電圧が予め定めた基準電圧値よ
りも高い場合、上記変圧器の二次巻線の電圧が上記電源
電圧に対して減算されるように上記極性切替手段によっ
て上記変圧器の一次巻線に電圧を印加させ、 上記電圧検出手段の検出電圧が予め定めた基準電圧値よ
りも低い場合、上記変圧器の二次電圧が上記電源電圧に
対して加算させるように上記極性切替手段によって上記
変圧器の一次巻線に電圧を印加させる制御手段とを備え
たことを特徴とする自動電圧調整器。
2. A polarity switching means for switching the polarity of a power supply voltage, a primary winding is connected to the power supply via the polarity switching means, and one end of the secondary winding is connected to one end of the power supply. And a transformer that uses the secondary winding as a part of the load voltage, a voltage detection unit that detects the voltage of the power supply or the load, and a voltage value that is detected by the voltage detection unit. If the detected voltage of the voltage detection means is higher than a predetermined reference voltage value, the voltage of the secondary winding of the transformer is subtracted from the power supply voltage. As described above, when the voltage is applied to the primary winding of the transformer by the polarity switching means, and the detected voltage of the voltage detecting means is lower than a predetermined reference voltage value, the secondary voltage of the transformer is Add to power supply voltage Automatic voltage regulator, characterized in that a control means for applying a voltage to the primary winding of the transformer by Uni said polarity switching means.
【請求項3】 電圧検出手段の検出電圧が予め定めた範
囲内の場合、変圧器の一次側巻線間を開放から閉成させ
る開閉手段を備えたことを特徴とする請求項1に記載の
自動電圧調整器。
3. The switching device according to claim 1, further comprising an opening / closing device for opening and closing the primary winding of the transformer when the voltage detected by the voltage detecting device is within a predetermined range. Automatic voltage regulator.
【請求項4】 変圧器は二次巻線を二つ備え、電源の一
端に上記第1の二次巻線の一端が接続され、電源の他端
に上記第2の二次巻線の一端が接続され、上記第1の二
次巻線及び上記第2の二次巻線を負荷の電圧の一部とし
て利用することを特徴とする請求項1〜3のいずれか一
つに記載の自動電圧調整器。
4. The transformer comprises two secondary windings, one end of the first secondary winding is connected to one end of a power supply, and one end of the second secondary winding is connected to the other end of the power supply. Are connected, and the first secondary winding and the second secondary winding are used as a part of the voltage of a load, The automatic according to any one of claims 1 to 3, Voltage regulator.
【請求項5】 極性切替手段は電源電圧の極性を切替可
能にすると共に、上記電源の電圧を位相制御することを
特徴とする請求項1〜4のいずれか一つに記載の自動電
圧調整器。
5. The automatic voltage regulator according to claim 1, wherein the polarity switching means is capable of switching the polarity of the power supply voltage and phase-controls the voltage of the power supply. .
【請求項6】 極性切替手段は電源電圧の極性を切替可
能にすると共に、上記電源の電圧を可変制御するインバ
ータからなることを特徴とする請求項1〜4のいずれか
一つに記載の自動電圧調整器。
6. The automatic switching device according to claim 1, wherein the polarity switching means comprises an inverter capable of switching the polarity of the power source voltage and variably controlling the voltage of the power source. Voltage regulator.
【請求項7】 極性切替手段は順変換部と逆変換部とを
含むインバータからなり、順変換部は平滑コンデンサを
有しない全波ブリッジからなることを特徴とする請求項
6記載の自動電圧調整器。
7. The automatic voltage regulator according to claim 6, wherein the polarity switching means is an inverter including a forward converter and an inverse converter, and the forward converter is a full-wave bridge without a smoothing capacitor. vessel.
JP20214294A 1994-08-26 1994-08-26 Automatic voltage regulator Expired - Fee Related JP3391104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20214294A JP3391104B2 (en) 1994-08-26 1994-08-26 Automatic voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20214294A JP3391104B2 (en) 1994-08-26 1994-08-26 Automatic voltage regulator

Publications (2)

Publication Number Publication Date
JPH0864437A JPH0864437A (en) 1996-03-08
JP3391104B2 true JP3391104B2 (en) 2003-03-31

Family

ID=16452660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20214294A Expired - Fee Related JP3391104B2 (en) 1994-08-26 1994-08-26 Automatic voltage regulator

Country Status (1)

Country Link
JP (1) JP3391104B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315192A (en) * 2001-04-05 2002-10-25 Nec Eng Ltd Voltage regulator
GB2409115B (en) * 2003-12-09 2006-11-01 Nujira Ltd Transformer based voltage supply
US11824245B2 (en) * 2021-01-15 2023-11-21 Analog Devices, Inc. Phase shifter-180 degree topology

Also Published As

Publication number Publication date
JPH0864437A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
KR930010424B1 (en) Uninterruptible power supply with isolatied by pass winding
US6664762B2 (en) High voltage battery charger
US5077652A (en) Dual feedback loop DC-to-AC converter
US6665158B2 (en) Alternator/inverter with dual H-bridge and automatic voltage regulation
US5216585A (en) Switching power source device
JP6369737B1 (en) Insulated DC / DC converter, control device therefor, and DC / AC converter
JPH0239189B2 (en)
JP3391104B2 (en) Automatic voltage regulator
JPH11235040A (en) Power supply with three-phase high power factor converter
JP3341832B2 (en) Power supply circuit and smoothing method
JP3690584B2 (en) Control device for DC reactor
WO2019137388A1 (en) Auxiliary converter circuit and its method of operation
CN116316646A (en) On-load voltage regulating device, on-load voltage regulating transformer and control method thereof
KR102235963B1 (en) Isolated Uninterruptible Power Supply without Input and Output Transformer
JP2754517B2 (en) 12 pulse rectification load harmonic compensation method
WO2024090066A1 (en) Dc/dc converter and power source device
JPH0984359A (en) Power converter
JPH07115736A (en) Charging device for electric rolling stock
JPS61249685A (en) Switching regulator
JPS6198191A (en) Controller of ac motor
JPH1052050A (en) Controller for air conditioner
JP2671577B2 (en) PWM control converter parallel operation system
JP2800471B2 (en) Reactive power compensator
JP3416041B2 (en) Power supply
KR920004284B1 (en) Control device of velocity of elevator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees