JP3390106B2 - Optical microscope with automatic focusing device - Google Patents

Optical microscope with automatic focusing device

Info

Publication number
JP3390106B2
JP3390106B2 JP13944295A JP13944295A JP3390106B2 JP 3390106 B2 JP3390106 B2 JP 3390106B2 JP 13944295 A JP13944295 A JP 13944295A JP 13944295 A JP13944295 A JP 13944295A JP 3390106 B2 JP3390106 B2 JP 3390106B2
Authority
JP
Japan
Prior art keywords
sample
optical microscope
line sensor
lens
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13944295A
Other languages
Japanese (ja)
Other versions
JPH08334668A (en
Inventor
正吾 小菅
美智男 久木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP13944295A priority Critical patent/JP3390106B2/en
Publication of JPH08334668A publication Critical patent/JPH08334668A/en
Application granted granted Critical
Publication of JP3390106B2 publication Critical patent/JP3390106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡焦点内に試料を
設定し、観察のため水平方向に試料を動かした場合、試
料の凹凸に対しても、常に合焦点となるように追従する
自動合焦点装置を備えた光学顕微鏡に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when a sample is set in the focus of a microscope and moved horizontally for observation, automatically follows the unevenness of the sample so that it is always in focus. The present invention relates to an optical microscope equipped with a focusing device.

【0002】[0002]

【従来の技術】自動合焦点装置を備えた光学顕微鏡の従
来技術を説明するための概略構成配置図を図6に示す。
図6において、62は光学顕微鏡で観察する試料、61
は、試料62を載置する試料台、63は、光学顕微鏡を
構成する対物レンズ、64は、光学顕微鏡を構成する結
像レンズ、65は、結像レンズ64の結像面位置、66
は、試料台61を上下に移動させる駆動機構部、67
は、光学顕微鏡の光路中に設けたハーフミラー、68
は、ハーフミラー67で反射した光を結像する合焦点用
結像レンズ、70は、合焦点用結像レンズ68の結像面
位置より前ピン位置に設けた光電変換素子、69は、合
焦点用結像レンズ68の光路中に設けたハーフミラー、
71は、ハーフミラー69で反射した合焦点用結像レン
ズ68の結像面位置より後ピン位置に設けた光電変換素
子を示す。
2. Description of the Related Art FIG. 6 is a schematic structural layout diagram for explaining the prior art of an optical microscope equipped with an automatic focusing device.
In FIG. 6, 62 is a sample to be observed with an optical microscope, 61
Is a sample table on which the sample 62 is placed, 63 is an objective lens forming an optical microscope, 64 is an image forming lens forming the optical microscope, 65 is an image forming surface position of the image forming lens 64, 66
Is a drive mechanism unit for moving the sample table 61 up and down, 67
Is a half mirror provided in the optical path of the optical microscope, 68
Is a focusing lens for focusing the light reflected by the half mirror 67, 70 is a photoelectric conversion element provided at a position in front of the focusing surface of the focusing lens 68 for focusing, and 69 is a focusing lens. A half mirror provided in the optical path of the focusing imaging lens 68,
Reference numeral 71 denotes a photoelectric conversion element provided at a rear pin position from the image plane surface position of the focusing lens 68 for reflection, which is reflected by the half mirror 69.

【0003】図6を使用し、従来技術による自動合焦点
装置を備えた光学顕微鏡の複数の例を説明する。光学顕
微鏡は、試料台61上に載置した試料62を、対物レン
ズ63の焦点位置に設定し、試料62の所望光学像を結
像レンズ64による結像面位置65に結像し、観察す
る。このような光学顕微鏡において、結像レンズ64に
よる結像面位置65に、光電変換装置例えばテレビカメ
ラ(図示していない。)を配置し、テレビカメラから、
試料62の所望光学像を撮像した映像信号を出力する。
テレビカメラから出力された映像信号は、例えばプロセ
ス装置(図示していない。)に入力され、微分成分が検
出され、微分成分に応じた出力がプロセス装置から試料
台61を上下に移動させる駆動機構部66へ出力され
る。駆動機構部66は、プロセス装置で検出される微分
成分が最大出力となるように、検出出力に応じて試料6
2が載置された試料台61を上下に駆動し、試料62と
対物レンズ63の相対距離を合焦点となるように制御す
る手段を有する自動合焦点装置を備えた光学顕微鏡があ
る。
A plurality of examples of an optical microscope equipped with an automatic focusing device according to the prior art will be described with reference to FIG. The optical microscope sets the sample 62 mounted on the sample table 61 at the focal position of the objective lens 63, forms a desired optical image of the sample 62 on the image forming surface position 65 by the image forming lens 64, and observes it. . In such an optical microscope, a photoelectric conversion device, for example, a television camera (not shown) is arranged at the image forming plane position 65 by the image forming lens 64, and the television camera
A video signal obtained by capturing a desired optical image of the sample 62 is output.
A video signal output from the television camera is input to, for example, a process device (not shown), a differential component is detected, and an output corresponding to the differential component moves the sample stage 61 up and down from the process device. It is output to the unit 66. The drive mechanism unit 66 adjusts the sample 6 according to the detected output so that the differential component detected by the process device has the maximum output.
There is an optical microscope equipped with an automatic focusing device having means for vertically driving a sample table 61 on which the sample No. 2 is mounted and controlling the relative distance between the sample 62 and the objective lens 63 to be in focus.

【0004】しかし、前記のような自動合焦点装置を備
えた光学顕微鏡は、光学顕微鏡の結像面位置65に配置
した光電変換装置により光電変換された映像信号の微分
成分を検出するものであるため、合焦点を行なうときの
映像信号から微分成分が検出されないと合焦点は不可能
であり、合焦点は、試料62に段差や輝度変化があり、
明確な輪郭を有する試料62に限られることになる。し
かしながら、試料62は、段差や輝度変化があり、輪郭
が明確なものばかりとは限らないため、前記自動合焦点
装置を備えた光学顕微鏡の欠点を補う手段(図示してい
ない。)として、輪郭が明確でない試料62上に、輝度
変化のあるパターンを投影し、疑似輪郭を常に形成し
て、疑似輪郭を含む映像信号から微分成分を検出する手
段を有する自動合焦点装置を備えた光学顕微鏡がある。
However, the optical microscope equipped with the above-described automatic focusing device detects the differential component of the video signal photoelectrically converted by the photoelectric conversion device arranged at the image plane 65 of the optical microscope. Therefore, focusing cannot be performed unless a differential component is detected from the image signal when focusing is performed, and the focusing has a step or a change in brightness on the sample 62.
It will be limited to the sample 62 having a clear contour. However, since the sample 62 has steps and changes in luminance and the contour is not always clear, the contour is used as a means (not shown) for compensating for the drawback of the optical microscope equipped with the automatic focusing device. An optical microscope equipped with an automatic focusing device having means for projecting a pattern having a change in luminance, always forming a pseudo contour, and detecting a differential component from a video signal including the pseudo contour on a sample 62 whose is there.

【0005】前記自動合焦点装置を備えた光学顕微鏡
は、1度に光学顕微鏡の光軸方向上の1点の微分成分を
検出する。光軸方向上の複数点の微分成分は、試料台6
1を駆動部66で光軸方向上に動かしながら得られる。
得られた複数の微分成分のなかで最大微分成分を有する
試料62と対物レンズ63の相対距離を合焦点位置とし
て制御する手段を有する自動合焦点装置を備えた光学顕
微鏡である。したがって、光軸方向上の複数点の微分成
分を調べるのに、検出時間と駆動時間を必要とし、すば
やい合焦点検出ができないという問題がある。
The optical microscope equipped with the automatic focusing device detects one differential component on the optical axis direction of the optical microscope at a time. The differential components at a plurality of points along the optical axis are the sample table 6
1 can be obtained by moving 1 in the optical axis direction by the drive unit 66.
This is an optical microscope equipped with an automatic focusing device having means for controlling the relative distance between the sample 62 having the maximum differential component and the objective lens 63 among the obtained plural differential components as the focusing position. Therefore, it takes a detection time and a driving time to examine the differential components of a plurality of points in the optical axis direction, and there is a problem that a quick focus detection cannot be performed.

【0006】さらに、従来技術による合焦点方向を検出
する手段を有する自動合焦点装置を備えた光学顕微鏡
を、図6を使用して説明をする。光学顕微鏡の光路、詳
しくは、対物レンズ63から結像レンズ64への光路中
にハーフミラー67を設置し、ハーフミラー67による
反射光を合焦点用結像レンズ68により結像させる。合
焦点用結像レンズ68による結像面位置より前ピン位置
に前ピンセンサとして光電変換素子70を設け、合焦点
用結像レンズ68から光電変換素子70への光路中にハ
ーフミラー69を設置し、ハーフミラー69により反射
した合焦点用結像レンズ68による結像面位置より後ピ
ン位置に後ピンセンサとして光電変換素子71を設け
る。
Further, an optical microscope equipped with an automatic focusing device having means for detecting a focusing direction according to the prior art will be described with reference to FIG. A half mirror 67 is installed in the optical path of the optical microscope, specifically, in the optical path from the objective lens 63 to the imaging lens 64, and the reflected light from the half mirror 67 is imaged by the focusing lens 68. A photoelectric conversion element 70 is provided as a front pin sensor at a position in front of the image forming surface of the focusing lens 68 for focusing, and a half mirror 69 is installed in the optical path from the focusing lens 68 for focusing to the photoelectric conversion element 70. A photoelectric conversion element 71 is provided as a rear pin sensor at a rear pin position from the image plane position of the focusing lens 68 which is reflected by the half mirror 69.

【0007】合焦点用結像レンズ68の結像面位置の前
後に光電変換素子70、71をそれぞれ配置し、図7に
示すような前ピン信号、後ピン信号を得て、その差出力
に応じて駆動機構部66を駆動し、試料台61を上下に
移動させ、合焦点位置を得る自動合焦点装置を備えた光
学顕微鏡がある。前ピン信号と後ピン信号の微分成分出
力が同じになる光軸方向距離を合焦点位置とする手段で
あり、前ピン位置と後ピン位置の結像は両者共に合焦点
でなくボケているため、一般的にボケ方式と言われてい
る。
Photoelectric conversion elements 70 and 71 are arranged in front of and behind the image plane surface of the focusing lens 68, respectively, to obtain a front pin signal and a rear pin signal as shown in FIG. There is an optical microscope equipped with an automatic focusing device that drives the driving mechanism unit 66 accordingly and moves the sample table 61 up and down to obtain the focusing position. It is a means to set the optical axis direction distance where the differential component output of the front focus signal and the rear focus signal are the same as the focal point position, and since the image formation at the front focus position and the rear focus position is both out of focus and blurred. , Is generally called the bokeh method.

【0008】[0008]

【発明が解決しようとする課題】従来技術による自動合
焦点装置を備えた光学顕微鏡においては、前者の従来技
術では、試料の観察したい個所の映像信号から微分成分
を検出し、合焦点となるように制御するので高精度であ
るが時間がかかるという問題がある。また、試料にパタ
ーンを投影する従来技術では、試料の輪郭と投影させた
パターンの輪郭とが干渉し、観察に悪影響を与えるとい
う問題もある。後者の従来技術では、前ピンと後ピンに
よる制御であるため光軸上の2点の制御となり、複雑な
形状を有する試料に対しては、完全な制御ができないと
いう問題がある。本発明は、前記問題を解決するため
に、レーザダイオード等によるレーザスポット光を試料
の表面に投射し、試料から反射したレーザ光をハーフミ
ラーを介して光軸から傾斜して設けたラインセンサ上に
結像し光量を検出して、凹凸のある試料に対応可能とし
た自動合焦点装置を備えた光学顕微鏡を提供することを
目的とする。
In the optical microscope equipped with the automatic focusing device according to the prior art, the former prior art detects the differential component from the image signal of the portion of the sample desired to be observed so as to achieve the in-focus point. However, there is a problem that it takes time because it is controlled accurately. Further, in the conventional technique of projecting a pattern on a sample, there is a problem that the contour of the sample and the contour of the projected pattern interfere with each other and adversely affect the observation. The latter conventional technique has a problem that it is impossible to perform complete control on a sample having a complicated shape because the control is performed by the front pin and the rear pin, which is the control of two points on the optical axis. In order to solve the above-mentioned problems, the present invention is directed to a line sensor in which a laser spot light from a laser diode or the like is projected onto the surface of a sample, and the laser light reflected from the sample is inclined from the optical axis via a half mirror. It is an object of the present invention to provide an optical microscope equipped with an automatic focusing device capable of forming an image on a plate, detecting the amount of light, and adapting to a sample having irregularities.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明の自動合焦点装置を備えた光学顕微鏡は、少
なくとも、観察する試料に焦点を結ぶように設けられた
対物レンズと、該対物レンズからの光の結像を所定結像
面位置に結ぶように設けられた結像レンズとを備えた光
学顕微鏡であって、少なくとも、前記試料を載置し水平
方向および垂直方向に移動可能な試料台と、入力される
合焦点検出信号に応じて前記試料台を垂直方向に移動さ
せる駆動機構部とからなる自動合焦点装置を備えた光学
顕微鏡において、前記試料台に載置された試料にレーザ
光を投射する手段と、前記試料から反射するレーザ光を
反射するための前記光学顕微鏡の光路中に設けたハーフ
ミラーと、該ハーフミラーからの反射光の結像を、前記
対物レンズの焦点と共役位置に結ぶ合焦点用結像レンズ
と、該合焦点用結像レンズの結像点において、光軸に対
し所要の傾きで設けた複数の光電変換素子からなるライ
ンセンサと、前記合焦点用結像レンズの光路中に設けた
一定周期で回動する反射鏡とを有し、該反射鏡の回動に
よる入射光が最大となる前記ラインセンサ上の位置を検
出し、該ラインセンサ上の位置までの光路長とあらかじ
め設定した焦点位置までの光路長との差を得て合焦点検
出信号とし、該合焦点検出信号により前記試料台を垂直
方向に移動させるものである。
In order to achieve the above object, an optical microscope equipped with an automatic focusing device of the present invention comprises at least an objective lens provided so as to focus on a sample to be observed, An optical microscope including an imaging lens provided so as to connect an image of light from an objective lens to a predetermined imaging plane position, and at least the sample can be placed and moved in a horizontal direction and a vertical direction. In the optical microscope equipped with an automatic focusing device including a sample stage and a drive mechanism section that vertically moves the sample stage according to an input focus detection signal, the sample placed on the sample stage A means for projecting a laser beam on the optical axis, a half mirror provided in the optical path of the optical microscope for reflecting the laser beam reflected from the sample, and an image of the reflected light from the half mirror for forming an image on the objective lens. focus A focusing lens connected to a conjugate position, a line sensor including a plurality of photoelectric conversion elements provided at a required tilt with respect to an optical axis at an imaging point of the focusing lens, and the focusing lens. A reflecting mirror which is provided in the optical path of the imaging lens and rotates at a constant period, and detects a position on the line sensor where the incident light becomes maximum due to the turning of the reflecting mirror, and the position on the line sensor is detected. The difference between the optical path length to the position and the optical path length to the preset focus position is obtained as a focus detection signal, and the sample table is moved in the vertical direction by the focus detection signal.

【0010】また、本発明の自動合焦点装置を備えた光
学顕微鏡は、ラインセンサが、対物レンズの倍率の切換
えに応じて光軸に対する傾きを変化させる手段を有し、
切換えた対物レンズの倍率に適した合焦点検出信号を得
て、試料台を垂直方向に移動させるものである。また、
本発明の自動合焦点装置を備えた光学顕微鏡は、試料に
レーザ光を投射する手段が、少なくとも、レーザ発光源
と、該レーザ発光源で発光したレーザ光の発光束を拡大
するビームエキスパンダと、拡大されたレーザ光を試料
へ投射するように光学顕微鏡の光路中に設けられたハー
フミラーとを有するものである。
Further, in the optical microscope equipped with the automatic focusing device of the present invention, the line sensor has means for changing the inclination with respect to the optical axis in accordance with the switching of the magnification of the objective lens,
The focus detection signal suitable for the magnification of the switched objective lens is obtained, and the sample stage is moved in the vertical direction. Also,
An optical microscope equipped with an automatic focusing device according to the present invention has a means for projecting a laser beam onto a sample, at least a laser emission source, and a beam expander for expanding the luminous flux of the laser beam emitted by the laser emission source. , And a half mirror provided in the optical path of the optical microscope so as to project the enlarged laser beam onto the sample.

【0011】[0011]

【作用】本発明の自動合焦点装置を備えた光学顕微鏡
は、少なくとも、観察する試料に焦点を結ぶように設け
られた対物レンズと、該対物レンズからの光の結像を所
定結像面位置に結ぶように設けられた結像レンズとを備
えた光学顕微鏡であり、少なくとも、前記試料を載置し
水平方向および垂直方向に移動可能な試料台と、入力さ
れる合焦点検出信号に応じて前記試料台を垂直方向に移
動させる駆動機構部とからなる自動合焦点装置を備えた
光学顕微鏡であって、前記試料台に載置された試料にレ
ーザ光を投射する手段によりレーザ光を投射し、前記光
学顕微鏡の光路中に設けたハーフミラーにより前記試料
から反射するレーザ光を反射し、前記対物レンズの焦点
と共役位置にあり光軸に対し所要の傾きで設けた複数の
光電変換素子からなるラインセンサ上に、前記ハーフミ
ラーからの反射光の結像を合焦点用結像レンズの光路中
に設けた一定周期で回動する反射鏡を介して前記合焦点
用結像レンズで結ぶことにより、前記反射鏡の回動によ
る入射光が最大となる前記ラインセンサ上の位置を検出
し、該ラインセンサ上の位置までの光路長とあらかじめ
設定した焦点位置までの光路長との差を得て合焦点検出
信号とし、該合焦点検出信号により前記試料台を垂直方
向に移動させる。
The optical microscope equipped with the automatic focusing device according to the present invention includes at least an objective lens provided so as to focus on a sample to be observed, and a light from the objective lens is imaged at a predetermined image plane position. Is an optical microscope including an imaging lens provided so as to be connected to, and at least a sample stage on which the sample is placed and movable in the horizontal direction and the vertical direction, and in accordance with an input focus detection signal. An optical microscope equipped with an automatic focusing device comprising a drive mechanism section for moving the sample table in a vertical direction, wherein a laser beam is projected by means for projecting a laser beam onto a sample placed on the sample table. , A laser beam reflected from the sample is reflected by a half mirror provided in the optical path of the optical microscope, and a plurality of photoelectric conversion elements are provided at a conjugate position with the focus of the objective lens and provided at a required inclination with respect to the optical axis. Na By forming an image of the reflected light from the half mirror on the line sensor with the focusing lens for focusing through a reflecting mirror that rotates in a constant cycle provided in the optical path of the focusing lens for focusing. , Detecting the position on the line sensor where the incident light is maximized by the rotation of the reflecting mirror, and obtaining the difference between the optical path length to the position on the line sensor and the optical path length to the preset focus position. The focus detection signal is used, and the sample stage is moved in the vertical direction by the focus detection signal.

【0012】[0012]

【実施例】本発明の一実施例を、図1〜図5を使用して
説明する。図1は、本発明による自動合焦点装置を備え
た光学顕微鏡の概略構成配置図である。図1において、
2は光学顕微鏡で観察する試料、1は、試料2を載置し
て水平および垂直方向へ移動可能な試料台、3は、光学
顕微鏡を構成する対物レンズ、4は、光学顕微鏡を構成
する結像レンズ、5は、結像レンズ4の結像面位置、6
は、入力される合焦点検出信号に応じて試料台1を上下
に移動させる駆動機構部、7は、光学顕微鏡の光路中に
設けたハーフミラー、8は、ハーフミラー7で反射した
光を結像する合焦点用結像レンズ、9は、合焦点用結像
レンズ8の光路中に設けた一定の周期で回動する反射
鏡、10は、合焦点用結像レンズ8の結像面位置に設け
た複数の光電変換素子からなるラインセンサ、11はレ
ーザダイオード、12は、レーザダイオード11で発光
したレーザ光の発光束を拡大するビームエキスパンダ、
13は、ビームエキスパンダ12で拡大投射してきたレ
ーザ光を反射するハーフミラーを示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration layout diagram of an optical microscope including an automatic focusing device according to the present invention. In FIG.
Reference numeral 2 is a sample to be observed with an optical microscope, 1 is a sample table on which the sample 2 is placed and is movable in horizontal and vertical directions, 3 is an objective lens which constitutes the optical microscope, and 4 is a result which constitutes the optical microscope. The image lenses 5 are the image plane positions of the image forming lens 4, and 6
Is a drive mechanism section for moving the sample table 1 up and down according to the input focus detection signal, 7 is a half mirror provided in the optical path of the optical microscope, and 8 is a unit for connecting the light reflected by the half mirror 7. An imaging lens for focusing, 9 is a reflecting mirror provided in the optical path of the imaging lens for focusing 8, which rotates at a constant cycle, and 10 is an image plane position of the imaging lens for focusing 8. A line sensor composed of a plurality of photoelectric conversion elements, a laser diode 11 and a beam expander 12 that expands the luminous flux of the laser light emitted by the laser diode 11.
Reference numeral 13 denotes a half mirror that reflects the laser light that has been enlarged and projected by the beam expander 12.

【0013】図1を使用し、本発明による自動合焦点装
置を備えた光学顕微鏡を説明する。光学顕微鏡は、試料
台1上に載置した試料2を、対物レンズ3の焦点位置に
設定し、試料2の所望光学像を結像レンズ4による結像
面位置5に結像させ、結像面位置5に例えばテレビカメ
ラ(図示していない。)を配置し観察する。レーザ光の
発光源である例えばレーザダイオード11で発光したレ
ーザ光は、ビームエキスパンダ12で発光束を拡大され
る。発光束を拡大されたレーザ光は、ハーフミラー13
で反射し、対物レンズ3により集光され、レーザ光のス
ポットとなり試料2の表面に投射される。
An optical microscope equipped with an automatic focusing device according to the present invention will be described with reference to FIG. The optical microscope sets the sample 2 mounted on the sample table 1 at the focal position of the objective lens 3, forms a desired optical image of the sample 2 on the image forming surface position 5 by the image forming lens 4, and forms an image. For example, a television camera (not shown) is arranged at the surface position 5 for observation. The laser light emitted from, for example, the laser diode 11, which is a light emission source of the laser light, is expanded in the luminous flux by the beam expander 12. The laser light whose luminous flux has been expanded is reflected by the half mirror 13.
The light is reflected by the laser beam, is condensed by the objective lens 3, and becomes a spot of laser light, which is projected on the surface of the sample 2.

【0014】試料2の表面に投射されたレーザ光は、試
料2の表面で反射され、対物レンズ3およびハーフミラ
ー13を通過し、ハーフミラー7で合焦点用結像レンズ
8へ反射される。ハーフミラー7で反射されたレーザ光
は、合焦点用結像レンズ8に入射し、一定の周期で回動
する反射鏡9で反射され、合焦点用結像レンズ8の結像
面位置に設けたラインセンサ10へ投射される。なお、
ラインセンサ10の中央は、合焦点用結像レンズ8と対
物レンズ3に関して、試料2の表面と共役な位置となる
ように、また、ラインセンサ10は、光学顕微鏡の光軸
に対し所要の傾斜値を有するように配置されている。
The laser light projected on the surface of the sample 2 is reflected by the surface of the sample 2, passes through the objective lens 3 and the half mirror 13, and is reflected by the half mirror 7 to the focusing lens 8 for focusing. The laser light reflected by the half mirror 7 enters the focusing lens 8 for focusing, is reflected by the reflecting mirror 9 which rotates at a constant cycle, and is provided at the image plane position of the focusing lens 8 for focusing. Is projected onto the line sensor 10. In addition,
The center of the line sensor 10 is located at a position conjugate with the surface of the sample 2 with respect to the focusing lens 8 and the objective lens 3, and the line sensor 10 has a required inclination with respect to the optical axis of the optical microscope. It is arranged to have a value.

【0015】図2に示す、一定周期で回動する反射鏡と
ラインセンサとの動作説明図を使用して、さらに説明を
する。図2において、一定周期で回動する反射鏡9が実
線で示す位置にある場合は、合焦点用結像レンズ8から
入射する光が反射鏡9で反射して光路P−Loを通過す
る。また、一定周期で回動する反射鏡9が点線で示す位
置にある場合は、合焦点用結像レンズ8から入射する光
が反射鏡9で反射して光路P−Lnを通過する。したが
って、光路P−Loを通過した光は、ラインセンサ10
の0番目の素子に入射し、光路P−Lnを通過した光
は、ラインセンサ10のn番目の素子に入射する。
A further explanation will be given using the operation explanatory view of the reflecting mirror and the line sensor which rotate at a constant cycle shown in FIG. In FIG. 2, when the reflecting mirror 9 that rotates at a constant period is at the position shown by the solid line, the light incident from the focusing lens 8 is reflected by the reflecting mirror 9 and passes through the optical path P-Lo. Further, when the reflecting mirror 9 that rotates at a constant period is located at the position shown by the dotted line, the light incident from the focusing lens 8 is reflected by the reflecting mirror 9 and passes through the optical path P-Ln. Therefore, the light that has passed through the optical path P-Lo is not detected by the line sensor 10
The light that has entered the 0th element of the line sensor and has passed through the optical path P-Ln enters the nth element of the line sensor 10.

【0016】このように、反射鏡9が、一定の周期で角
度θの回動をすることにより、光路長の差 △Z=PLo−PLn ・・・・・(1) で示す△Z内で、光軸方向の焦点位置を判断することが
できる。本実施例においては、ラインセンサ10の中央
の素子の入射光が、他の素子の入射光に比較して最大強
度のときを合焦点結像位置に設定するが、このときのラ
インセンサ10の輝度分布は図3に示すJの特性とな
る。対物レンズ3と試料2の距離が近づくと図3のnの
特性、遠ざかると図3のfの特性となる。したがって、
nの特性の場合は、試料2を対物レンズ3から離す方向
に、fの特性の場合は、試料2を対物レンズ3に近づけ
る方向に駆動することで自動合焦点の制御が可能とな
る。すなわち、(1)式に示したΔZが焦点を検出でき
る範囲であり、ラインセンサ10の傾斜値を大きくする
ことにより、△Zを大きくすることができる。しかし、
ラインセンサ10の傾斜値を大きくすると、ラインセン
サ10の素子が受光する光量が減少することになる。
In this way, the reflecting mirror 9 rotates by the angle θ at a constant cycle, so that the difference in optical path length ΔZ = PLo-PLn (1) within ΔZ. , The focus position in the optical axis direction can be determined. In the present embodiment, when the incident light of the central element of the line sensor 10 has the maximum intensity as compared with the incident light of the other elements, it is set as the in-focus image forming position. The luminance distribution has the characteristics of J shown in FIG. When the distance between the objective lens 3 and the sample 2 becomes short, the characteristic of n in FIG. 3 and the characteristic of f in FIG. Therefore,
When the characteristic is n, the sample 2 is driven in a direction away from the objective lens 3, and when the characteristic is f, the sample 2 is driven in a direction closer to the objective lens 3, whereby the automatic focusing can be controlled. That is, ΔZ shown in the equation (1) is the range in which the focus can be detected, and ΔZ can be increased by increasing the inclination value of the line sensor 10. But,
When the inclination value of the line sensor 10 is increased, the amount of light received by the elements of the line sensor 10 decreases.

【0017】また、対物レンズ3は、回転変倍機構の電
動レボルバ等により複数の対物レンズを切換えて、例え
ば5倍、10倍、20倍、50倍、100倍のように変
倍することができるが、切換えた場合、それぞれ焦点深
度が異なる全倍率の自動合焦点が求められる。例えば対
物レンズ3が5倍のときは、(1)式に示した△Zを大
きく、かつ、光量を少なくする必要があり、100倍の
ときは、△Zを小さく、かつ、光量を多くする必要があ
るので、5倍(低倍率)のときはラインセンサ10の傾
斜値を大きくし、100倍(高倍率)のときはラインセ
ンサ10の傾斜値を小さくすることで、全ての倍率で自
動合焦点が可能となる。
The objective lens 3 can be magnified by, for example, 5 times, 10 times, 20 times, 50 times, and 100 times by switching a plurality of objective lenses by an electric revolver of a rotary magnification changing mechanism. However, when switching is performed, automatic focusing at all magnifications with different depths of focus is required. For example, when the objective lens 3 has a magnification of 5, ΔZ shown in the equation (1) needs to be large and the amount of light needs to be small. When the objective lens 3 has a magnification of 100, ΔZ has to be small and the amount of light increases. Since it is necessary to increase the inclination value of the line sensor 10 when the magnification is 5 times (low magnification) and decrease the inclination value of the line sensor 10 when the magnification is 100 times (high magnification), automatic adjustment is performed at all magnifications. Focusing is possible.

【0018】また、図4に示すように、試料2の輪郭部
2aにレーザ光のスポットが投射された場合には、レー
ザ光は乱反射して、図3に示すような最大光量=合焦点
位置とならずに、図5に示すように輝度を表す山が2つ
以上となるときがあるが、このようなときに、最大輝度
点を焦点位置とすると誤動作となる。したがって、本発
明の自動合焦点装置を備えた光学顕微鏡においては、誤
動作防止として、ラインセンサ10の全素子の輝度Vの
和Sを求め、再度ラインセンサ10の輝度をk=0,
1,2と加えていき、(S/2)値に達するラインセン
サ10の全素子位置Xを求め、X=焦点位置と想定する
ことを行なう。つまり、ラインセンサ全素子の輝度Vの
を求め、 となるXの位置を、焦点位置と想定する。本発明による
自動合焦点装置を備えた光学顕微鏡によれば、高速かつ
高精度の合焦点を得ることができる。
Further, as shown in FIG. 4, when the spot of the laser light is projected on the contour portion 2a of the sample 2, the laser light is diffusely reflected and the maximum light amount = focus position as shown in FIG. However, there are cases where there are two or more peaks representing the brightness as shown in FIG. 5, but in such a case, if the maximum brightness point is set as the focus position, malfunction occurs. Therefore, in the optical microscope equipped with the automatic focusing device of the present invention, the sum S of the luminances V of all the elements of the line sensor 10 is obtained to prevent malfunction, and the luminance of the line sensor 10 is again set to k = 0,
By adding 1 and 2, all element positions X of the line sensor 10 that reach the (S / 2) value are obtained, and it is assumed that X = focal position. That is, the sum of the brightness V of all elements of the line sensor Seeking The position of X at which is assumed to be the focus position. According to the optical microscope provided with the automatic focusing device according to the present invention, it is possible to obtain a high-speed and high-precision focusing point.

【0019】[0019]

【発明の効果】本発明によれば、レーザダイオード等に
よるレーザスポット光を試料の表面に投射し、試料から
反射したレーザ光をハーフミラーを介して光軸から傾斜
して設けたラインセンサ上に結像し光量を検出して、凹
凸のある試料に対応可能とした自動合焦点装置を備えた
光学顕微鏡を提供することができる。
According to the present invention, a laser spot light from a laser diode or the like is projected onto the surface of a sample, and the laser light reflected from the sample is placed on a line sensor which is inclined from the optical axis through a half mirror. It is possible to provide an optical microscope equipped with an automatic focusing device capable of forming an image and detecting the amount of light to deal with a sample having irregularities.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による自動合焦点装置を備えた光学顕微
鏡の概略構成配置図。
FIG. 1 is a schematic configuration layout diagram of an optical microscope including an automatic focusing device according to the present invention.

【図2】本発明による自動合焦点装置を備えた光学顕微
鏡の一定周期で回動する反射鏡とラインセンサの動作説
明図。
FIG. 2 is an operation explanatory view of a reflecting mirror and a line sensor which rotate in a constant cycle of an optical microscope including an automatic focusing device according to the present invention.

【図3】本発明による自動合焦点装置を備えた光学顕微
鏡のラインセンサの出力波形図。
FIG. 3 is an output waveform diagram of a line sensor of an optical microscope equipped with an automatic focusing device according to the present invention.

【図4】観察する試料に投射されたレーザ光の反射状況
を説明する図。
FIG. 4 is a diagram illustrating a reflection state of laser light projected on a sample to be observed.

【図5】図4に示すレーザ光の反射光をラインセンサで
検出した場合の出力波形図。
FIG. 5 is an output waveform diagram when the reflected light of the laser light shown in FIG. 4 is detected by a line sensor.

【図6】従来技術の自動合焦点装置を備えた光学顕微鏡
を説明するための概略構成配置図。
FIG. 6 is a schematic configuration layout diagram for explaining an optical microscope including a conventional automatic focusing device.

【図7】自動合焦点装置を備えた光学顕微鏡の従来技術
を説明するための出力波形図。
FIG. 7 is an output waveform diagram for explaining a conventional technique of an optical microscope including an automatic focusing device.

【符号の説明】[Explanation of symbols]

1、61…試料台、2、62…試料、3、63…対物レ
ンズ、4、64…結像レンズ、5、65…結像面位置、
6、66…駆動機構部、7、13、67、69…ハーフ
ミラー、8、68…合焦点用結像レンズ、9…反射鏡、
10…ラインセンサ、11…レーザダイオード、12…
ビームエキスパンダ、70、71…光電変換素子。
1, 61 ... Sample stage, 2, 62 ... Sample, 3, 63 ... Objective lens, 4, 64 ... Imaging lens, 5, 65 ... Imaging plane position,
6, 66 ... Driving mechanism section, 7, 13, 67, 69 ... Half mirror, 8, 68 ... Focusing imaging lens, 9 ... Reflecting mirror,
10 ... Line sensor, 11 ... Laser diode, 12 ...
Beam expander, 70, 71 ... Photoelectric conversion element.

フロントページの続き (56)参考文献 特開 平8−21961(JP,A) 特開 昭62−909(JP,A) 特開 平7−104178(JP,A) 特開 平6−294924(JP,A) 特開 昭64−55513(JP,A) 特開 平7−72378(JP,A) 特開 昭53−50851(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 7/02 - 7/16 G02B 7/28 - 7/40 G02B 21/00 G02B 21/06 - 21/36 Continuation of front page (56) Reference JP-A-8-21961 (JP, A) JP-A-62-909 (JP, A) JP-A-7-104178 (JP, A) JP-A-6-294924 (JP , A) JP 64-55513 (JP, A) JP 7-72378 (JP, A) JP 53-50851 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) Name) G02B 7/02-7/16 G02B 7/28-7/40 G02B 21/00 G02B 21/06-21/36

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも、観察する試料に焦点を結ぶ
ように設けられた対物レンズと、該対物レンズからの光
の結像を所定結像面位置に結ぶように設けられた結像レ
ンズとを備えた光学顕微鏡であって、少なくとも、前記
試料を載置し水平方向および垂直方向に移動可能な試料
台と、入力される合焦点検出信号に応じて前記試料台を
垂直方向に移動させる駆動機構部とからなる自動合焦点
装置を備えた光学顕微鏡において、 前記試料台に載置された試料にレーザ光を投射する手段
と、 前記試料から反射するレーザ光を反射するための前記光
学顕微鏡の光路中に設けたハーフミラーと、 該ハーフミラーからの反射光の結像を、前記対物レンズ
の焦点と共役位置に結ぶ合焦点用結像レンズと、 該合焦点用結像レンズの結像点において、光軸に対し所
要の傾きで設けた複数の光電変換素子からなるラインセ
ンサと、 前記合焦点用結像レンズの光路中に設けた一定周期で回
動する反射鏡とを有し、 該反射鏡の回動による入射光が最大となる前記ラインセ
ンサ上の位置を検出し、該ラインセンサ上の位置までの
光路長とあらかじめ設定した焦点位置までの光路長との
差を得て合焦点検出信号とし、該合焦点検出信号により
前記試料台を垂直方向に移動させることを特徴とする自
動合焦点装置を備えた光学顕微鏡。
1. At least an objective lens provided so as to focus on a sample to be observed, and an imaging lens provided so as to connect an image of light from the objective lens to a predetermined image plane position. An optical microscope provided with at least a sample stage on which the sample is placed and movable in the horizontal and vertical directions, and a drive mechanism for moving the sample stage in the vertical direction according to an input focus detection signal. In an optical microscope equipped with an automatic focusing device consisting of a unit, means for projecting a laser beam onto a sample placed on the sample table, and an optical path of the optical microscope for reflecting a laser beam reflected from the sample. At a half mirror provided inside, an image forming lens for focusing that connects the image of reflected light from the half mirror to a conjugate position with the focus of the objective lens, and an image forming point of the image forming lens for focusing. On the optical axis And a line sensor composed of a plurality of photoelectric conversion elements provided with a required inclination, and a reflecting mirror that rotates in a constant cycle provided in the optical path of the focusing lens, and the rotation of the reflecting mirror Detects the position on the line sensor where the incident light is maximum, and obtains the difference between the optical path length up to the position on the line sensor and the optical path length up to the preset focus position as a focus detection signal, An optical microscope equipped with an automatic focusing device, characterized in that the sample stage is moved in a vertical direction by a focusing detection signal.
【請求項2】 請求項1記載のものにおいて、ラインセ
ンサは、対物レンズの倍率の切換えに応じて光軸に対す
る傾きを変化させる手段を有し、 切換えた対物レンズの倍率に適した合焦点検出信号を得
て、試料台を垂直方向に移動させることを特徴とする自
動合焦点装置を備えた光学顕微鏡。
2. The line sensor according to claim 1, wherein the line sensor has means for changing a tilt with respect to the optical axis according to switching of the magnification of the objective lens, and focus detection suitable for the magnification of the switched objective lens. An optical microscope equipped with an automatic focusing device, characterized in that it obtains a signal and moves the sample stage in a vertical direction.
【請求項3】 請求項1記載のものにおいて、試料にレ
ーザ光を投射する手段は、少なくとも、レーザ発光源
と、該レーザ発光源で発光したレーザ光の発光束を拡大
するビームエキスパンダと、拡大されたレーザ光を試料
へ投射するように光学顕微鏡の光路中に設けられたハー
フミラーとを有することを特徴とする自動合焦点装置を
備えた光学顕微鏡。
3. The device according to claim 1, wherein the means for projecting the laser light onto the sample is at least a laser emission source, and a beam expander for expanding the emission flux of the laser light emitted by the laser emission source. An optical microscope having an automatic focusing device, comprising: a half mirror provided in the optical path of the optical microscope so as to project the magnified laser beam onto a sample.
JP13944295A 1995-06-06 1995-06-06 Optical microscope with automatic focusing device Expired - Fee Related JP3390106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13944295A JP3390106B2 (en) 1995-06-06 1995-06-06 Optical microscope with automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13944295A JP3390106B2 (en) 1995-06-06 1995-06-06 Optical microscope with automatic focusing device

Publications (2)

Publication Number Publication Date
JPH08334668A JPH08334668A (en) 1996-12-17
JP3390106B2 true JP3390106B2 (en) 2003-03-24

Family

ID=15245303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13944295A Expired - Fee Related JP3390106B2 (en) 1995-06-06 1995-06-06 Optical microscope with automatic focusing device

Country Status (1)

Country Link
JP (1) JP3390106B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232980B2 (en) 2004-05-24 2007-06-19 Hamamatsu Photonics K.K. Microscope system
US7813579B2 (en) 2004-05-24 2010-10-12 Hamamatsu Photonics K.K. Microscope system
KR101484323B1 (en) 2008-04-11 2015-01-28 데쿠세리아루즈 가부시키가이샤 Automatic focus control unit, electronic device and automatic focus control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923619B1 (en) * 2007-11-13 2009-11-20 Thales Sa DEVICE FOR FAULT MEASUREMENT OF AN OPTOELECTRONIC SENSOR IMAGING INSTRUMENT AND CORRECTION DEVICE COMPRISING SAME
GB201113071D0 (en) * 2011-07-29 2011-09-14 Ffei Ltd Method and apparatus for image scanning
CN112014362B (en) * 2019-05-30 2024-04-09 中国科学院大连化学物理研究所 Microscopic imaging full-spectrum high-voltage module time-resolved fluorescence measurement system
CN114415325B (en) * 2022-02-22 2023-11-03 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Focusing optical imaging system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232980B2 (en) 2004-05-24 2007-06-19 Hamamatsu Photonics K.K. Microscope system
US7813579B2 (en) 2004-05-24 2010-10-12 Hamamatsu Photonics K.K. Microscope system
KR101484323B1 (en) 2008-04-11 2015-01-28 데쿠세리아루즈 가부시키가이샤 Automatic focus control unit, electronic device and automatic focus control method

Also Published As

Publication number Publication date
JPH08334668A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
JP2995411B2 (en) Automatic focusing device for microscope
US11656429B2 (en) Systems, devices, and methods for automatic microscopic focus
US5932871A (en) Microscope having a confocal point and a non-confocal point, and a confocal point detect method applied thereto
US6191885B1 (en) Confocal microscope apparatus and photographing apparatus for confocal microscope
US5758206A (en) Lens position control device for a zoom lens
US7228070B2 (en) Image projection apparatus, projection image pattern, laser drive apparatus, camera apparatus
US5270527A (en) Method for autofocusing of microscopes and autofocusing system for microscopes
US4935612A (en) Autofocus system and method of using the same
JPH0623808B2 (en) Automatic focusing device for optical instruments
JP3390106B2 (en) Optical microscope with automatic focusing device
US5886813A (en) Autofocus control apparatus and method applied to microscope
JP2003098437A (en) Scanning microscope and method for scanning target
JP3509088B2 (en) Optical device for three-dimensional shape measurement
JP3290606B2 (en) Autofocus device for microscope
JPH09230250A (en) Automatic focusing device for optical microscope
JPH0595907A (en) Eyeground camera
JP3226299B2 (en) Focus detection device
JP2000352661A (en) Focusing device
JPH0580246A (en) Automatic focusing device and observation device equipped with the same
JPH1026725A (en) Automatic focusing device
JP2589924Y2 (en) Confocal microscope
JP3403451B2 (en) Automatic focusing device for microscope
JPH08122623A (en) Autofocusing device
JP3275339B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
US5379082A (en) Method of automatically focusing glass-mounted and glassless slides in slide projectors

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120117

LAPS Cancellation because of no payment of annual fees