JP3389266B2 - Objective optical system for endoscope - Google Patents
Objective optical system for endoscopeInfo
- Publication number
- JP3389266B2 JP3389266B2 JP23759292A JP23759292A JP3389266B2 JP 3389266 B2 JP3389266 B2 JP 3389266B2 JP 23759292 A JP23759292 A JP 23759292A JP 23759292 A JP23759292 A JP 23759292A JP 3389266 B2 JP3389266 B2 JP 3389266B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- aberration
- chromatic aberration
- image
- optical system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Landscapes
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Lenses (AREA)
- Endoscopes (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、色収差の良好に補正さ
れたコンパクトな内視鏡用対物光学系に関するものであ
る。
【0002】
【従来の技術】従来、気管支や胆道に用いる内視鏡や工
業用細径内視鏡等の比較的画素数が少なくコンパクトで
あって、像面湾曲も良好に補正され構成レンズ枚数の少
ない内視鏡用対物光学系として本出願人の開発した特願
平4−156218号の発明がある。この光学系は、図
19に示すように凹レンズと凸レンズの2枚のレンズよ
りなっている。このような構成の対物光学系は、軸上の
色収差と倍率の色収差を補正するための要因がないため
各レンズで発生する色収差を極力小にするためにアッベ
数の大きな硝材を用いることによって、イメージガイド
や固体撮像素子の数画素以内に色収差を補正して実用上
耐え得る性能を確保するようにしている。
【0003】一般に、倍率の色収差が大きい対物光学系
は、特に像の周辺部において色のにじみが目立つ。又軸
上の色収差の大きい対物光学系は、像の全体にわたって
色のにじみが出て、画質の低下をまねくとともに医療用
の内視鏡の対物光学系として使用した場合診断のさまた
げになることが多い。
【0004】近年、イメージガイドの製造技術および固
体撮像素子の製造技術の向上により、より高解像力なも
のが作られるようになり、そのために内視鏡用対物光学
系も倍率の色収差や軸上の色収差を十分良好に補正して
高い解像力を有するようにする必要がある。しかし前記
の対物レンズにおいては、倍率の色収差および軸上の色
収差の補正が十分でなく又この構成では、これら収差を
補正する要因がないためこれら色収差を十分に補正して
解像力を補正することが困難である。
【0005】本発明は構成レンズ枚数が少なくしかも倍
率の色収差および軸上の色収差が十分良好に補正された
広角な内視鏡用対物光学系を提供することにある。
【0006】
【課題を解決するための手段】本発明の対物光学系は、
図1に示すように、物体側より順に、像側に凹面を向け
た発散レンズの前群と、明るさ絞りと、像側に凹面を向
けた発散レンズと両凸の収斂レンズとを接合した接合レ
ンズの収斂レンズ群である後群とよりなり、後群の発散
レンズのアッベ数ν2dと収斂レンズのアッベ数ν3dとが
下記の関係を有するものである。
(1) ν2d<ν3d
一般に、主光線の屈折の大きい面に強いパワーを持たせ
ると諸収差の発生が大になる。これをさけるために明る
さ絞りに対しコンセントリックに近い面にすることが好
ましい。
【0007】本発明では、前述のようなレンズ構成にし
たが、後群の収斂レンズの像側の凸面の正のパワーを強
くすることが望ましい。この面が発散レンズの物体側の
面より曲率が弱くなって|r4 |≦|r6 |になると明
るさ絞りを通過した軸外光束の特に上側周縁光線が前記
の後群の発散レンズの物体側の面で大きなコマ収差、非
点収差が発生し補正不足になる。尚r4 ,r6 は夫々後
群の発散レンズの物体側の面および収斂レンズの像側の
面の曲率半径である。
【0008】又本発明の対物光学系は、コンパクト化を
実現するために明るさ絞りを挟んで前群の発散レンズ群
と後群の収斂レンズ群とが近接配置されている。そのた
め視野周辺に結像する光線は後群の収斂レンズ群の物体
側の面に大きな角度で入射することになり、この面で大
きな倍率の色収差が発生する。又後群の収斂レンズ群の
像側の面に強い正のパワーを持たせているのでこの面で
大きな軸上色収差が発生する。これら倍率の色収差およ
び軸上の色収差を良好に補正するために、後群の接合面
の曲率中心が明るさ絞りと反対側に来るようにすると共
に後群の発散レンズのアッベ数ν2dと収斂レンズのアッ
ベ数ν3dとを前述のような関係にしている。
【0009】前述のアッベ数の関係が逆にν2d>ν
3dの時には接合レンズの曲率中心を明るさ絞り側に配
置すれば軸上の色収差を補正することが可能であるが、
軸外光束の接合面への入射角を大きくとれないため倍率
の色収差の十分な補正は出来ない。また接合面の曲率を
強くして色収差の補正作用を強くすると後群の第2の光
学要素である収斂レンズの縁肉厚が小になり加工上の問
題が生ずる。
【0010】本発明のレンズ構成のように後群接合レン
ズの接合面の曲率中心が明るさ絞りと反対側に位置する
ようにすれば、軸外光束の光線高が高くなるほど接合面
への入射角が大きくなるので、軸上色収差はもとより倍
率の色収差を良好に補正することが可能になり、これに
より広角化を図る場合にも有利である。
【0011】また、接合収斂レンズのうちの発散レンズ
は、分散が大きいほど色収差補正の効果が高いので、下
記の条件(2)を満足することが望ましい。
(2) ν2d<35
倍率の色収差および軸上の色収差を更に良好に補正する
ためには、前群発散レンズの分散を小さくすることが望
ましく下記条件(3)を満足することが望ましい。
(3) ν1d>40
前群発散レンズが上記の条件を満足すると良好に色収差
を補正出来るのでその分後群収斂レンズの接合面の曲率
をゆるくすることが出来、その第2光学要素である収斂
レンズ(両凸レンズ)の加工性が向上する。
【0012】次に本発明の対物光学系の少なくとも1面
に非球面を設け、この非球面が次の条件(4)を満足す
るようにすれば球面収差、コマ収差等を一層良好に補正
する上で好ましい。
(4) Ei'(ni-1 −ni )>0
ただしEi'は上記の非球面の4次の非球面係数、n
i-1 ,ni は夫々非球面の物体側および像側の媒質の屈
折率である。
【0013】ここで本発明における非球面の表現につい
て説明する。後に記載する実施例は、非球面の形状を次
に式を用いて表わしている。
【0014】ただしx,yは光軸をx軸にとりその像の
方向を正、又光軸に垂直な方向をy軸にとったもので、
面と光軸との交点を原点としている。またri は2次曲
面項における曲率半径、pは円錐定数、Bi ,Ei ,F
i ,Gi ,・・・は夫々2次,4次,6次,8次,・・
・の非球面係数である。
【0015】上記の式は、軸対称な面を表現するには自
由度が高く好適であるが収差論的な説明には不向きであ
る。そのために本発明での非球面の作用を説明するには
次に記載する式が好ましく、この式にもとづいて説明す
る。
【0016】式(b)においてri は非球面の基準球面
(面頂における非球面に接する球面)の曲率半径、
Ei',Fi',Gi',・・・は夫々変換後の4次,6次,
8次,・・・の非球面係数である。
【0017】式(a)から式(b)への変換は、テーラ
ー展開を用いて行なうことが出来、ri'と12次までの
低次の係数の変換式を示すと次の通りである。尚下記の
ri',Ei',・・・,Ii'の各変換式を一括して式
(c)と呼ぶ。
ri'=ri /(1+2Bi ri )
Ei'=0.125 {Pi −(1+2Bi ri )3 }/ri 3+
Ei
Fi'=0.0625{Pi 2−(1+2Bi ri )5 }/ri 5+
Fi
Gi'=0.0390625 {Pi 3−(1+2Bi ri )7 }/r
i 7+Gi
Hi'=0.02734375{Pi 4−(1+2Bi ri )9 }/r
i 9+Hi
Ii'=0.02050782{Pi 5−(1+2Bi ri )11}/r
i 11 +Ii
上記の式(c)のうち各非球面係数の式の右辺の第1項
は、2次曲面項をテーラー展開して求めたものである。
展開して求めた式は無限級数になるので、有限次数の表
現では近似になる。しかし通常12次の係数まで含めれ
ば極めて良い近似となるのでここでは12次までの計算
式を記載するにとどめる。尚式(a)においてPi =
1、Bi =0であれば変換の必要はなく、ri'=ri ,
Ei'=Ei ,Fi'=Fi ,Gi'=Gi ・・・となる。
【0018】前記の条件(4)は、非球面により球面収
差、コマ収差等を良好に補正するための条件である。非
球面は、色収差と像面湾曲以外の諸収差を補正するため
には効果的である。本発明ではレンズ系の構成枚数が少
ないことによる残存収差を非球面の作用を用いて打ち消
すようにした。このように非球面を用いるためには、レ
ンズ系での残存収差を知る必要がある。
【0019】本発明の構成のレンズ系では、一般に負の
球面収差,負のコマ収差(内コマ)が残る。そのため非
球面によりこれらの収差を補正する必要があり、したが
って非球面にて各収差に対し正の収差が発生するように
すればよい。
【0020】ここで4次の非球面係数Ei'と非球面化に
より生ずる球面収差,コマ収差の3次の収差係数との関
係を示すと下記の式(d),(e)の通りである。
ΔSPi =8hi 4・Ei'(ni-1 −ni ) (d)
ΔCMi =8hi 3・hci・Ei'(ni-1 −ni ) (e)
ただしΔSPi ,ΔCMi は夫々非球面の4次の係数E
i'で生ずる球面収差、コマ収差の3次収差係数、hi は
非球面における近軸マージナル光線高、hciは非球面に
おける近軸主光線高である。
【0021】式(d),(e)では、収差の種類によっ
てhi およびhciの次数が異なり、そのため非球面の配
置によって各収差への影響に違いが生じる。近軸マージ
ナル光線は、光学系中光軸に対して常に同じ側にあるの
でhi の符号は常に正であり、一方近軸主光線は、絞り
の中心で光軸を横切るために、hciは絞りの前後で符号
が異なり絞りの前では負又絞りより後方では正である。
このhi ,hciの符号を用いて算出したΔSPi ,ΔC
Mi の符号がそのまま非球面で発生する収差の符号にな
る。絞りより前の前群中に非球面を配置してΔSPi を
正にするためにはEi'(ni-1 −ni )>0にする必要
がある。その時ΔCMi <0となる。そのため球面収差
を補正しようとすると残存コマ収差が非球面の作用によ
り悪化するので、非球面を用いての効果はあまり好まし
いものではない。しかし非球面で発生するコマ収差は、
球面系で補正し、その時に発生する大きな球面収差を非
球面で十分良好に補正すればレンズ系の収差を良好なも
のにすることが可能である。又絞りより後方の後群中に
非球面を用いてEi'(ni-1 −ni )>0とすれば、Δ
SPi >0,ΔCMi >0となり非球面を用いない場合
の残存収差をいずれも非球面で打ち消すことが可能にな
る。そのためこの後群に非球面を設けて条件(4)を満
足するようにすることが望ましい。尚この後群中での非
球面の配置位置は、高NA化の際に影響の大きい球面収
差、コマ収差を効率良く補正するためにマージナル光線
高の相対的に高い面でかつ収差発生量の大きい正のパワ
ーの強い面が適している。そのため絞りより後方の後群
収斂レンズ群中の第2レンズ要素である収斂レンズの像
側の面が最も望ましい。
【0022】条件(4)は、非球面係数の符号を規定す
るものであるが、非球面の近軸曲率半径r' を半径とす
る基準球面からの非球面の変位量を用いて代用してもよ
い。式(b)の右辺の第1項を除いたものが非球面の変
位量Δx(y)となるので、このΔx(y)は次の式
(f)で定義される。
Δx(y)=Ei'y4 +Fi'y6 +Gi'y8 +・・・ (f)
上記の式(f)においてyの次数はすべて偶数であるた
め非球面係数の符号とその影響によるΔx(y)の変位
の符号は同じである。そのため条件(4)に代る表現と
して次の条件(5)のような規定も可能である。
(5) Δx(y){ni-1 −ni }>0
ここでΔx(y)は光軸からの距離であるyの関数であ
るが、本発明の主目的である球面収差の補正のために
は、マージナル光線(明るさ絞りの周縁を通る軸上物点
からの光線)の非球面上での光線高をhmとするとy=
hmのところで次の条件(6)を満足することが好まし
い。
(6) Δx(hm){ni-1 −ni }>0
したがって、条件(4)の代りに上記の条件(6)を用
いてもよい。
【0023】
【実施例】次に本発明の内視鏡用対物光学系の各実施例
を示す。
実施例1
f=1.000 ,Fナンバー=3.927 ,像高=1.0139,2ω
=140 °
物体距離=∞
r1 =∞ d1 =0.2151 n1 =1.51633
ν1 =64.15
r2 =2.0588 d2 =0.1499
r3 =∞(絞り) d3 =0.0396
r4 =-3.4926 d4 =0.0978 n2 =1.8051
8 ν2 =25.43
r5 =0.7762 d5 =0.4941 n3 =1.8160
0 ν3 =46.62
r6 =-0.6650
PS=0.387
【0024】実施例2
f=1.000 ,Fナンバー=3.978 ,像高=0.9862,2ω
=130 °
物体距離=∞
r1 =∞ d1 =0.2093 n1 =1.7725
0 ν1 =49.66
r2 =2.0904 d2 =0.0613
r3 =∞(絞り) d3 =0.0386
r4 =-4.9556 d4 =0.0952 n2 =1.8051
8 ν2 =25.43
r5 =0.8480 d5 =0.4808 n3 =1.8160
0 ν3 =46.62
r6 =-0.6447
PS=0.403
【0025】実施例3
f=1.000 ,Fナンバー=4.456 ,像高=0.8742,2ω
=110 °
物体距離=∞
r1 =∞ d1 =0.1856 n1 =1.7291
6 ν1 =54.68
r2 =1.4756 d2 =0.0341
r3 =∞(絞り) d3 =0.0878
r4 =-5.6354 d4 =0.0845 n2 =1.8051
8 ν2 =25.43
r5 =0.8362 d5 =0.3983 n3 =1.8160
0 ν3 =46.62
r6 =-0.6145
PS=0.37
【0026】実施例4
f=1.000 ,Fナンバー=4.437 ,像高=0.8778,2ω
=110 °
物体距離=∞
r1 =∞ d1 =0.1863 n1 =1.7291
6 ν1 =54.68
r2 =1.5402 d2 =0.0343
r3 =∞(絞り) d3 =0.0993
r4 =9.7981 d4 =0.0848 n2 =1.84666
ν2 =23.78
r5 =0.8996 d5 =0.4000 n3 =1.7291
6 ν3 =54.68
r6 =-0.5754
PS=0.465
【0027】実施例5
f=0.999 ,Fナンバー=4.025 ,像高=0.9926,2ω
=140 °
物体距離=∞
r1 =∞ d1 =0.2106 n1 =1.5163
3 ν1 =64.15
r2 =2.3331(非球面)d2 =0.1489
r3 =∞(絞り) d3 =0.0333
r4 =∞ d4 =0.0782 n2 =1.8051
8 ν2 =25.43
r5 =0.7599 d5 =0.4468 n3 =1.8160
0 ν3 =46.62
r6 =-0.7442
非球面係数
P=1.0000,B=0 ,E=0.21919 ×10,F=-0.15432
×102
G=0.10528 ×103
Ei'=2.1919,Fi'=-15.432 ,Gi'=105.28,Hi'=
0 ,Ii'=0
Ei'(ni-1 −ni )=1.1317
Δx(hm ){ni-1 −ni }=2.416 ×10-4 ,PS
=0.462
【0028】実施例6
f=1.000 ,Fナンバー=3.878 ,像高=1.0188,2ω
=140 °
物体距離=∞
r1 =∞ d1 =0.2162 n1 =1.5163
3 ν1 =64.15
r2 =2.4934(非球面)d2 =0.1299
r3 =∞(絞り) d3 =0.0342
r4 =-3.0474 d4 =0.1241 n2 =1.8051
8 ν2 =25.43
r5 =0.7800 d5 =0.4969 n3 =1.8160
0 ν3 =46.62
r6 =-0.6650
非球面係数
P=1.0000,B=0 ,E=0.81161 ,F=-0.11324×10
2
G=0.46435 ×102
Ei'=0.81161 ,Fi'=-11.324 ,Gi'=46.435,Hi'
=0 ,Ii'=0
Ei'(ni-1 −ni )=0.4191
Δx(hm ){ni-1 −ni }=9.094 ×10-5 ,PS
=0.397
【0029】実施例7
f=1.000 ,Fナンバー=4.680 ,像高=0.8476,2ω
=110 °
物体距離=∞
r1 =∞ d1 =0.1799 n1 =1.7291
6 ν1 =54.68
r2 =1.2535 d2 =0.0608
r3 =∞(絞り) d3 =0.1109
r4 =∞(非球面) d4 =0.1520 n2 =1.8466
6 ν2 =23.88
r5 =0.8776 d5 =0.4203 n3 =1.8160
0 ν3 =46.62
r6 =-0.6499
非球面係数
P=1.0000,B=0 ,E=-0.79869,F=0.84299 ×10
G=-0.43452×102
Ei'=-0.79869,Fi'=8.4299,Gi'=-43.452 ,Hi'
=0 ,Ii'=0
Ei'(ni-1 −ni )=0.6762
Δx(hm ){ni-1 −ni }=1.097 ×10-4 ,PS
=0.345
【0030】実施例8
f=1.000 ,Fナンバー=4.653 ,像高=0.8507,2ω
=110 °
物体距離=∞
r1 =∞ d1 =0.1806 n1 =1.7291
6 ν1 =54.68
r2 =1.1780 d2 =0.0541
r3 =∞(絞り) d3 =0.1132
r4 =-10.6961(非球面)d4 =0.1143 n2 =1.84
666 ν2 =23.88
r5 =0.8869 d5 =0.4080 n3 =1.8160
0 ν3 =46.62
r6 =-0.6145
非球面係数
P=1.0000,B=0 ,E=-0.53141,F=0.69161 ×10
G=-0.45286×102
Ei'=-0.53141,Fi'=6.9161,Gi'=-45.286 ,Hi'
=0 ,Ii'=0
Ei'(ni-1 −ni )=0.4499
Δx(hm ){ni-1 −ni }=7.286 ×10-5 ,PS
=0.32
【0031】実施例9
f=1.000 ,Fナンバー=4.724 ,像高=0.8787,2ω
=110 °
物体距離=∞
r1 =∞ d1 =0.1865 n1 =1.7291
6 ν1 =54.68
r2 =0.8865 d2 =0.1040
r3 =∞(絞り) d3 =0.0331
r4 =3.5253 d4 =0.2660 n2 =1.8051
8 ν2 =25.43
r5 =0.8933 d5 =0.4237 n3 =1.6652
4 ν3 =55.10
r6 =-0.5260 (非球面)
非球面係数
P=1.0000,B=0 ,E=0.32363 ,F=-0.14738×10
G=0.10795 ×102
Ei'=0.32363 ,Fi'=-1.4738 ,Gi'=10.795,Hi'
=0 ,Ii'=0
Ei'(ni-1 −ni )=0.2153
Δx(hm ){ni-1 −ni }=8.981 ×10-5, PS
=0.358
ただしr1 ,r2 ,・・・ ,r6 はレンズ各面の曲率半
径、d1 ,d2 ,・・・,d5 は各レンズの肉厚およびレ
ンズ間隔、n1 ,n2 ,n3 は各レンズの屈折率、ν
1 ,ν2 ,ν3 は各レンズのアッベ数である。PSはペ
ッツバール和である。
【0032】実施例1乃至実施例3はいずれも倍率の色
収差および軸上の色収差を良好に保ちながら前群発散レ
ンズの像側の面で発生する大きな非点収差を後群収斂レ
ンズの第1の光学要素の物体側の面で補正し超広角の対
物光学系としたものである。実施例1は画角140°、
実施例2は画角130°、実施例3は画角110°であ
る。
【0033】実施例4は、後群収斂レンズの接合面のパ
ワーを大にして倍率の色収差と軸上の色収差とを十分小
さく押え、広角化を実現した例である。この実施例では
接合面のパワーを大にして色収差の補正能力を高めたた
め、接合面でも大きな非点収差が発生する。そこで非点
収差の補正作用を一層高めるために後群収斂レンズの第
1の光学要素の物体側の面を凸面にした。この実施例4
の画角は110°である。
【0034】実施例5,6は、前群発散レンズの像側の
面を非球面にすることによって画角140°の超広角と
した例である。この面を非球面にすることにより倍率の
色収差および軸上の色収差を良好に保ちながら球面収差
を更に良好に補正している。
【0035】実施例7,8は、後群収斂レンズの第1の
光学要素の物体側の面を非球面にして画角110°の広
角な対物光学系にした。この面を非球面にすることによ
り倍率の色収差および軸上の色収差を良好に保ちながら
球面収差およびコマ収差を更に良好に補正している。
【0036】実施例9は、後群収斂レンズの第2の光学
要素の像側の面を非球面にして画角110°の広角な対
物光学系を実現した。この面を非球面にして倍率の色収
差および軸上の色収差を良好に保ちながら球面収差およ
びコマ収差も良好に補正している。
【0037】
【発明の効果】本発明によれば、少ない構成レンズ枚数
で倍率の色収差および軸上の色収差が良好に補正された
広角な内視鏡用対物光学系が実現し得る。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact objective optical system for an endoscope in which chromatic aberration is well corrected. 2. Description of the Related Art Conventionally, an endoscope used for a bronchus or a biliary tract or a small-diameter endoscope for industrial use has a relatively small number of pixels, is compact, has a good curvature of field, and has a good number of constituent lenses. There is an invention of Japanese Patent Application No. 4-156218 developed by the present applicant as an objective optical system for an endoscope having a small number of problems. This optical system includes two lenses, a concave lens and a convex lens, as shown in FIG. Since the objective optical system having such a configuration has no factor for correcting axial chromatic aberration and chromatic aberration of magnification, by using a glass material having a large Abbe number to minimize chromatic aberration generated in each lens, The chromatic aberration is corrected within a few pixels of the image guide and the solid-state imaging device to ensure the performance that can be practically used. In general, in an objective optical system having large chromatic aberration of magnification, color blur is conspicuous particularly in the peripheral portion of an image. Also, an objective optical system with large on-axis chromatic aberration causes color bleeding over the entire image, which leads to deterioration of image quality and can hinder diagnosis when used as an objective optical system for medical endoscopes. Many. In recent years, with the improvement of image guide manufacturing technology and solid-state imaging device manufacturing technology, products with higher resolution have been manufactured, and accordingly, the objective optical system for an endoscope also has chromatic aberration of magnification and axial chromatic aberration. It is necessary to correct chromatic aberration sufficiently well to have a high resolution. However, in the above-mentioned objective lens, chromatic aberration of magnification and axial chromatic aberration are not sufficiently corrected, and in this configuration, since there is no factor for correcting these aberrations, it is necessary to correct these chromatic aberrations sufficiently to correct the resolving power. Have difficulty. An object of the present invention is to provide a wide-angle objective optical system for an endoscope in which the number of constituent lenses is small, and chromatic aberration of magnification and axial chromatic aberration are sufficiently sufficiently corrected. [0006] The objective optical system of the present invention comprises:
As shown in FIG. 1, in order from the object side, a front group of a diverging lens having a concave surface facing the image side, a brightness stop, and a diverging lens having a concave surface facing the image side and a biconvex converging lens were joined. It consists of a rear group which is a converging lens group of a cemented lens, and the Abbe number ν 2d of the diverging lens of the rear group and the Abbe number ν 3d of the converging lens have the following relationship. (1) ν 2d <ν 3d In general, when a surface having a large refraction of a principal ray is provided with a strong power, various aberrations occur. In order to avoid this, it is preferable to make the surface close to concentric to the aperture stop. In the present invention, the above-described lens arrangement is used. However, it is desirable to increase the positive power of the image-side convex surface of the converging lens in the rear group. When this surface has a curvature smaller than that of the object-side surface of the diverging lens and | r 4 | ≦ | r 6 |, the off-axis light flux passing through the aperture stop, especially the upper marginal ray, is reflected by the diverging lens of the rear group. Large coma and astigmatism occur on the object side surface, resulting in insufficient correction. Note that r 4 and r 6 are the radii of curvature of the object-side surface of the diverging lens in the rear group and the image-side surface of the convergent lens, respectively. In the objective optical system according to the present invention, the divergent lens unit of the front unit and the convergent lens unit of the rear unit are arranged close to each other with a brightness stop interposed therebetween in order to realize compactness. For this reason, a light beam that forms an image around the visual field enters the object side surface of the rear convergent lens unit at a large angle, and chromatic aberration of large magnification occurs on this surface. Also, since a strong positive power is given to the image side surface of the converging lens unit in the rear unit, large axial chromatic aberration occurs on this surface. In order to satisfactorily correct these chromatic aberrations of magnification and axial chromatic aberration, the center of curvature of the cemented surface of the rear group should be on the opposite side of the aperture stop, and should be converged with the Abbe number ν 2d of the diverging lens of the rear group. The Abbe number ν 3d of the lens has the above-described relationship. On the contrary, the relationship between the Abbe numbers is ν 2d > ν
In the case of 3d , if the center of curvature of the cemented lens is arranged on the brightness stop side, axial chromatic aberration can be corrected,
Since the angle of incidence of the off-axis light beam on the joint surface cannot be made large, chromatic aberration of magnification cannot be sufficiently corrected. If the curvature of the cemented surface is increased to enhance the effect of correcting chromatic aberration, the edge thickness of the converging lens, which is the second optical element in the rear group, becomes small, causing a processing problem. If the center of curvature of the cemented surface of the rear cemented lens is positioned on the opposite side of the aperture stop as in the lens configuration of the present invention, the higher the ray height of the off-axis light beam is, the more the beam enters the cemented surface. Since the angle is increased, it is possible to favorably correct not only longitudinal chromatic aberration but also chromatic aberration of magnification, which is advantageous in widening the angle. In the diverging lens of the cemented converging lens, the effect of correcting the chromatic aberration increases as the dispersion increases, and therefore it is desirable to satisfy the following condition (2). (2) In order to better correct the chromatic aberration at ν 2d <35 and the chromatic aberration on the axis, it is desirable to reduce the dispersion of the front diverging lens, and it is desirable to satisfy the following condition (3). (3) ν 1d > 40 If the front group diverging lens satisfies the above condition, the chromatic aberration can be corrected well, so that the curvature of the cemented surface of the rear group converging lens can be reduced by that amount, which is the second optical element. Workability of the convergent lens (biconvex lens) is improved. Next, if an aspherical surface is provided on at least one surface of the objective optical system according to the present invention and the aspherical surface satisfies the following condition (4), spherical aberration, coma and the like can be corrected more favorably. Preferred above. (4) E i ′ (n i−1 −n i )> 0 where E i ′ is the fourth-order aspheric coefficient of the above aspheric surface, n
i-1, n i is the refractive index of the object side and the image side of the medium of each aspherical. Here, the expression of the aspherical surface in the present invention will be described. In the embodiment described later, the shape of the aspherical surface is expressed by using the following equation. Here, x and y are those where the optical axis is the x axis, the direction of the image is positive, and the direction perpendicular to the optical axis is the y axis.
The point of intersection between the plane and the optical axis is the origin. R i is the radius of curvature in the quadric surface term, p is the conic constant, B i , E i , F
i, G i, ··· are respectively secondary, fourth, sixth, eighth, ...
The aspherical coefficient of The above equation has a high degree of freedom and is suitable for expressing an axially symmetric surface, but is unsuitable for an explanation on aberration. Therefore, to explain the function of the aspherical surface in the present invention, the following equation is preferable, and the explanation will be made based on this equation. In equation (b), r i is the radius of curvature of the reference aspherical sphere (the sphere in contact with the aspherical surface at the top).
E i ′, F i ′, G i ′,...
Eighth,... Aspherical coefficients. The conversion from the expression (a) to the expression (b) can be performed using Taylor expansion, and the conversion expression of r i ′ and low-order coefficients up to the 12th order is as follows. . Note that the following conversion equations of r i ′, E i ′,..., I i ′ are collectively referred to as equation (c). r i '= r i / ( 1 + 2B i r i) E i' = 0.125 {P i - (1 + 2B i r i) 3} / r i 3 +
E i F i '= 0.0625 { P i 2 - (1 + 2B i r i) 5} / r i 5 +
F i G i ′ = 0.0390625 {P i 3 − (1 + 2B i r i ) 7 } / r
i 7 + G i H i ' = 0.02734375 {P i 4 - (1 + 2B i r i) 9} / r
i 9 + H i I i ′ = 0.02050782 {P i 5 − (1 + 2B i r i ) 11 } / r
i 11 + I i In the above equation (c), the first term on the right side of the equation for each aspheric coefficient is obtained by subjecting a quadratic surface term to Taylor expansion.
Since the expression obtained by expansion is an infinite series, it is approximate in the expression of finite order. However, a very good approximation can be obtained by including up to the twelfth order coefficient. In equation (a), P i =
1, if B i = 0, there is no need for conversion, and r i ′ = r i ,
E i '= E i, F i' = F i, the G i '= G i ···. The condition (4) is a condition for favorably correcting spherical aberration, coma and the like by using an aspheric surface. The aspherical surface is effective for correcting various aberrations other than chromatic aberration and field curvature. In the present invention, the residual aberration due to the small number of components of the lens system is canceled by using the function of the aspherical surface. In order to use an aspheric surface in this way, it is necessary to know the residual aberration in the lens system. In the lens system of the present invention, negative spherical aberration and negative coma (inner coma) generally remain. Therefore, it is necessary to correct these aberrations by using an aspherical surface. Therefore, it is only necessary to generate a positive aberration for each aberration on the aspherical surface. The relationship between the fourth-order aspherical coefficient E i ′ and the third-order aberration coefficients of spherical aberration and coma caused by asphericization is shown by the following equations (d) and (e). is there. ΔSP i = 8h i 4 · E i '(n i-1 -n i) (d) ΔCM i = 8h i 3 · h ci · E i' (n i-1 -n i) (e) provided that whose ASP i , ΔCM i are the fourth-order coefficients E of the aspheric surface, respectively.
spherical aberration caused by the i ', 3-order aberration coefficient of coma, h i is the paraxial marginal ray height in the aspheric, h ci is the paraxial chief ray height at the aspherical. [0021] In formula (d), (e), different orders of h i and h ci the type of aberration, difference occurs in the effect of the aberrations by the placement of the order aspheric. Paraxial marginal ray is located numerals always positive for h i because always on the same side with respect to the optical system the optical axis, whereas the paraxial chief ray, in order to cross the optical axis at the center of the diaphragm, h ci Has a different sign before and after the stop, and is negative before the stop and positive after the stop.
ΔSP i , ΔC calculated using the signs of h i and h ci
The sign of M i is intact aberration generated in aspheric code. To positively the whose ASP i arranged an aspherical surface in front of the group before the throttle should be E i '(n i-1 -n i)> 0. At that time, ΔCM i <0. Therefore, when trying to correct spherical aberration, the residual coma aberration is worsened by the action of the aspherical surface, and the effect of using the aspherical surface is not very favorable. However, coma generated by an aspheric surface
If the correction is performed by a spherical system and the large spherical aberration generated at that time is corrected sufficiently well by an aspherical surface, the aberration of the lens system can be improved. If E i ′ (n i−1 −n i )> 0 using an aspherical surface in the rear group behind the stop, Δ
SP i > 0 and ΔCM i > 0, and it is possible to cancel out any residual aberration when the aspherical surface is not used. Therefore, it is desirable to provide an aspheric surface in the rear group so as to satisfy the condition (4). The position of the aspherical surface in the rear group is set at the relatively high surface of the marginal ray height and the amount of aberration generation in order to efficiently correct spherical aberration and coma which have a large effect when the NA is increased. A strong surface with a large positive power is suitable. Therefore, the image-side surface of the convergent lens, which is the second lens element in the rear group convergent lens group behind the stop, is most desirable. The condition (4) defines the sign of the aspherical coefficient, but is substituted by using the displacement of the aspherical surface from the reference spherical surface whose radius is the paraxial radius of curvature r 'of the aspherical surface. Is also good. Since the value obtained by removing the first term on the right side of Expression (b) is the aspherical displacement amount Δx (y), this Δx (y) is defined by the following Expression (f). Δx (y) = E i 'y 4 + F i ' y 6 + G i 'y 8 +... (F) In the above equation (f), since all the orders of y are even numbers, the sign of the aspheric coefficient and its sign The sign of the displacement of Δx (y) due to the influence is the same. Therefore, the following condition (5) can be defined as an expression instead of the condition (4). (5) Δx (y) {n i- 1 -n i}> 0 wherein [Delta] x (y) is a function of y is the distance from the optical axis, correction of spherical aberration is the main object of the present invention , The height of the marginal ray (the ray from the on-axis object point passing through the periphery of the aperture stop) on the aspheric surface is hm, and y =
It is preferable that the following condition (6) is satisfied at hm. (6) Δx (hm) { n i-1 -n i}> 0 Therefore, the above condition (6) may be used in place of the condition (4). Next, embodiments of the objective optical system for an endoscope according to the present invention will be described. Example 1 f = 1.000, F-number = 3.927, Image height = 1.0139, 2ω
= 140 ° Object distance = ∞ r 1 = ∞ d 1 = 0.2151 n 1 = 1.51633
ν 1 = 64.15 r 2 = 2.0588 d 2 = 0.1499 r 3 = ∞ (aperture) d 3 = 0.0396 r 4 = -3.4926 d 4 = 0.0978 n 2 = 1.8051
8 ν 2 = 25.43 r 5 = 0.7762 d 5 = 0.4941 n 3 = 1.8160
0 ν 3 = 46.62 r 6 = -0.6650 PS = 0.388 Example 2 f = 1.000, F number = 3.978, Image height = 0.9862, 2ω
= 130 ° Object distance = ∞ r 1 = ∞ d 1 = 0.2093 n 1 = 1.7725
0 ν 1 = 49.66 r 2 = 2.0904 d 2 = 0.0613 r 3 = ∞ (aperture) d 3 = 0.0386 r 4 = -4.9556 d 4 = 0.0952 n 2 = 1.8051
8 ν 2 = 25.43 r 5 = 0.8480 d 5 = 0.4808 n 3 = 1.8160
0 ν 3 = 46.62 r 6 = −0.6447 PS = 0.403 Example 3 f = 1.000, F-number = 4.456, Image height = 0.7422, 2ω
= 110 ° Object distance = ∞ r 1 = ∞ d 1 = 0.1856 n 1 = 1.7291
6 ν 1 = 54.68 r 2 = 1.4756 d 2 = 0.0341 r 3 = ∞ (aperture) d 3 = 0.0878 r 4 = -5.6354 d 4 = 0.0845 n 2 = 1.8051
8 ν 2 = 25.43 r 5 = 0.8362 d 5 = 0.3983 n 3 = 1.8160
0 ν 3 = 46.62 r 6 = -0.6145 PS = 0.37 Example 4 f = 1.000, F number = 4.437, Image height = 0.8778, 2ω
= 110 ° Object distance = ∞ r 1 = ∞ d 1 = 0.1863 n 1 = 1.7291
6 ν 1 = 54.68 r 2 = 1.5402 d 2 = 0.0343 r 3 = ∞ (aperture) d 3 = 0.0993 r 4 = 9.7981 d 4 = 0.0848 n 2 = 1.84666
ν 2 = 23.78 r 5 = 0.8996 d 5 = 0.4000 n 3 = 1.7291
6 ν 3 = 54.68 r 6 = −0.5754 PS = 0.465 Example 5 f = 0.999, F-number = 4.025, image height = 0.9926, 2ω
= 140 ° Object distance = ∞ r 1 = ∞ d 1 = 0.2106 n 1 = 1.5163
3 ν 1 = 64.15 r 2 = 2.3331 (aspherical surface) d 2 = 0.1489 r 3 = ∞ (aperture) d 3 = 0.0333 r 4 = ∞ d 4 = 0.0782 n 2 = 1.8051
8 ν 2 = 25.43 r 5 = 0.7599 d 5 = 0.4468 n 3 = 1.8160
0 ν 3 = 46.62 r 6 = −0.7442 Aspherical surface coefficient P = 1.0000, B = 0, E = 0.21919 × 10, F = −0.15432
× 10 2 G = 0.10528 × 10 3 E i '= 2.1919, F i ' = -15.432, G i '= 105.28, H i ' =
0, I i ′ = 0 E i ′ (n i−1 −n i ) = 1.1317 Δx (h m ) {n i−1 −n i } = 2.416 × 10 −4 , PS
Embodiment 6 f = 1.000, F-number = 3.878, Image height = 1.0188, 2ω
= 140 ° Object distance = ∞ r 1 = ∞ d 1 = 0.2162 n 1 = 1.5163
3 ν 1 = 64.15 r 2 = 2.4934 (aspherical surface) d 2 = 0.1299 r 3 = ∞ (aperture) d 3 = 0.0342 r 4 = -3.0474 d 4 = 0.1241 n 2 = 1.8051
8 ν 2 = 25.43 r 5 = 0.7800 d 5 = 0.4969 n 3 = 1.8160
0 ν 3 = 46.62 r 6 = -0.6650 Aspherical surface coefficient P = 1.0000, B = 0, E = 0.116161, F = -0.11324 × 10
2 G = 0.46435 × 10 2 E i '= 0.81161, F i ' = -11.324, G i '= 46.435, H i '
= 0, I i '= 0 E i' (n i-1 -n i) = 0.4191 Δx (h m) {n i-1 -n i} = 9.094 × 10 -5, PS
Embodiment 7 f = 1.000, F-number = 4.680, Image height = 0.8476, 2ω
= 110 ° Object distance = ∞ r 1 = ∞ d 1 = 0.1799 n 1 = 1.7291
6 ν 1 = 54.68 r 2 = 1.2535 d 2 = 0.0608 r 3 = ∞ (aperture) d 3 = 0.1109 r 4 = ∞ (aspherical surface) d 4 = 0.1520 n 2 = 1.8466
6 ν 2 = 23.88 r 5 = 0.8776 d 5 = 0.4203 n 3 = 1.8160
0 ν 3 = 46.62 r 6 = −0.6499 Aspherical surface coefficient P = 1.0000, B = 0, E = −0.79869, F = 0.84299 × 10 G = −0.43452 × 10 2 E i ′ = −0.79869, F i ′ = 8.4299 , G i '= -43.452, H i '
= 0, I i '= 0 E i' (n i-1 -n i) = 0.6762 Δx (h m) {n i-1 -n i} = 1.097 × 10 -4, PS
Embodiment 8 f = 1.000, F-number = 4.653, Image height = 0.8507, 2ω
= 110 ° Object distance = ∞ r 1 = ∞ d 1 = 0.1806 n 1 = 1.7291
6 ν 1 = 54.68 r 2 = 1.1780 d 2 = 0.0541 r 3 = ∞ (aperture) d 3 = 0.1132 r 4 = -10.6961 (aspherical surface) d 4 = 0.1143 n 2 = 1.84
666 ν 2 = 23.88 r 5 = 0.8869 d 5 = 0.4080 n 3 = 1.8160
0 ν 3 = 46.62 r 6 = −0.6145 Aspherical surface coefficient P = 1.0000, B = 0, E = −0.53141, F = 0.69161 × 10 G = −0.45286 × 10 2 E i ′ = −0.53141, F i ′ = 6.9161 , G i '= -45.286, H i '
= 0, I i '= 0 E i' (n i-1 -n i) = 0.4499 Δx (h m) {n i-1 -n i} = 7.286 × 10 -5, PS
Embodiment 9 f = 1.000, F-number = 4.724, Image height = 0.8787, 2ω
= 110 ° Object distance = ∞ r 1 = ∞ d 1 = 0.1865 n 1 = 1.7291
6 ν 1 = 54.68 r 2 = 0.8865 d 2 = 0.1040 r 3 = ∞ (aperture) d 3 = 0.0331 r 4 = 3.5253 d 4 = 0.2660 n 2 = 1.8051
8 ν 2 = 25.43 r 5 = 0.8933 d 5 = 0.4237 n 3 = 1.6652
4 ν 3 = 55.10 r 6 = -0.5260 (aspherical surface) Aspherical surface coefficient P = 1.0000, B = 0, E = 0.32363, F = -0.14738 × 10 G = 0.10795 × 10 2 E i ′ = 0.32363, F i ′ = -1.4738, G i '= 10.795 , H i'
= 0, I i ′ = 0 E i ′ (n i−1 −n i ) = 0.2153 Δx (h m ) {n i−1 −n i } = 8.981 × 10 -5 , PS
= 0.358 However r 1, r 2, ···, r 6 the radius of curvature of each lens surface, d 1, d 2, ··· , d 5 is the thickness and lens distance of each lens, n 1, n 2 , N 3 is the refractive index of each lens, ν
1 , ν 2 and ν 3 are Abbe numbers of each lens. PS is Petzval sum. In all of the first to third embodiments, the large astigmatism generated on the image side surface of the front group diverging lens is reduced while the chromatic aberration of magnification and the axial chromatic aberration are kept good. In this case, a correction is made on the object-side surface of the optical element (1), and an ultra-wide-angle objective optical system is obtained. Example 1 has an angle of view of 140 °,
Example 2 has an angle of view of 130 °, and Example 3 has an angle of view of 110 °. The fourth embodiment is an example in which the power of the cemented surface of the rear group converging lens is increased to suppress chromatic aberration of magnification and axial chromatic aberration to a sufficiently small value, thereby realizing a wide angle. In this embodiment, since the power of the cemented surface is increased to enhance the ability to correct chromatic aberration, large astigmatism also occurs at the cemented surface. Therefore, in order to further enhance the effect of correcting astigmatism, the object-side surface of the first optical element of the rear group converging lens is made convex. Example 4
Is 110 °. Embodiments 5 and 6 are examples in which the image-side surface of the front group diverging lens is made aspherical, thereby achieving a super wide angle of view of 140 °. By making this surface an aspherical surface, the spherical aberration is further satisfactorily corrected while maintaining the chromatic aberration of magnification and the axial chromatic aberration well. In the seventh and eighth embodiments, the object side surface of the first optical element of the rear group converging lens is made aspherical to provide a wide-angle objective optical system having an angle of view of 110 °. By making this surface an aspherical surface, spherical aberration and coma are corrected more favorably while chromatic aberration of magnification and axial chromatic aberration are kept good. In the ninth embodiment, a wide-angle objective optical system having an angle of view of 110 ° is realized by making the image-side surface of the second optical element of the rear group converging lens aspheric. By making this surface aspherical, spherical aberration and coma are also corrected well while maintaining good chromatic aberration of magnification and axial chromatic aberration. According to the present invention, it is possible to realize a wide-angle endoscope objective optical system in which chromatic aberration of magnification and axial chromatic aberration are favorably corrected with a small number of constituent lenses.
【図面の簡単な説明】 【図1】本発明の実施例1の断面図 【図2】本発明の実施例2の断面図 【図3】本発明の実施例3の断面図 【図4】本発明の実施例4の断面図 【図5】本発明の実施例5の断面図 【図6】本発明の実施例6の断面図 【図7】本発明の実施例7の断面図 【図8】本発明の実施例8の断面図 【図9】本発明の実施例9の断面図 【図10】本発明の実施例1の収差曲線図 【図11】本発明の実施例2の収差曲線図 【図12】本発明の実施例3の収差曲線図 【図13】本発明の実施例4の収差曲線図 【図14】本発明の実施例5の収差曲線図 【図15】本発明の実施例6の収差曲線図 【図16】本発明の実施例7の収差曲線図 【図17】本発明の実施例8の収差曲線図 【図18】本発明の実施例9の収差曲線図 【図19】従来の内視鏡用対物光学系の断面図[Brief description of the drawings] FIG. 1 is a sectional view of a first embodiment of the present invention. FIG. 2 is a sectional view of a second embodiment of the present invention. FIG. 3 is a sectional view of a third embodiment of the present invention. FIG. 4 is a sectional view of a fourth embodiment of the present invention. FIG. 5 is a sectional view of a fifth embodiment of the present invention. FIG. 6 is a sectional view of a sixth embodiment of the present invention. FIG. 7 is a sectional view of a seventh embodiment of the present invention. FIG. 8 is a sectional view of Embodiment 8 of the present invention. FIG. 9 is a sectional view of Embodiment 9 of the present invention. FIG. 10 is an aberration curve diagram according to the first embodiment of the present invention. FIG. 11 is an aberration curve diagram according to the second embodiment of the present invention. FIG. 12 is an aberration curve diagram according to the third embodiment of the present invention. FIG. 13 is an aberration curve diagram according to the fourth embodiment of the present invention. FIG. 14 is an aberration curve diagram according to the fifth embodiment of the present invention. FIG. 15 is an aberration curve diagram according to the sixth embodiment of the present invention. FIG. 16 is an aberration curve diagram according to the seventh embodiment of the present invention. FIG. 17 is an aberration curve diagram of the eighth embodiment of the present invention. FIG. 18 is an aberration curve diagram of the ninth embodiment of the present invention. FIG. 19 is a cross-sectional view of a conventional endoscope objective optical system.
Claims (1)
負レンズと、明るさ絞りと、正の接合レンズとからな
り、前記正の接合レンズは物体側に負レンズと像側に正
レンズとを有し、接合面の曲率中心が前記明るさ絞りと
反対側に位置するようにし、かつ前記正の接合レンズの
物体側の面および像側の面は物体側に凹であり、かつ前
記正の接合レンズの前記負レンズの物体側の面のパワー
よりも前記正の接合レンズの前記正レンズの像側の面の
パワーが強く、前記正の接合レンズの前記負レンズのア
ッベ数ν2dと、前記正の接合レンズの前記正レンズのア
ッベ数ν3dとが下記の関係(1)を満足する内視鏡用対
物光学系。 (1) ν2d<ν3d (57) [Claim 1] In order from the object side, an image-side surface comprises a negative lens concave to the image side, a brightness stop, and a positive cemented lens, and the positive cemented lens is provided. The lens has a negative lens on the object side and a positive lens on the image side, the center of curvature of the cemented surface is located on the opposite side to the aperture stop, and the object side surface and image of the positive cemented lens are Side surface is concave on the object side and
The power of the object-side surface of the negative lens of the positive cemented lens
Than the image side surface of the positive cemented lens of the positive lens
An endoscope objective which has a strong power and in which the Abbe number ν 2d of the negative lens of the positive cemented lens and the Abbe number ν 3d of the positive lens of the positive cemented lens satisfy the following relationship (1): Optical system. (1) ν 2d <ν 3d
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23759292A JP3389266B2 (en) | 1992-08-14 | 1992-08-14 | Objective optical system for endoscope |
US08/430,254 US5619380A (en) | 1992-05-25 | 1995-04-28 | Objective optical system for endoscopes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23759292A JP3389266B2 (en) | 1992-08-14 | 1992-08-14 | Objective optical system for endoscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0667090A JPH0667090A (en) | 1994-03-11 |
JP3389266B2 true JP3389266B2 (en) | 2003-03-24 |
Family
ID=17017607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23759292A Ceased JP3389266B2 (en) | 1992-05-25 | 1992-08-14 | Objective optical system for endoscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3389266B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014025783A (en) * | 2012-07-26 | 2014-02-06 | Tokyo Electric Power Co Inc:The | Flow visualization apparatus |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0921947A (en) * | 1995-07-07 | 1997-01-21 | Nikon Corp | Ultrawide angle lens |
JP2006141711A (en) * | 2004-11-19 | 2006-06-08 | Olympus Corp | Observation optical system of endoscope |
JP2010091620A (en) * | 2008-10-03 | 2010-04-22 | Sony Corp | Lens unit |
JP5616535B2 (en) * | 2011-11-09 | 2014-10-29 | 富士フイルム株式会社 | Imaging lens and imaging apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07101254B2 (en) * | 1988-09-07 | 1995-11-01 | オリンパス光学工業株式会社 | Endoscope objective lens |
JPH03145614A (en) * | 1989-11-01 | 1991-06-20 | Olympus Optical Co Ltd | Endoscope objective |
JP2929309B2 (en) * | 1990-04-19 | 1999-08-03 | オリンパス光学工業株式会社 | Endoscope objective optical system for in-tube observation |
-
1992
- 1992-08-14 JP JP23759292A patent/JP3389266B2/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014025783A (en) * | 2012-07-26 | 2014-02-06 | Tokyo Electric Power Co Inc:The | Flow visualization apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0667090A (en) | 1994-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6253437B2 (en) | Imaging optical system and image projection apparatus having the same | |
JP4914136B2 (en) | Zoom lens and imaging apparatus having the same | |
JP3573575B2 (en) | Optical system | |
US7253972B2 (en) | Telephoto lens system | |
JP3559623B2 (en) | Imaging lens | |
JPH05307139A (en) | Endoscope objective | |
JP2876252B2 (en) | Endoscope objective lens | |
JP2012181508A (en) | Imaging optics | |
JP3200925B2 (en) | Zoom lens with wide angle of view | |
JP2017068164A (en) | Wide angle optical system and image capturing device having the same | |
JP7154769B2 (en) | Imaging optical system and image projection device | |
JPH0743606A (en) | Wide angle lens | |
JPH08313804A (en) | Wide angle lens | |
US5691850A (en) | Eyepiece | |
JPH06300965A (en) | Wide-angle lens | |
JP3140841B2 (en) | Objective optical system for endoscope | |
JP5506535B2 (en) | Imaging lens and inspection apparatus equipped with the imaging lens | |
JPS5833211A (en) | Small-sized photographic lens | |
JP2008008981A (en) | Finder optical system and optical apparatus with the same | |
JP3389266B2 (en) | Objective optical system for endoscope | |
JPH07168095A (en) | Triplet lens | |
JP2008015418A (en) | Eyepiece | |
JP3242451B2 (en) | Microscope objective lens | |
JP2001174701A (en) | Wide angle photographic lens system | |
JP6296803B2 (en) | Optical system and imaging apparatus having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000530 |
|
RVOP | Cancellation by post-grant opposition |