JP3387445B2 - SQUID operating point adjustment device and method - Google Patents
SQUID operating point adjustment device and methodInfo
- Publication number
- JP3387445B2 JP3387445B2 JP10292299A JP10292299A JP3387445B2 JP 3387445 B2 JP3387445 B2 JP 3387445B2 JP 10292299 A JP10292299 A JP 10292299A JP 10292299 A JP10292299 A JP 10292299A JP 3387445 B2 JP3387445 B2 JP 3387445B2
- Authority
- JP
- Japan
- Prior art keywords
- squid
- bias current
- magnetic field
- output
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は超電導量子干渉素
子(Superconducting Quantum Interference Device、以
下SQUIDと省略する)の動作点を調整する装置およ
びその方法に関し、特に、自動調整化が可能な、SQU
IDの動作点調整装置およびその方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device and method for adjusting the operating point of a superconducting quantum interference device (hereinafter abbreviated as SQUID), and more particularly to an SQU capable of automatic adjustment.
The present invention relates to an ID operating point adjustment device and method.
【0002】[0002]
【従来の技術】図7は従来の磁束ロックループ(以下、
FLLと略す)を有するSQUIDの制御回路を示す回
路図である。図7を参照して、従来のSQUID用FL
L回路は、所定の個所に2つのジョセフソン接合が形成
されたSQUID81と、SQUID81に定電流を提
供する定電流源88とを含む。SQUID81には図示
のないピックアップコイルから測定対象の磁束が入力さ
れる。SQUID81は、その両端からの出力電圧はト
ランスで変圧され、プリアンプ83で増幅され、乗算器
84および積分器85を経て出力電圧に出力される。出
力電圧には、乗算器84からの出力に変調部87によっ
て40kHzの変調信号が加算されてSQUID81に
隣接した磁場印加用コイル82にフィードバックがかけ
られる。これによってSQUID81で検出した外部磁
束が打消される。2. Description of the Related Art FIG. 7 shows a conventional magnetic flux lock loop (hereinafter, referred to as
It is a circuit diagram which shows the control circuit of SQUID which has FLL. Referring to FIG. 7, a conventional FL for SQUID
The L circuit includes an SQUID 81 in which two Josephson junctions are formed at a predetermined position, and a constant current source 88 that supplies a constant current to the SQUID 81. A magnetic flux to be measured is input to the SQUID 81 from a pickup coil (not shown). The output voltage from both ends of the SQUID 81 is transformed by a transformer, amplified by a preamplifier 83, and output as an output voltage via a multiplier 84 and an integrator 85. A 40 kHz modulation signal is added to the output from the multiplier 84 by the modulator 87, and the output voltage is fed back to the magnetic field applying coil 82 adjacent to the SQUID 81. As a result, the external magnetic flux detected by the SQUID 81 is canceled.
【0003】SQUID81からの出力はその一部がオ
シロスコープ90のX軸に入力され、プリアンプ83か
らの出力がオシロスコープ90のY軸に入力される。A part of the output from the SQUID 81 is input to the X axis of the oscilloscope 90, and the output from the preamplifier 83 is input to the Y axis of the oscilloscope 90.
【0004】[0004]
【発明が解決しようとする課題】従来のSQUIDの制
御回路の動作点調整は上記のように行なわれていた。所
定のバイアス電流Ibを流した状態でオシロスコープ9
0を用いてその振幅が最大になるよう調整する必要があ
るため、使用前の調整に非常に時間がかかるという問題
点があった。また、手動で調整する必要があったため、
SQUIDの自動調整ができないという問題点があっ
た。この発明は上記のような問題点を解消するためにな
されたもので、SQUIDの調整の精度が向上するとと
もに、自動調整化が可能になる、SQUIDの動作点調
整装置およびその方法を提供することを目的とする。The adjustment of the operating point of the conventional SQUID control circuit has been performed as described above. Oscilloscope 9 with a predetermined bias current Ib flowing
Since it is necessary to adjust 0 so that the amplitude becomes maximum, there is a problem that it takes a very long time to perform the adjustment before use. Also, because it had to be adjusted manually,
There is a problem that the SQUID cannot be automatically adjusted. The present invention has been made in order to solve the above problems, and provides an SQUID operating point adjustment device and a method thereof, which improves the accuracy of SQUID adjustment and enables automatic adjustment. With the goal.
【0005】[0005]
【課題を解決するための手段】この発明に係るSQUI
Dの動作点調整装置は、SQUIDと、SQUIDにバ
イアス電流を流す手段と、バイアス電流が流された状態
で、SQUIDに所定の周波数の交流磁場を印加する手
段と、印加した磁場により変調されたSQUIDの出力
の磁束依存性における周期の半周期分を取出す手段と、
取出した磁場の変化に対応する出力に基づいて、バイア
ス電流の最適値を求める手段とを備え、バイアス電流の
最適値を求める手段は、取り出したSQUIDの出力の
磁束依存性における周期の半周期分の中から所定の周波
数と所定の周波数の2倍の周波数成分の出力電圧を取り
出すフィルタ手段を含み、求められたバイアス電流の最
適値を、バイアス電流を流す手段にフィードバックする
手段をさらに含む。[Solving Means] A SQUI according to the present invention
The operating point adjusting device of D applied the SQUID, a means for supplying a bias current to the SQUID, and a means for applying an AC magnetic field of a predetermined frequency to the SQUID while the bias current was supplied . Output of SQUID modulated by magnetic field
Means for extracting a half cycle of the magnetic flux dependence of
Based on the output corresponding to the extracted magnetic field change, the via
Of the bias current of the bias current.
The means for obtaining the optimum value is the output of the extracted SQUID.
Predetermined frequency from half cycle of magnetic flux dependence
The output voltage of the frequency component that is twice the number and the predetermined frequency
Including the filter means to output the maximum bias current
The appropriate value is fed back to the means for passing the bias current.
Means are further included.
【0006】SQUID動作点調整方法はSQUIDに
バイアス電流を流すステップと、バイアス電流が流され
た状態で、SQUIDに所定の周波数の所定の周波数の
交流磁場を印加するステップと、印加した磁場により変
調されたSQUIDの出力の磁束依存性における周期の
半周期分を取出すステップと、取出した磁場の変化に対
応する出力に基づいて、取り出したSQUIDの出力の
磁束依存性における周期の半周期分の中から所定の周波
数と所定の周波数の2倍の周波数成分の出力電圧を取り
出して、バイアス電流の最適値を求めるステップと、S
QUIDに、求められたバイアス電流の最適値をフィー
ドバックしたバイアス電流を流すステップとを含む。The SQUID operating point adjusting method includes a step of applying a bias current to the SQUID and a step of applying a bias current to the SQUID at a predetermined frequency of a predetermined frequency.
Applying an alternating magnetic field and changing the applied magnetic field
Based on the step of extracting a half cycle of the period in the magnetic flux dependence of the adjusted SQUID output, and the output of the extracted SQUID based on the output corresponding to the change of the extracted magnetic field .
Predetermined frequency from half cycle of magnetic flux dependence
The output voltage of the frequency component that is twice the number and the predetermined frequency
Out, and obtaining an optimum value of the bias current, S
The optimum value of the obtained bias current is fed to the QUID.
Flowing a biased bias current .
【0007】バイアス電流を流した状態でSQUIDに
磁場を発生させ、その磁場の変化に対応する出力に基づ
いてバイアス電流の最適値を求めるため、バイアス電流
の最適値を自動的に求めることができる。また、バイア
ス電流の調整の精度は向上する。Since the magnetic field is generated in the SQUID while the bias current is flowing and the optimum value of the bias current is obtained based on the output corresponding to the change of the magnetic field, the optimum value of the bias current can be automatically obtained. . Further, the accuracy of adjusting the bias current is improved.
【0008】[0008]
【発明の実施の形態】以下この発明の実施の形態を図面
を参照して説明する。図1はこの発明に係るSQUID
のバイアス電流調整装置の全体構成を示すブロック図で
ある。図1を参照して、バイアス電流調整装置は、SQ
UID10と、SQUID10にバイアス電流を印加す
るバイアス電流供給回路11と、SQUID10に対し
て周波数fの交流磁場を与えるコイル12と、SQUI
D10の両端からの電圧を取出して増幅する電圧増幅器
13と、増幅された電圧から所定の周波数成分のみを通
過させるフィルタ14と、所定の周波数成分の信号を整
流する整流器15と、整流された電圧をモニタする電圧
モニタ16とを含む。なお、実際のSQUIDを用いた
装置においては、電圧増幅器13の出力が図7に示した
乗算器84、積分器85に対応する乗算器30、積分器
31に接続されて磁束ロックループが形成されて磁場の
測定が行われるが、ここでは実際の測定系については省
略して、初期の調整についてのみ説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a SQUID according to the present invention.
FIG. 3 is a block diagram showing the overall configuration of the bias current adjusting device of FIG. Referring to FIG. 1, the bias current adjusting device is SQ
UID10, a bias current supply circuit 11 that applies a bias current to the SQUID 10, a coil 12 that applies an AC magnetic field of frequency f to the SQUID 10, and a SQUI
A voltage amplifier 13 that extracts and amplifies the voltage from both ends of D10, a filter 14 that passes only a predetermined frequency component from the amplified voltage, a rectifier 15 that rectifies a signal of the predetermined frequency component, and a rectified voltage And a voltage monitor 16 for monitoring. In a device using an actual SQUID, the output of the voltage amplifier 13 is connected to the multiplier 84, the multiplier 30 corresponding to the integrator 85, and the integrator 31 shown in FIG. 7 to form a magnetic flux lock loop. Although the measurement of the magnetic field is performed by this method, the actual measurement system is omitted here, and only the initial adjustment will be described.
【0009】図2はこの発明が適用されたSQUID1
0の全体構成を示す模式図である。図2を参照して、S
QUID10は5mm以下のワッシャタイプである。そ
の周囲に7mm角の1ターンのコイル12をパターニン
グしている。これらがチップキャリア18上に形成され
ている。このコイル12に40kHzの正弦波電流を流
して磁場を発生させる。磁場の振幅は磁場−電圧特性の
半周期分である。このときSQUID10より発生する
電圧を上記した構成によりフィルタリングして直流電圧
に変換してその最大値を得るようにバイアス電流を調整
する。FIG. 2 shows a SQUID 1 to which the present invention is applied.
It is a schematic diagram which shows the whole 0 structure. Referring to FIG. 2, S
The QUID 10 is a washer type of 5 mm or less. A 7-mm square one-turn coil 12 is patterned around it. These are formed on the chip carrier 18. A 40 kHz sine wave current is passed through the coil 12 to generate a magnetic field. The amplitude of the magnetic field is a half cycle of the magnetic field-voltage characteristic. At this time, the voltage generated from the SQUID 10 is filtered by the above-described configuration and converted into a DC voltage, and the bias current is adjusted so as to obtain its maximum value.
【0010】図3は発生させた磁場による磁場−電圧特
性を示すグラフである。(A)は発生した磁場の状態を
示し、(B)はその中から所望の半周期分を取出した状
態を示す図である。ここでは、所望の半周期分を取出す
と述べたが、この意味は、SQUID素子に応じて、同
じ電流を印可しても周期が異なるため、磁場の強度を調
整することによって、所望の半周期分に相当する磁場を
発生させる。FIG. 3 is a graph showing the magnetic field-voltage characteristics of the generated magnetic field. (A) shows a state of the generated magnetic field, and (B) shows a state in which a desired half cycle is taken out from the state. Here, it has been stated that a desired half cycle is taken out, but this means that even if the same current is applied, the cycle differs depending on the SQUID element. Therefore, by adjusting the strength of the magnetic field, the desired half cycle can be obtained. Generates a magnetic field equivalent to minutes.
【0011】(A)において振幅の最大値Vppが最大
になるようバイアス電流を調整する。In (A), the bias current is adjusted so that the maximum value Vpp of the amplitude becomes maximum.
【0012】次にこのバイアス電流の調整方法について
説明する。図4は図3(B)で示した半周期分の磁場−
電圧特性を示す図であり、(B)はその信号に基づく磁
場の時間による変動を示す図であり、(C)は電圧の時
間変動を示す図である。Next, a method of adjusting the bias current will be described. FIG. 4 shows the magnetic field for the half period shown in FIG.
It is a figure which shows a voltage characteristic, (B) is a figure which shows the time change of the magnetic field based on the signal, (C) is a figure which shows the time change of a voltage.
【0013】磁場振幅のうち半周期を取出した状態を示
す図4(A)において、Aで示す半周期が取出されたも
のとする。ここで、半周期Aは任意の状態から取出され
たものであるため、その半周期分の中に必ずしも最大値
および最小値が含まれているわけではない。この取出し
た半周期Aにおいてで示す状態からで示す状態へ電
圧が変化し次いで矢印に沿ってに示す状態に戻る。こ
れが繰返されている。この状態から磁場の時間的変動を
示した図が(B)である。(B)に示すように、〜
において1周期の磁場変動が生じており、この周期はコ
イル12に流した正弦波電流の周期f=40kHzに等
しい。In FIG. 4 (A) showing a state where a half cycle is extracted from the magnetic field amplitude, it is assumed that the half cycle indicated by A is extracted. Here, since the half cycle A is taken out from an arbitrary state, the maximum value and the minimum value are not necessarily included in the half cycle. In the extracted half cycle A, the voltage changes from the state shown by to the state shown by and then returns to the state shown by the arrow. This is repeated. A view showing the temporal change of the magnetic field from this state is shown in (B). As shown in (B),
In this case, one cycle of magnetic field fluctuation occurs, and this cycle is equal to the cycle f = 40 kHz of the sinusoidal current flowing through the coil 12.
【0014】(A)、(B)をもとに電圧の時間的変化
を表したのが(C)の図である。(C)において、半周
期Aの時間的変化は図中Aで表わされる。すなわち、こ
の周波数f1は印加された正弦波電流の周波数fとその
2倍の周波数2fとが混じっている。この波形は第1図
のC点での波形である。この混じった周波数成分の波形
の信号のみをフィルタ14で取り出す。この波形が整流
器15で整流されると、その高周波成分が除去されて直
流成分のみとなり、図4(D)で示す波形となる。この
直流成分、すなわち出力電圧Vが最大になるように電圧
モニタ16を見ながらバイアス電流供給回路11を手動
で調整する。FIG. 6 (C) shows the voltage change with time based on (A) and (B). In (C), the temporal change of the half cycle A is represented by A in the figure. That is, the frequency f1 is a mixture of the frequency f of the applied sine wave current and the frequency 2f which is twice the frequency f. This waveform is the waveform at point C in FIG. Only the signal having the waveform of the mixed frequency component is taken out by the filter 14. When this waveform is rectified by the rectifier 15, the high frequency component is removed and only the DC component is obtained, and the waveform shown in FIG. The bias current supply circuit 11 is manually adjusted while observing the voltage monitor 16 so that this DC component, that is, the output voltage V becomes maximum.
【0015】次にこの実施の形態の変形例について説明
する。図5はこの発明の変形例にかかるSQUIDのバ
イアス電流調整装置を示すブロック図である。図5を参
照して、基本的に図1に示したSQUIDのバイアス電
流調整装置と同様である。異なる点は、整流器15から
の出力をA/Dコンバータ21でデジタル信号に変換し
てパソコン22で自動的に出力電圧Vが最大になるよう
にバイアス電流供給回路11にフィードバックをかけ、
最適のバイアス電流を流すようにしている点である。な
お、この場合はパソコン22にモニタ23が設けられて
いる。Next, a modified example of this embodiment will be described. FIG. 5 is a block diagram showing an SQUID bias current adjusting device according to a modification of the present invention. Referring to FIG. 5, it is basically similar to the SQUID bias current adjusting device shown in FIG. The difference is that the output from the rectifier 15 is converted into a digital signal by the A / D converter 21, and the personal computer 22 automatically feeds back the bias current supply circuit 11 so that the output voltage V becomes maximum.
The point is that the optimum bias current is made to flow. In this case, a monitor 23 is provided on the personal computer 22.
【0016】この変形例においては、パソコン22で自
動的にバイアス電流が調整できる。次にこの発明のさら
なる変形例について説明する。図6はこの発明のさらな
る変形例にかかるSQUIDのバイアス電流調整装置を
示すブロック図である。図6を参照して、基本的に図1
に示したSQUIDのバイアス電流調整装置と同様であ
る。異なる点は、バイアス電流供給回路11が電源回路
24と電圧保持回路25とから構成される点と、整流器
15からの出力を微分回路26、符号反転検出回路27
を経て電圧保持回路25にフィードバックしている点で
ある。In this modification, the bias current can be automatically adjusted by the personal computer 22. Next, a further modified example of the present invention will be described. FIG. 6 is a block diagram showing an SQUID bias current adjusting device according to a further modification of the present invention. Basically, referring to FIG.
This is the same as the SQUID bias current adjusting device shown in FIG. The different points are that the bias current supply circuit 11 is composed of a power supply circuit 24 and a voltage holding circuit 25, and that the output from the rectifier 15 is a differentiation circuit 26 and a sign inversion detection circuit 27.
This is the point where feedback is performed to the voltage holding circuit 25 via.
【0017】すなわち、電源回路24でE(t)=E0
tの電圧信号を加える。この信号は時間経過とともに電
圧が上昇する波形を有する。この電圧が抵抗28を通し
てSQUID10に加えられる。バイアス電流が増加す
るにしたがい、整流器15からの電圧は上昇し、最適点
でピークとなり、以後減少する。すなわち変化量は正か
ら負へ変化する。整流器15の電圧を微分回路26を通
し符号が負(電圧が減少)になれば、電圧保持回路25
にトリガ信号を出力し、その時点の電圧値を保持する。That is, E (t) = E0 in the power supply circuit 24.
The voltage signal of t is applied. This signal has a waveform whose voltage rises over time. This voltage is applied to SQUID 10 through resistor 28. As the bias current increases, the voltage from the rectifier 15 increases, peaks at the optimum point, and then decreases. That is, the amount of change changes from positive to negative. If the sign of the voltage of the rectifier 15 passes through the differentiating circuit 26 and the sign becomes negative (the voltage decreases), the voltage holding circuit 25
A trigger signal is output to and the voltage value at that time is held.
【0018】この変形例の場合は先の実施の形態と異な
り、アナログ信号のままで自動的にバイアス電流を設定
できる。In the case of this modification, unlike the previous embodiment, the bias current can be automatically set with the analog signal as it is.
【0019】今回開示された実施の形態はすべての点で
例示であって制限的なものではないと考えられるべきで
ある。本発明の範囲は上記した説明ではなくて特許請求
の範囲によって示され、特許請求の範囲と均等の意味お
よび範囲内でのすべての変更が含まれることが意図され
る。The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
【図1】この発明に係るSQUIDの動作点調整装置の
要部を示すブロック図である。FIG. 1 is a block diagram showing a main part of an SQUID operating point adjustment device according to the present invention.
【図2】この発明が適用されるSQUIDの外観を示す
模式図である。FIG. 2 is a schematic diagram showing an appearance of a SQUID to which the present invention is applied.
【図3】磁場−電圧特性を示すグラフである。FIG. 3 is a graph showing a magnetic field-voltage characteristic.
【図4】この発明に係るSQUIDの動作点調整方法を
説明するための図である。FIG. 4 is a diagram for explaining an SQUID operating point adjustment method according to the present invention.
【図5】この発明の変形例に係るSQUIDの動作点調
整装置の要部を示すブロック図である。FIG. 5 is a block diagram showing a main part of an SQUID operating point adjustment device according to a modification of the present invention.
【図6】この発明のさらなる変形例に係るSQUIDの
動作点調整装置の要部を示すブロック図である。FIG. 6 is a block diagram showing a main part of an SQUID operating point adjustment device according to a further modification of the present invention.
【図7】従来のSQUIDの動作点調整方法を説明する
ための図である。FIG. 7 is a diagram for explaining a conventional SQUID operating point adjustment method.
10 SQUID 11 バイアス電流供給回路 12 コイル 13 電圧増幅器 14 フィルタ 15 整流器 16 モニタ 21 A/Dコンバータ 22 パソコン 23 モニタ 24 電源回路 25 電圧保持回路 26 微分回路 27 符号反転検出回路 28 抵抗 10 SQUID 11 Bias current supply circuit 12 coils 13 Voltage amplifier 14 filters 15 Rectifier 16 monitors 21 A / D converter 22 PC 23 monitors 24 power supply circuit 25 voltage holding circuit 26 Differentiating circuit 27 Sign inversion detection circuit 28 Resistance
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 33/035 ZAA ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01R 33/035 ZAA
Claims (2)
所定の周波数の交流磁場を印加する手段と、 前記印加した磁場により変調された前記SQUIDの出
力の磁束依存性における周期の半周期分を取出す手段
と、 前記取出した磁場の変化に対応する出力に基づいて、前
記バイアス電流の最適値を求める手段とを備え、 前記バイアス電流の最適値を求める手段は、前記取り出
したSQUIDの出力の磁束依存性における周期の半周
期分の中から前記所定の周波数と前記所定の周波数の2
倍の周波数成分の出力電圧を取り出すフィルタ手段を含
み 、前記求められたバイアス電流の最適値を、前記バイアス
電流を流す手段にフィードバックする手段をさらに備え
る 、SQUID動作点調整装置。1. An SQUID, a means for supplying a bias current to the SQUID, a means for applying an alternating magnetic field of a predetermined frequency to the SQUID in a state where the bias current is supplied, and a modulation by the applied magnetic field. And a means for extracting a half cycle of the cycle in the magnetic flux dependence of the output power of the SQUID , and a means for obtaining the optimum value of the bias current based on the output corresponding to the change in the extracted magnetic field. The means for determining the optimum value of the bias current is
Half-cycle of the period in the magnetic flux dependence of the output of the generated SQUID
2 of the predetermined frequency and the predetermined frequency from the period
Includes filter means for extracting the output voltage of the double frequency component.
Look, the optimum value of the determined bias current, the bias
Further comprises means for feeding back current to the means
That, SQUID operating point adjustment device.
プと、 前記バイアス電流が流された状態で、前記SQUIDに
所定の周波数の交流磁場を印加するステップと、 前記印加した磁場により変調された前記SQUIDの出
力の磁束依存性における周期の半周期分を取出すステッ
プと、 前記取出した磁場の変化に対応する出力に基づいて、前
記取り出したSQUIDの出力の磁束依存性における周
期の半周期分の中から前記所定の周波数と前記所定の周
波数の2倍の周波数成分の出力電圧を取り出して、前記
バイアス電流の最適値を求めるステップと、 前記SQUIDに、前記求められたバイアス電流の最適
値をフィードバックしたバイアス電流を流すステップと
を含む、SQUID動作点調整方法。 2. A step of applying a bias current to the SQUID.
And the bias current is applied to the SQUID
Applying an alternating magnetic field having a predetermined frequency, and outputting the SQUID modulated by the applied magnetic field.
A step for extracting a half period of the period in the magnetic flux dependence of the force
And the output corresponding to the change in the extracted magnetic field,
The frequency in the magnetic flux dependence of the output of the extracted SQUID
The specified frequency and the specified frequency from the half cycle
Extract the output voltage of the frequency component twice the wave number,
Determining the optimum value of the bias current, and calculating the optimum bias current for the SQUID.
The step of flowing the bias current whose value is fed back
A SQUID operating point adjusting method including:
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10292299A JP3387445B2 (en) | 1999-04-09 | 1999-04-09 | SQUID operating point adjustment device and method |
CA002303677A CA2303677A1 (en) | 1999-04-09 | 2000-04-03 | Device and method for easily adjusting working point of squid |
KR10-2000-0018170A KR100532790B1 (en) | 1999-04-09 | 2000-04-07 | Device and method for easily adjusting working point of SQUID |
EP02014168A EP1243937A3 (en) | 1999-04-09 | 2000-04-07 | Superconducting magnetic sensor heater |
EP00400960A EP1043597A3 (en) | 1999-04-09 | 2000-04-07 | Device and method for adjusting the working point of a squid |
US09/544,987 US6498483B1 (en) | 1999-04-09 | 2000-04-07 | Device and method for easily adjusting working point of SQUID |
EP02014167A EP1243936A3 (en) | 1999-04-09 | 2000-04-07 | Squid Magnetometer |
NO20001825A NO20001825L (en) | 1999-04-09 | 2000-04-07 | Method and device for easy adjustment of the SQUID work point |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10292299A JP3387445B2 (en) | 1999-04-09 | 1999-04-09 | SQUID operating point adjustment device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000292509A JP2000292509A (en) | 2000-10-20 |
JP3387445B2 true JP3387445B2 (en) | 2003-03-17 |
Family
ID=14340358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10292299A Expired - Fee Related JP3387445B2 (en) | 1999-04-09 | 1999-04-09 | SQUID operating point adjustment device and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3387445B2 (en) |
-
1999
- 1999-04-09 JP JP10292299A patent/JP3387445B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000292509A (en) | 2000-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1096942A (en) | Power monitor | |
US5537038A (en) | Magnetic flux measuring method and apparatus for detecting high frequency components of magnetic flux with high speed orientation | |
EP0427412A2 (en) | Current measuring method and apparatus therefor | |
US5045788A (en) | Digital SQUID control system for measuring a weak magnetic flux | |
JPH03205566A (en) | Current intensity transformer | |
US4004217A (en) | Flux locked loop | |
KR100532790B1 (en) | Device and method for easily adjusting working point of SQUID | |
US5291135A (en) | Weak magnetic field measuring system using dc-SQUID magnetometer with bias current adjustment and/or detecting function of abnormal operation | |
JP3387445B2 (en) | SQUID operating point adjustment device and method | |
JPS5910510B2 (en) | Superconducting quantum interference magnetometer | |
EP1054262B1 (en) | Magnetic field bias adjusting method and device for a SQUID modulation drive circuit | |
JP2000292511A (en) | Apparatus and method for adjusting operating point of squid | |
JP4269445B2 (en) | SQUID magnetic field detector | |
Birkelbach et al. | Very low frequency magnetic hysteresis measurements with well-defined time dependence of the flux density | |
Nakanishi et al. | Analysis of first-order feedback loop with lock-in amplifier | |
JPH02120677A (en) | Phase difference detector | |
Goodrich et al. | Current ripple effect on superconductive dc critical current measurements | |
JPH11118894A (en) | Squid fluxmeter | |
JP3198746B2 (en) | SQUID magnetometer | |
JPH0868834A (en) | Superconducting magnetometer | |
JPH0660934B2 (en) | DC SQUID magnetometer | |
JPH04143681A (en) | Self-excitation oscillation type digital squid magnetic flux meter | |
Vávra et al. | Fast digital method of critical current measurement of superconducting tunnel junction | |
JPH0320684A (en) | Superconductive quantum interferometer and driving and detection thereof | |
Furukawa et al. | Proposal for a Beat Oscillating Superconducting Quantum Interference Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100110 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110110 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |