JP3387154B2 - Diamond single crystal - Google Patents

Diamond single crystal

Info

Publication number
JP3387154B2
JP3387154B2 JP16208593A JP16208593A JP3387154B2 JP 3387154 B2 JP3387154 B2 JP 3387154B2 JP 16208593 A JP16208593 A JP 16208593A JP 16208593 A JP16208593 A JP 16208593A JP 3387154 B2 JP3387154 B2 JP 3387154B2
Authority
JP
Japan
Prior art keywords
single crystal
diamond
diamond single
substrates
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16208593A
Other languages
Japanese (ja)
Other versions
JPH0717794A (en
Inventor
貴浩 今井
孝 築野
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16208593A priority Critical patent/JP3387154B2/en
Priority to US08/125,482 priority patent/US5474021A/en
Priority to EP93115385A priority patent/EP0589464B1/en
Priority to DE69315650T priority patent/DE69315650T2/en
Publication of JPH0717794A publication Critical patent/JPH0717794A/en
Application granted granted Critical
Publication of JP3387154B2 publication Critical patent/JP3387154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はダイヤモンドの製造方法
に関し、特に半導体材料、電子部品、光学部品などに用
いられる大型のダイヤモンド単結晶の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing diamond, and more particularly to a method for producing a large diamond single crystal used for semiconductor materials, electronic parts, optical parts and the like.

【0002】[0002]

【従来の技術】ダイヤモンドは高硬度、高熱伝導率、透
明度などの数多くの優れた性質を有することから、各種
工具、光学部品、半導体、電子部品の材料として幅広く
用いられており、この中でも光学部品、半導体にはダイ
ヤモンド単結晶がその光透過性や結晶欠陥の少なさで必
要とされている。今後はさらにダイヤモンド単結晶の重
要性が増すものと考えられる。
2. Description of the Related Art Since diamond has many excellent properties such as high hardness, high thermal conductivity and transparency, it is widely used as a material for various tools, optical parts, semiconductors and electronic parts. For semiconductors, a diamond single crystal is required because of its optical transparency and low crystal defects. It is thought that the importance of diamond single crystals will increase in the future.

【0003】天然ダイヤモンド単結晶には230nmま
での紫外線を透過するIIa型と呼ばれる品質のもの
と、紫外線をほとんど透過しないIa型と呼ばれる品質
のものがある。いずれの型のものでも直径10mm以上
の単結晶は入手が極めて困難である。天然では希に20
mm近い直径の単結晶ダイヤモンドが産出することがあ
るが、非常に高価で工業用として用いることはできなか
った。それ以外にもIIa型は結晶欠陥や歪が多く、例
えばX線ロッキングカーブの半値幅が角度にして500
秒以上もあることや、1332cm-1付近に観察される
ラマン散乱光のスペクトルの半値幅が2cm-1以上であ
ることなどから、半導体の基板としては不適当であると
考えられる。Ia型は300nm以下の紫外線を透過し
ないので紫外線用の光学材料として用いることができな
いという問題がある。
Natural diamond single crystals are classified into a type IIa type that transmits ultraviolet rays up to 230 nm and a type Ia type that hardly transmits ultraviolet rays. It is extremely difficult to obtain a single crystal having a diameter of 10 mm or more in any type. Rarely 20 in nature
Although a single crystal diamond with a diameter close to mm may be produced, it was extremely expensive and could not be used for industrial purposes. In addition, type IIa has many crystal defects and strains. For example, the half-width of the X-ray rocking curve is 500 degrees.
And the second or more also, the half-value width of the spectrum of the Raman scattered light is observed in the vicinity of 1332 cm -1 from such that at 2 cm -1 or more is considered to be unsuitable as a substrate for a semiconductor. Since the type Ia does not transmit ultraviolet rays having a wavelength of 300 nm or less, there is a problem that it cannot be used as an optical material for ultraviolet rays.

【0004】ダイヤモンドは過去には天然に産出するも
のが工業用途に使用されたが、現在では人工合成された
ものが中心である。ダイヤモンド単結晶は現在工業的に
は、全てそれらが安定である数万気圧以上の圧力下で合
成されている。このような圧力を発生する超高圧容器は
非常に高価であり、内容積を大きくできず、ダイヤモン
ドを安価に供給できない原因となっている。このために
大型の単結晶を合成することが出来ない。また高圧法で
作られたダイヤモンドは窒素が不純物として混入したI
b型と呼ばれる結晶になりやすいが、このIb型ダイヤ
モンドは400nm以下の波長の光を全く通さない。こ
れらのことから直径が10mm以上で250nm付近の
紫外線を透過する人工ダイヤモンド単結晶はこれまで合
成できなかった。従来から、気相合成法によって比較的
大面積で高純度のダイヤモンドが各種基板上に人工的に
製造されていたが、これらは多結晶膜であり単結晶膜は
得られていない。
In the past, naturally occurring diamonds were used for industrial purposes, but nowadays most of them are artificially synthesized. Diamond single crystals are currently industrially synthesized under pressures in excess of tens of thousands of atmospheres, all of which are stable. An ultra-high pressure container that generates such a pressure is very expensive, the internal volume cannot be increased, and diamond cannot be inexpensively supplied. Therefore, a large single crystal cannot be synthesized. In addition, the diamond produced by the high pressure method contains nitrogen as an impurity I
Although it tends to be a crystal called b-type, this Ib-type diamond does not transmit light having a wavelength of 400 nm or less. From these facts, it has been impossible to synthesize an artificial diamond single crystal having a diameter of 10 mm or more and transmitting ultraviolet rays around 250 nm. Hitherto, relatively high-area and high-purity diamond has been artificially produced on various substrates by a vapor phase synthesis method, but these are polycrystalline films and single crystal films have not been obtained.

【0005】しかしながら、ダイヤモンドの用途の中で
も特に平滑な面を必要とする超精密工具や光学部品、半
導体などに用いられる場合は、単結晶ダイヤモンドを用
いることが必要となる。そこで、気相合成法による単結
晶のエピタキシャル成長させる条件が検討されており、
さらには気相合成法により大面積の単結晶を製造する方
法が検討されている。これまでのところ、ダイヤモンド
をヘテロエピタキシャル成長により単結晶を得る方法は
結晶欠陥が多く、光学用や半導体基板としては充分な品
質ではない。
However, among diamond applications, it is necessary to use single crystal diamond when it is used for ultra-precision tools, optical parts, semiconductors, etc. which require a particularly smooth surface. Therefore, the conditions for epitaxial growth of a single crystal by the vapor phase synthesis method are being studied,
Furthermore, a method for producing a large-area single crystal by a vapor phase synthesis method has been studied. So far, the method of obtaining a single crystal by heteroepitaxial growth of diamond has many crystal defects and is not of sufficient quality as an optical or semiconductor substrate.

【0006】[0006]

【発明が解決しようとする課題】従来、天然でも人工合
成でも光学部品や半導体基板に必要な15mm以上のさ
しわたしを持つ、250nmまでの紫外線域で透明で、
結晶欠陥や歪の少ない(400)X線ロッキングカーブ
の半値幅が小さいダイヤモンド単結晶が存在しなかっ
た。
Conventionally, it is transparent in the ultraviolet region up to 250 nm, which has a size of 15 mm or more, which is necessary for optical parts and semiconductor substrates, whether natural or artificially synthesized.
There was no diamond single crystal having a small full width at half maximum of the (400) X-ray rocking curve with few crystal defects and strain.

【0007】[0007]

【課題を解決するための手段】特開平3-75298には複数
の単結晶ダイヤモンドの方位をそろえて並べ、これの上
にダイヤモンドを気相合成法により成長させることによ
りダイヤモンド単結晶を製造する方法が述べられてい
る。このような方法で大型のダイヤモンド単結晶を得る
にあたって、ホモエピタキシャル成長を所定の厚みまで
維持するために、複数の単結晶ダイヤモンドの結晶方
位、間隔、高さを調節し、成長温度を適当な範囲に制御
するならば、気相法の高純度性を生かして、波長250
nm付近の紫外域でも透明で、X線ロッキングカーブの
半値幅が100秒以内またはラマン散乱スペクトルの半
値幅が2cm-1という結晶性の良い15mm以上の径を
持つ大型ダイヤモンド単結晶を光学用、半導体用として
供給することができる。
[Patent Document 1] Japanese Unexamined Patent Publication No. 3-75298 discloses a method for producing a diamond single crystal by arranging a plurality of single crystal diamonds in the same orientation and growing diamond on the single crystal diamond by a vapor phase synthesis method. Is stated. When obtaining a large diamond single crystal by such a method, in order to maintain homoepitaxial growth to a predetermined thickness, the crystal orientation, intervals, and heights of a plurality of single crystal diamonds are adjusted, and the growth temperature is adjusted to an appropriate range. If it is controlled, the wavelength of 250
A large diamond single crystal with a diameter of 15 mm or more, which is transparent even in the ultraviolet region near nm and has a half width of the X-ray rocking curve within 100 seconds or a half width of the Raman scattering spectrum of 2 cm -1 , with good crystallinity, is used for optics. It can be supplied for semiconductors.

【0008】本願は最大さしわたし径が15mm以上
で、かつ波長250nmにおける紫外線の透過率が20
%以上であり、かつ(400)面におけるX線ロッキン
グカーブの角度半値幅が100秒以内である気相合成法
により合成されたダイヤモンド単結晶を提供するもので
ある。また、本願の気相合成法によって得られたダイヤ
モンド単結晶は、そのラマン散乱スペクトルにおける励
起光からのシフト値1332cm-1の散乱線の半値巾が
2cm-1以下である。なお、本発明におけるさしわたし
径とは、ある大きさ、形を持つ単結晶内に引くことので
きる最大の直線の長さのことである。
The present application has a maximum diameter of 15 mm or more and an ultraviolet ray transmittance of 20 at a wavelength of 250 nm.
% Or more, and the angular half width of the X-ray rocking curve on the (400) plane is 100 seconds or less, and a diamond single crystal synthesized by a vapor phase synthesis method is provided. Further, diamond single crystal obtained by the present vapor-phase synthesis method, the half-value width of the scattered radiation of the shift value 1332 cm -1 from the excitation light in the Raman scattering spectrum is 2 cm -1 or less. In addition, the term "diameter" in the present invention means the maximum length of a straight line that can be drawn in a single crystal having a certain size and shape.

【0009】[0009]

【作用】高品質で大型のダイヤモンド単結晶を得るには
特開平3-75298のように複数の単結晶ダイヤモンド基板
の方位をそろえて並べ、これの上にダイヤモンドを気相
合成法により成長させる方法が現在最も優れていると思
われる。しかし、この方法においては複数の単結晶の方
位がずれると単結晶基板の間にできた小傾角粒界が成長
した単結晶中に残って光散乱の原因になったり、各単結
晶基板の間から結晶方位が異なった異常成長粒子が発生
しやすいという問題がある。このような問題を回避して
複数の基板上に1個の単結晶を成長させるためには、以
下のような工夫が必要である。
[Function] To obtain a high-quality and large-sized diamond single crystal, a method of arranging a plurality of single-crystal diamond substrates aligned in the same direction as in Japanese Patent Laid-Open No. 3-75298, and growing diamond on them by vapor phase synthesis method Is currently considered to be the best. However, in this method, when the orientations of a plurality of single crystals are deviated, a small-angle grain boundary formed between the single crystal substrates remains in the grown single crystal, causing light scattering, or between the single crystal substrates. Therefore, there is a problem that abnormally grown particles having different crystal orientations are likely to be generated. In order to avoid such a problem and grow one single crystal on a plurality of substrates, the following measures are necessary.

【0010】単結晶基板の成長面を(100)面から3
度以内の面とする。各単結晶基板の方位のずれを3度以
内に抑える。となりあう単結晶基板間の距離を30μm
以内にする。成長温度を1000℃以上の高温とする。
単結晶基板同士の高さを揃えるなどの工夫である。これ
らの条件を実現するための典型的な製造工程は、X線回
折などの手段で結晶方位が厳密に測定された高圧合成の
人工ダイヤモンド単結晶素材から、主面が正確に(10
0)面から3以内の面となるように切り出した正方
形、長方形、三角形、六角形のダイヤモンド単結晶を基
材とし、これらの基材を必要な数だけ密に並べて固定す
る。このときにX線回折や電子線回折などの手段でとな
りあう基板の結晶方位が3以上のずれがないことを確
認する。3以上のずれがあった場合には、その基板を
ずれの少なくなる向きに回転させるか、別の基板と取り
替えるかしてずれが3以内になるまで繰り返す。これ
らの基板はダイヤモンドを成長させる主面はRmax
0.5μm以内の粗さに研磨しなければならない。ま
た、基板同士が接する側面も同様に研磨することが、基
板間の隙間を30μm以内にするために好ましい。基板
の縁および角は欠けやすいので20μm以内の面取りを
施すことが有効である。となりあう基板同士の高さの差
を30μm以内にするためには、全ての基板を固定した
後に成長面を研磨することが最も有効である。異常成長
の抑制にはダイヤモンドを気相成長する際に1000℃
以上の基板温度で成長を行うことが好ましい。
From the (100) plane to the growth plane of the single crystal substrate,
The surface should be within the degree. The deviation of the orientation of each single crystal substrate is suppressed within 3 degrees. The distance between adjacent single crystal substrates is 30 μm
Keep within. The growth temperature is set to a high temperature of 1000 ° C. or higher.
It is a contrivance such as aligning the height of the single crystal substrate to each other. A typical manufacturing process for achieving these conditions is to accurately measure the main surface from the artificial diamond single crystal material of high pressure synthesis in which the crystal orientation is strictly measured by means such as X-ray diffraction (10
Square, rectangular, triangular, and hexagonal diamond single crystals cut out so that the surface is within 3 degrees from the 0) surface are used as base materials, and these base materials are densely arranged and fixed in a required number. At this time, it is confirmed that there is no deviation of the crystal orientation of the substrate by 3 degrees or more, which is caused by means such as X-ray diffraction and electron beam diffraction. If there is a deviation of 3 degrees or more, the board is rotated in a direction in which the deviation is reduced, or another board is replaced, and the deviation is repeated within 3 degrees . The main surface of these substrates for growing diamond is Rmax.
It must be polished to a roughness within 0.5 μm. Further, it is preferable to similarly polish the side surfaces where the substrates are in contact with each other so that the gap between the substrates is within 30 μm. Since the edges and corners of the substrate are likely to be chipped, it is effective to chamfer within 20 μm. In order to keep the difference in height between adjacent substrates within 30 μm, it is most effective to polish the growth surface after fixing all the substrates. To suppress abnormal growth, 1000 ° C during vapor phase growth of diamond
It is preferable to grow at the above substrate temperature.

【0011】これらの条件を適切に実現することによっ
て、良質の大型単結晶を複数の単結晶基板をよせ集めた
上に成長させることができる。こうして成長した大面積
の単結晶中には、基板単結晶同士のわずかな方位ずれの
ために、小傾角粒界が存在する可能性があるが結晶の成
長にあたって上記のような処置がとられたものならば、
小傾角粒界によって光が散乱されり欠陥が多量に発生
するなどの問題は生じないので、最大さしわたし径が1
5mm以上、かつ波長250nmにおける紫外線の透過
率が20%以上、かつ(400)面におけるX線ロッキ
ングカーブの角度半値幅が100秒以下で、ラマン散乱
スペクトルの半値幅も2cm−1であるというこれまで
天然にも人工的にも存在しなかったような大型で高品質
のダイヤモンド単結晶を合成することができる。
By appropriately realizing these conditions, a large single crystal of good quality can be grown on a plurality of single crystal substrates together. In the large-area single crystal thus grown, a small tilt grain boundary may exist due to a slight misorientation between the substrate single crystals, but the above-mentioned measures were taken in growing the crystal. If something
. Doing so may defect the light is scattered by the small-angle grain boundaries does not cause a problem such as a large amount occurs, the maximum distance across the diameter is 1
It has a transmittance of 5 mm or more and an ultraviolet ray at a wavelength of 250 nm of 20% or more, an angular half width of the X-ray rocking curve on the (400) plane of 100 seconds or less, and a half width of Raman scattering spectrum of 2 cm −1. It is possible to synthesize large-scale, high-quality diamond single crystals that have never existed naturally or artificially.

【0012】本発明のダイヤモンド単結晶を成長させる
気相合成法は、熱フィラメントCVD法、プラズマCV
D法、プラズマジェット法、燃焼炎法、レ−ザCVD法
などいずれの方法でも良い。また、原料としては炭化水
素などの炭素を含む物質で良く、原料の種類は問わな
い。本発明のダイヤモンド単結晶を成長させる際に用い
る基板は、高圧合成による人工ダイヤモンド単結晶が品
質の揃ったものを入手するのが最も容易だが、天然単結
晶や気相成長した単結晶を基板に用いることもできる。
The vapor phase synthesis method for growing a diamond single crystal of the present invention includes a hot filament CVD method and a plasma CV method.
Any method such as D method, plasma jet method, combustion flame method and laser CVD method may be used. The raw material may be a substance containing carbon such as hydrocarbon and the raw material may be of any kind. The substrate used for growing the diamond single crystal of the present invention is the easiest to obtain an artificial diamond single crystal with high quality synthesized by high pressure synthesis, but natural single crystal or vapor phase grown single crystal is used as the substrate. It can also be used.

【0013】[0013]

【実施例】大きさ4.0mm×4.0mm×300±2
0μmのダイヤモンド{100}基板25枚を間隔を1
5μm以内になるように縦横5列ずつに並べた。このよ
うに配置した基材上にマイクロ波プラズマCVD法によ
りダイヤモンドを成長させた。メタン濃度3%、圧力1
00Torr、基材温度950℃で通算100時間の成長を
行って、25枚の基材の上に200μmの厚さのダイヤ
モンドを形成した後に、両面を機械研磨し、重クロム酸
洗浄を行った。この段階で25個のダイヤモンド単結晶
基板の方位のずれをX線回折法で調べたところ、方位ず
れの角度は最大1.5度であった。
Example: Size 4.0 mm × 4.0 mm × 300 ± 2
25 diamond 0μm {100} substrates with 1 spacing
It was arranged in 5 rows and 5 columns so that the distance was within 5 μm. Diamond was grown on the substrate thus arranged by the microwave plasma CVD method. Methane concentration 3%, pressure 1
After growing for 100 hours in total at a substrate temperature of 950 ° C. at 00 Torr to form a diamond having a thickness of 200 μm on 25 substrates, both surfaces were mechanically polished and washed with dichromic acid. At this stage, when the misalignment of the orientation of the 25 diamond single crystal substrates was examined by the X-ray diffraction method, the misorientation angle was 1.5 degrees at the maximum.

【0014】次に最初にダイヤを成長させたのと反対側
にメタン濃度2%、圧力120Torr、基材温度1000
℃、ジボラン(B26)を10ppm添加で、Bをドー
プした半導体単結晶ダイヤモンドを150時間で300
μm成長させそのあとに、メタン濃度2%、圧力120
Torr、基材温度1100℃、H2Oを0.3%添加でド
ープしない高純度のダイヤモンド700μmを成長さ
せ、Bドープ層と高純度層を交互に計3サイクル成長さ
せた。こうして得られたダイヤモンドからBドープ層に
沿って放電加工により、3枚の高純度ダイヤモンド単結
晶板を切り出した。これらの両面を鏡面研磨し、外縁の
品質の劣る部分をレ−ザ加工によって取り除いたとこ
ろ、約20mm角で厚さ500から600μmの無色透
明のダイヤモンド単結晶を得た。最大さしわたしは27
mmであった。
Next, on the side opposite to the side where the diamond was first grown, the methane concentration was 2%, the pressure was 120 Torr, and the substrate temperature was 1000.
℃, diborane (B 2 H 6 ) was added at 10ppm, B-doped semiconductor single crystal diamond in 300 hours in 150 hours
μm growth, then methane concentration 2%, pressure 120
Torr, substrate temperature 1100 ° C., high-purity diamond 700 μm not doped with 0.3% H 2 O was grown, and B-doped layers and high-purity layers were alternately grown for a total of 3 cycles. From the diamond thus obtained, three high-purity diamond single crystal plates were cut along the B-doped layer by electric discharge machining. These both surfaces were mirror-polished, and the inferior quality of the outer edge was removed by laser processing to obtain a colorless and transparent diamond single crystal of about 20 mm square and a thickness of 500 to 600 μm. I am 27
It was mm.

【0015】これら結晶の可視光および紫外線領域の光
学透過率を測定したところ、全面にわたって紫外吸収端
は225nmであり、250nmにおける透過率は最低
でも45%であった。また得られた3枚の結晶から2枚
ずつ3通りの組み合せを選んで、CuKα1のX線によ
る(400)面の2結晶法X線ロッキングカーブを測定
したが、その半値幅は43秒、40秒、41秒であっ
た。波長514.5nmのアルゴンイオンレ−ザで励起
したときに励起光から1332cm-1の位置にシフトし
て現れるラマン散乱スペクトルの半値幅は、分解能0.
7cm-1の分光器で測定して1.7cm-1であった。
When the optical transmittances of these crystals in the visible and ultraviolet regions were measured, the ultraviolet absorption edge was 225 nm over the entire surface and the transmittance at 250 nm was at least 45%. Also, three combinations of two crystals were selected from each of the three crystals obtained, and the two-crystal method X-ray rocking curve of the (400) plane by CuKα1 X-rays was measured. It was 41 seconds. When excited with an argon ion laser having a wavelength of 514.5 nm, the half-value width of the Raman scattering spectrum, which is shifted to a position of 1332 cm −1 from the excitation light and appears, has a resolution of 0.
It was 1.7 cm -1 as measured by a 7 cm -1 spectroscope.

【0016】[0016]

【比較例】天然ダイヤモンド単結晶IIa型2個、Ia
型3個、高圧合成Ib型単結晶4個、高圧合成IIa型
単結晶2個を、本件発明の実施例の3個のダイヤモンド
単結晶と同様に特性を評価して調べたところ下記の表の
ようになった。光透過特性は光の入出射面を鏡面研磨し
て測定した。2結晶法でX線ロッキングカーブを測定す
る際には、第一結晶としては同一の高圧合成Ib型ダイ
ヤモンド単結晶を用いた。この測定結果から本発明のダ
イヤモンドはこれまでに得られなかった大型高品質のダ
イヤモンドであることが判明した。
[Comparative Example] Natural diamond single crystal IIa type 2 pieces, Ia
The characteristics of three types of diamond, four high-pressure synthesized Ib type single crystals, and two high-pressure synthesized IIa type single crystals were evaluated and examined in the same manner as the three diamond single crystals of the examples of the present invention. It became so. The light transmission characteristics were measured by mirror-polishing the light input / output surface. When measuring the X-ray rocking curve by the two-crystal method, the same high-pressure synthetic Ib type diamond single crystal was used as the first crystal. From this measurement result, it was found that the diamond of the present invention is a large-sized and high-quality diamond that has never been obtained.

【0017】表1において径は最大のさしわたし長さ
(mm)。厚さは光透過測定におけるダイヤモンド中の
光路長(mm)。吸収端は可視光域から紫外線域での透
過限界波長(nm)。透過率は250nmおける透過率
(ダイヤモンドの屈折率から最大72%)。X線半値幅
は前述の方法で測定したX線ロッキングカーブの角度半
値幅(秒)。ラマン半値幅は前述の方法で測定した13
32cm-1付近の散乱ピークの半値幅(cm-1)。
In Table 1, the diameter is the maximum measuring length (mm). The thickness is the optical path length (mm) in the diamond in the light transmission measurement. The absorption edge is the transmission limit wavelength (nm) in the visible to ultraviolet range. The transmittance is the transmittance at 250 nm (up to 72% from the refractive index of diamond). The X-ray half-width is the angular half-width (second) of the X-ray rocking curve measured by the above method. Raman FWHM was measured by the method described above 13
Half-width of the scattering peak in the vicinity 32cm -1 (cm -1).

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上のように本発明によれば、均質で大
型かつ大面積の高圧相単結晶を光学用、半導体基板とし
て使用できる。本発明では、高圧相物質の成長を気相合
成法により行なうので、ダイヤモンドに硼素や窒素を容
易に含有させる、などの種々のドーピングが可能であ
る。したがって本発明のダイヤモンド単結晶は、精密工
具刃先、耐摩工具、耐熱工具、半導体基材、放熱基板、
高圧相半導体材料、光学材料、音響振動板などに幅広く
用いることができる。
As described above, according to the present invention, a homogeneous, large-sized and large-area high-pressure phase single crystal can be used as an optical or semiconductor substrate. In the present invention, since the growth of the high-pressure phase substance is carried out by the vapor phase synthesis method, it is possible to carry out various dopings such as making diamond easily contain boron or nitrogen. Therefore, the diamond single crystal of the present invention is a precision tool cutting edge, a wear resistant tool, a heat resistant tool, a semiconductor substrate, a heat dissipation substrate,
It can be widely used for high-voltage phase semiconductor materials, optical materials, acoustic diaphragms and the like.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−75298(JP,A) 特開 平6−227895(JP,A) 特開 平6−87691(JP,A) 特開 平6−1695(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 29/04 C30B 25/02 C30B 25/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-75298 (JP, A) JP-A-6-227895 (JP, A) JP-A-6-87691 (JP, A) JP-A-6- 1695 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C30B 29/04 C30B 25/02 C30B 25/18

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成長面を(100)面から3度以内の面
としたダイヤモンド単結晶基板を複数用い、となりあう
該単結晶基板間の距離を30μm以内とし、また、とな
りあう該単結晶基板同士の高さの差を30μm以内と
し、1000℃以上の温度で気相合成法により合成した
ダイヤモンド単結晶であって、最大さしわたし径が15
mm以上で、かつ波長250nmにおける紫外線の透過
率が20%以上であり、かつ(400)面におけるX線
ロッキングカーブの角度半値幅が100秒以下であるこ
とを特徴とするダイヤモンド単結晶。
1. A growth plane within 3 degrees of the (100) plane.
Using multiple diamond single crystal substrates
The distance between the single crystal substrates should be within 30 μm, and
The height difference between the single crystal substrates that meet each other is within 30 μm.
And was synthesized by a gas phase synthesis method at a temperature of 1000 ° C. or higher.
It is a diamond single crystal with a maximum diameter of 15
in mm or more and is the transmittance of the ultraviolet at a wavelength of 250nm is 20% or more and (400) to holder Iyamondo single crystal and wherein the angular half width of the X-ray rocking curve is not more than 100 seconds in surface.
【請求項2】 成長面を(100)面から3度以内の面
としたダイヤモンド単結晶基板を複数用い、となりあう
該単結晶基板間の距離を30μm以内とし、また、とな
りあう該単結晶基板同士の高さの差を30μm以内と
し、1000℃以上の温度で気相合成法により合成した
ダイヤモンド単結晶であって、最大さしわたし径が15
mm以上で、かつ波長250nmにおける紫外線の透過
率が20%以上であり、かつラマン散乱スペクトルにお
ける励起光からのシフト値1332cm−1の散乱線の
半値幅が2cm−1以下であることを特徴とするダイヤ
モンド単結晶。
2. A growth plane within 3 degrees of the (100) plane.
Using multiple diamond single crystal substrates
The distance between the single crystal substrates should be within 30 μm, and
The height difference between the single crystal substrates that meet each other is within 30 μm.
And was synthesized by a gas phase synthesis method at a temperature of 1000 ° C. or higher.
It is a diamond single crystal with a maximum diameter of 15
and wherein the at mm or more and is the transmittance of the ultraviolet at a wavelength of 250nm is 20% or more, and the half width of the scattered radiation of the shift value 1332 cm -1 from the excitation light in the Raman scattering spectrum is 2 cm -1 or less to folder hate <br/> Monde single crystal.
【請求項3】 前記ダイヤモンド単結晶基板のダイヤモ3. A diamond of the diamond single crystal substrate
ンドを成長させる面と側面の面粗さがRmax0.5μRoughness of the surface on which the band is grown and the side surface is 0.5μ
m以下であることを特徴とする請求項1あるいは2に記It is below m, It is described in Claim 1 or 2 characterized by the above-mentioned.
載のダイヤモンド単結晶。Mounted diamond single crystal.
【請求項4】 前記ダイヤモンド単結晶基板の角部が24. The corner portion of the diamond single crystal substrate is 2
0μm以下の面取りが施されていることを特徴とする請Contract characterized by chamfering of 0 μm or less
求項1あるいは2に記載のダイヤモンド単結晶。The diamond single crystal according to claim 1 or 2.
JP16208593A 1992-09-24 1993-06-30 Diamond single crystal Expired - Fee Related JP3387154B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16208593A JP3387154B2 (en) 1993-06-30 1993-06-30 Diamond single crystal
US08/125,482 US5474021A (en) 1992-09-24 1993-09-22 Epitaxial growth of diamond from vapor phase
EP93115385A EP0589464B1 (en) 1992-09-24 1993-09-23 Epitaxial growth of diamond from vapor phase
DE69315650T DE69315650T2 (en) 1992-09-24 1993-09-23 Epitaxial growing of diamonds from the vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16208593A JP3387154B2 (en) 1993-06-30 1993-06-30 Diamond single crystal

Publications (2)

Publication Number Publication Date
JPH0717794A JPH0717794A (en) 1995-01-20
JP3387154B2 true JP3387154B2 (en) 2003-03-17

Family

ID=15747803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16208593A Expired - Fee Related JP3387154B2 (en) 1992-09-24 1993-06-30 Diamond single crystal

Country Status (1)

Country Link
JP (1) JP3387154B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046294A1 (en) 2013-09-30 2015-04-02 並木精密宝石株式会社 Diamond substrate and diamond substrate manufacturing method
KR20160119068A (en) 2014-02-05 2016-10-12 나미키 세이미츠 호오세키 가부시키가이샤 Diamond substrate and method for manufacturing diamond substrate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623356B2 (en) * 2003-12-02 2011-02-02 住友電気工業株式会社 Single crystal diamond
JP4385764B2 (en) * 2003-12-26 2009-12-16 住友電気工業株式会社 Method for producing diamond single crystal substrate
US7481879B2 (en) * 2004-01-16 2009-01-27 Sumitomo Electric Industries, Ltd. Diamond single crystal substrate manufacturing method and diamond single crystal substrate
JP4736338B2 (en) * 2004-03-24 2011-07-27 住友電気工業株式会社 Diamond single crystal substrate
WO2006048957A1 (en) 2004-11-05 2006-05-11 Sumitomo Electric Industries, Ltd. Single-crystal diamond
WO2015190427A1 (en) * 2014-06-09 2015-12-17 並木精密宝石株式会社 Diamond substrate and method for manufacturing diamond substrate
JP6374060B2 (en) * 2017-06-27 2018-08-15 国立研究開発法人産業技術総合研究所 Method for producing single crystal diamond
JP6746124B2 (en) * 2019-06-26 2020-08-26 国立研究開発法人産業技術総合研究所 Method for producing single crystal diamond

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046294A1 (en) 2013-09-30 2015-04-02 並木精密宝石株式会社 Diamond substrate and diamond substrate manufacturing method
KR20160065090A (en) 2013-09-30 2016-06-08 나미키 세이미츠 호오세키 가부시키가이샤 Diamond substrate and diamond substrate manufacturing method
US10132000B2 (en) 2013-09-30 2018-11-20 Adamant Namiki Precision Jewel Co., Ltd. Diamond substrate and diamond substrate manufacturing method
US10480096B2 (en) 2013-09-30 2019-11-19 Adamant Namiki Precision Jewel Co., Ltd. Diamond substrate
KR20160119068A (en) 2014-02-05 2016-10-12 나미키 세이미츠 호오세키 가부시키가이샤 Diamond substrate and method for manufacturing diamond substrate
US10246794B2 (en) 2014-02-05 2019-04-02 Adamant Namiki Precision Jewel Co., Ltd. Diamond substrate and method for manufacturing diamond substrate
US10619267B2 (en) 2014-02-05 2020-04-14 Adamant Namiki Precision Jewel Co., Ltd. Diamond substrate

Also Published As

Publication number Publication date
JPH0717794A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
EP0589464B1 (en) Epitaxial growth of diamond from vapor phase
JP2654232B2 (en) High pressure phase material single crystal production method
US9816202B2 (en) Single crystal diamond
EP1712661B2 (en) Single crystalline diamond and producing method thereof
TWI408260B (en) High crystalline quality synthetic diamond
US20090297429A1 (en) High growth rate methods of producing high-quality diamonds
JP3387154B2 (en) Diamond single crystal
US20070042153A1 (en) Free-standing silicon carbide articles formed by chemical vapor deposition and methods for their manufacture
JPH0748198A (en) Method for synthesizing diamond
Janssen et al. “Mosaic” growth of diamond
US8114505B2 (en) Free-standing silicon carbide articles formed by chemical vapor deposition and methods for their manufacture
JP3350992B2 (en) Diamond synthesis method
JP4547493B2 (en) Method for producing diamond single crystal and diamond single crystal
JP4623356B2 (en) Single crystal diamond
JP3498326B2 (en) Diamond and its manufacturing method
Ichikawa et al. Propagation of dislocations in diamond (111) homoepitaxial layer
JP6746124B2 (en) Method for producing single crystal diamond
US9957640B2 (en) Single crystal diamond and diamond tool
JP6374060B2 (en) Method for producing single crystal diamond
JPH06227895A (en) Synthesis of diamond
JP6551953B2 (en) Method of manufacturing single crystal diamond

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees