JP3385473B2 - Method and apparatus for measuring tool edge temperature during cutting of work material - Google Patents
Method and apparatus for measuring tool edge temperature during cutting of work materialInfo
- Publication number
- JP3385473B2 JP3385473B2 JP2000380662A JP2000380662A JP3385473B2 JP 3385473 B2 JP3385473 B2 JP 3385473B2 JP 2000380662 A JP2000380662 A JP 2000380662A JP 2000380662 A JP2000380662 A JP 2000380662A JP 3385473 B2 JP3385473 B2 JP 3385473B2
- Authority
- JP
- Japan
- Prior art keywords
- tool
- cutting
- temperature
- halves
- work material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Machine Tool Sensing Apparatuses (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は,切削工具分野,
機械加工分野,それらの研究分野,計測機器分野等に適
用できるものであり,非導電性又は導電性の被削材の切
削加工時に,工具刃先の温度を測定することができる工
具刃先温度の測定方法及びその装置に関する。TECHNICAL FIELD The present invention relates to a cutting tool field,
It can be applied to the field of machining, those research fields, the field of measuring instruments, etc., and can measure the temperature of the tool edge when cutting non-conductive or conductive work materials. A method and an apparatus thereof.
【0002】[0002]
【従来の技術】工作物即ち被削材を切削加工する場合に
使用するバイト即ち工具は,その摩耗が被削材に対する
加工コスト,加工精度,仕上げ面の性状等に大きく影響
するので,これらの悪影響を低減することは,工具の長
寿命化を図るうえからも,加工現場において重要な関心
事である。一方,工具の摩耗に影響する因子の内,加工
条件によっては,工具刃先温度(切削温度)が1000
℃以上にも達する場合があり,工具刃先温度が高温化す
ることは,工具刃先の摩耗を左右する重要な要因の一つ
になっている。2. Description of the Related Art A cutting tool or tool used for cutting a work piece, that is, a work material, has a great influence on the working cost, working accuracy, finish surface property, etc. of the work material. Reducing adverse effects is also an important concern at machining sites in order to extend tool life. On the other hand, among the factors that affect the wear of the tool, the tool edge temperature (cutting temperature) is 1000 depending on the processing conditions.
In some cases, the temperature of the tool edge may rise to over ℃, and one of the important factors affecting the wear of the tool edge is that the tool edge temperature rises.
【0003】工具刃先の温度,即ち切削温度の測定法と
しては,従来,被削材の切りくずの色による判別法,工
具刃先や被削材のサーモカラーを用いる方法,輻射温度
計を用いる方法,赤外線写真による方法,工具又は被削
材中に熱電対を挿入する方法等が知られている。これら
の工具刃先の温度測定方法は,下記に説明する工具−被
削材間熱電対法に比較して簡便さや信頼性の点で劣って
いる。As a method for measuring the temperature of the tool edge, that is, the cutting temperature, conventionally, a method of discriminating by the color of the chips of the work material, a method of using a thermo color of the tool edge or the work material, and a method of using a radiation thermometer are used. , A method using an infrared photograph, a method of inserting a thermocouple into a tool or a work material, and the like are known. These methods for measuring the temperature of the tool cutting edge are inferior in terms of simplicity and reliability as compared with the thermocouple method between the tool and the work described below.
【0004】最近では切削温度の測定法として,熱画像
装置を利用した工具すくい面の温度分布測定法,被削材
に光ファイバーを挿入し,光カプラーと赤外線素子を用
いて工具逃げ面温度を測定する方法が提案されている。
これらの切削温度の測定方法は,それぞれの温度測定に
有効な手段であるが,装置が大掛かりであったり,高コ
ストになったり,データ処理に時間がかかる等の問題点
がある。Recently, as a cutting temperature measuring method, a temperature distribution measuring method of a tool rake surface using a thermal imager, an optical fiber is inserted into a work material, and a tool flank surface temperature is measured using an optical coupler and an infrared element. The method of doing is proposed.
Although these cutting temperature measuring methods are effective means for measuring each temperature, they have problems such as large-scale equipment, high cost, and time-consuming data processing.
【0005】上記の各温度測定方法より簡便で信頼性が
高く,通常用いられている工具刃先温度を測定する方法
として,工具−被削材間熱電対法がある。図8には,一
般的な旋盤において,工具刃先温度を測定する装置が示
されている。工具−被削材間熱電対法は,工具11と工
作物即ち被削材14との間に熱電対を構成し,工具11
と被削材14との間で生じる熱起電力を利用して工具刃
先温度,言い換えれば,切削温度を測定するものであ
る。A tool-workpiece thermocouple method is a method that is simpler and more reliable than the above-mentioned temperature measuring methods, and that is generally used to measure the tool edge temperature. FIG. 8 shows a device for measuring the tool edge temperature in a general lathe. In the tool-to-workpiece thermocouple method, a thermocouple is formed between the tool 11 and a workpiece, that is, a work material 14, and the tool 11
The tool edge temperature, in other words, the cutting temperature is measured by utilizing the thermoelectromotive force generated between the work material 14 and the work material 14.
【0006】一般的な旋盤において,工具11は,工具
ホルダー16に保持されている。被削材14は,ここで
は,中空孔が形成されたものが使用されている。主軸1
3は,主軸台25に回転自在に支持されており,主軸1
3のチャック22で保持されたマンドレル20には,被
削材14の中空孔が挿通し,マンドレル20に被削材1
4が固定されている。また,マンドレル20の先端に
は,テールトック21が押し当てられ,マンドレル20
がテールトック21によって回転自在に支持されてい
る。In a general lathe, the tool 11 is held by a tool holder 16. The work material 14 used here has hollow holes formed therein. Spindle 1
3 is rotatably supported by a headstock 25, and the spindle 1
The hollow hole of the work material 14 is inserted into the mandrel 20 held by the chuck 22 of No. 3, and the work material 1 is attached to the mandrel 20.
4 is fixed. In addition, the tail stock 21 is pressed against the tip of the mandrel 20,
Are rotatably supported by the tail tok 21.
【0007】該工具−被削材間熱電対法を達成する工具
刃先温度測定装置は,図8に示すように,工具ホルダー
16から絶縁部材12によって絶縁された工具11,主
軸台25に軸受24を介して回転可能に支持された主軸
13,主軸13に設けたチャック22に保持されたマン
ドレル20,マンドレル20に固定された中空孔を備え
た導電性の被削材14,被削材14の回転部分から信号
を取り出すため主軸台25に設けられた回転接点(水銀
接点)15,記録計を構成するペンレコーダー18,工
具端部の温度上昇による誤差成分を除去するための可変
抵抗器23より成る補償回路19を通じて接続するリー
ド線17A,及び被削材14に取り付けた回転接点15
とペンレコーダー18との間を接続するリード線17
B,から構成されている。工具刃先温度測定装置は,工
具11と被削材14との温度に応じてリード線17Aと
リード線17Bに流れる電流をペンレコーダー18で検
出して熱起電力を求め,別途工具11,被削材14の組
み合わせで検定を行った熱起電力特性(温度と熱起電力
の関係)から温度換算し,工具11の切削温度を測定す
るものである。As shown in FIG. 8, a tool edge temperature measuring device for achieving the tool-to-workpiece thermocouple method includes a tool 11 insulated from a tool holder 16 by an insulating member 12, a headstock 25 and a bearing 24. Of a main shaft 13 rotatably supported via a mandrel 20 held by a chuck 22 provided on the main shaft 13, a conductive work material 14 having a hollow hole fixed to the mandrel 20, and a work material 14. From a rotating contact (mercury contact) 15 provided on a headstock 25 for extracting a signal from a rotating portion, a pen recorder 18 constituting a recorder, and a variable resistor 23 for removing an error component due to a temperature rise at a tool end. Lead wire 17A connected through the compensating circuit 19 and the rotary contact 15 attached to the work material 14.
Lead wire 17 that connects between the pen recorder 18 and
It is composed of B. The tool edge temperature measuring device detects a thermoelectromotive force by detecting a current flowing in the lead wire 17A and the lead wire 17B with the pen recorder 18 according to the temperatures of the tool 11 and the work material 14, and separately calculates the tool 11 and the work material. The cutting temperature of the tool 11 is measured by converting the temperature from the thermoelectromotive force characteristics (relationship between temperature and thermoelectromotive force) that has been verified by the combination of the materials 14.
【0008】上記のような工具−被削材間熱電対法は,
例えば,特開2000−202704号公報に開示され
ている。該公報に開示された工具・被削材間の熱起電力
測定用チップ保持装置は,簡単,堅固に導線をチップに
取り付けることができ,切削中に切屑が絡みついても導
線が外れることがないものであり,チップホルダーに取
り付けたチップ,導線,固定アーム,該固定アームをチ
ップホルダーに取り付けるボルト,固定アームに取り付
けた押えボルト,及び押えボルトの先端に固定された押
え板から構成されている。工具・被削材間の熱起電力測
定用チップ保持装置は,押え板が絶縁板で構成され,押
え板とチップとの間に導線を挿入し,押えボルトによっ
て導線をチップに固定したものである。The tool-workpiece thermocouple method as described above is
For example, it is disclosed in Japanese Patent Laid-Open No. 2000-202704. The tip holding device for thermoelectromotive force measurement between a tool and a work material disclosed in the publication can easily and firmly attach a conductive wire to a tip, and the conductive wire does not come off even if chips are entangled during cutting. It is composed of a chip attached to a chip holder, a conductor, a fixed arm, a bolt for attaching the fixed arm to the chip holder, a holding bolt attached to the fixed arm, and a holding plate fixed to the tip of the holding bolt. . The tip holding device for thermo-electromotive force measurement between a tool and a work material is one in which the holding plate is composed of an insulating plate, a lead wire is inserted between the holding plate and the tip, and the lead wire is fixed to the tip with a holding bolt. is there.
【0009】[0009]
【発明が解決しようとする課題】ところで,従来,広く
利用されている工具−被削材間熱電対法では,熱電対を
構成する工具材料と被削材材料とが,共に導電性材料で
ある必要がある。従って被削材の材料が導電性材料でな
い場合は,工具−被削材間熱電対法は,利用できないと
いう問題がある。従って,非導電性材料の切削温度の測
定は,他の測定法で測定するしかなく,それらの測定例
も少ない。そこで,工作物即ち被削材が非導電性材料で
も切削温度を測定でき,工具−被削材間熱電対法での切
削温度,一般的には,工具のすくい面での平均温度に近
い温度の測定を簡便に行うには如何に構成すればよいか
の課題があった。By the way, in the conventionally widely used tool-to-workpiece thermocouple method, both the tool material and the work material constituting the thermocouple are conductive materials. There is a need. Therefore, if the material of the work material is not a conductive material, there is a problem that the tool-work material thermocouple method cannot be used. Therefore, the cutting temperature of the non-conductive material can only be measured by other measuring methods, and there are few examples of such measurements. Therefore, the cutting temperature can be measured even when the workpiece, that is, the work material is a non-conductive material, and the cutting temperature in the tool-work material thermocouple method, which is generally close to the average temperature on the rake face of the tool. However, there is a problem of how to configure the method to easily perform the measurement.
【0010】[0010]
【課題を解決するための手段】この発明の目的は,上記
の課題を解決することであり,工具を一対の工具半片か
ら構成し,工具半片を熱起電力の異なる2種類の工具材
料を使用してそれぞれ作製し,2種類の工具半片を工具
刃先の部分で接触させ,その接触面を高温接点即ち測温
点として熱電対を構成して,非導電性又は導電性の工作
物即ち被削材を切削加工する時に,前記接触面の平均温
度,即ち工具半片間の接触面の平均温度の工具表面温度
を測定することができる被削材の切削時の工具刃先温度
の測定方法及びその装置を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems. A tool is composed of a pair of tool halves, and the tool halves use two types of tool materials having different thermoelectromotive forces. Then, two kinds of tool halves are brought into contact with each other at the edge of the tool edge, and a thermocouple is constituted by using the contact surface as a high temperature contact, that is, a temperature measuring point, and a non-conductive or conductive work piece Method and apparatus for measuring a tool edge temperature during cutting of a work material capable of measuring an average temperature of the contact surface, that is, a tool surface temperature of an average temperature of the contact surface between the tool halves when cutting the material Is to provide.
【0011】この発明は,互いに異なる材料から成る一
対の工具半片の各刃先を結合して測温点を形成した工具
によって,少なくとも非導電性,即ち,非導電性又は導
電性の被削材を切削する時に発生する工具刃先の温度
を,前記工具半片にそれぞれ接続したリード線を通じて
測定された前記工具半片間に発生した熱起電力によって
前記工具刃先の温度を測定することから成る被削材の切
削時の工具刃先温度の測定方法に関する。According to the present invention, at least a non-conductive work piece, that is, a non-conductive work piece or a conductive work piece, is cut by a tool having a temperature measuring point formed by connecting the cutting edges of a pair of tool halves made of different materials. The temperature of the tool cutting edge generated during cutting, the temperature of the tool cutting edge is measured by the thermoelectromotive force generated between the tool halves measured through the lead wire connected to each of the tool halves. The present invention relates to a method for measuring a tool edge temperature during cutting.
【0012】また,この発明は,少なくとも非導電性,
即ち,非導電性又は導電性の被削材を切削する工具を形
成する互いに熱起電力特性の異なる材料から成る一対の
工具半片,前記工具半片の刃先を互いに接した状態に固
定して形成した測温点,前記工具半片の前記刃先を除い
て前記工具半片間に介在されて前記工具半片を互いに絶
縁する第1絶縁部材,前記工具半片を前記工具を保持す
る工具ホルダーからそれぞれ絶縁する第2絶縁部材,前
記工具半片にそれぞれ接続して引き出された各リード
線,及び前記リード線を通じて前記工具半片間に発生す
る熱起電力を測定するペンレコーダから成る被削材の切
削時の工具刃先温度の測定装置に関する。Further, the present invention is at least non-conductive,
That is, a pair of tool halves made of materials having different thermoelectromotive force characteristics, which form a tool for cutting a non-conductive or conductive work material, and the cutting edges of the tool halves are fixed to be in contact with each other. A temperature measuring point, a first insulating member interposed between the tool halves except for the cutting edge of the tool halves to insulate the tool halves from each other, and a second insulating member to insulate the tool halves from a tool holder holding the tool, respectively. Tool cutting edge temperature at the time of cutting a work material including an insulating member, lead wires connected to the tool halves and drawn out, and a pen recorder for measuring thermoelectromotive force generated between the tool halves through the lead wires Measuring device.
【0013】この工具刃先温度の測定装置は,一方の前
記工具半片は超硬K10種から構成され,他方の前記工
具半片は超硬P10種から構成されている。或いは,一
方の前記工具半片は超硬K10種から構成され,他方の
前記工具半片はサーメットから構成されている。In this tool edge temperature measuring device, one of the tool halves is made of cemented carbide K10 and the other of the tool halves is made of cemented carbide P10. Alternatively, one of the tool halves is made of cemented carbide K10 and the other of the tool halves is made of cermet.
【0014】前記被削材は,前記工具を構成する前記工
具半片によって切削加工できる導電性又は非導電性の材
料から作製された工作物である。また,前記第1絶縁部
材と前記第2絶縁部材は,アルミナセラミックスからそ
れぞれ構成された絶縁板である。The work material is a work piece made of a conductive or non-conductive material that can be cut by the tool halves constituting the tool. The first insulating member and the second insulating member are insulating plates made of alumina ceramics.
【0015】前記測温点を構成する前記工具半片の互い
の接触面積は0.125mm2 程度である。また,前記
測温点を構成する前記工具半片の互いの接触面は三角形
形状に形成されている。The contact area between the tool halves constituting the temperature measuring point is about 0.125 mm 2 . The contact surfaces of the tool halves constituting the temperature measuring point are formed in a triangular shape.
【0016】この被削材の切削時の工具刃先温度の測定
方法及びその装置は,上記のように構成されているの
で,いわゆる工具と工具との間に形成された熱電対によ
る方法,即ち,工具−工具間熱電対法を提供するもので
あり,従来の工具−被削材間熱電対法で測定した工具す
くい面平均温度に近い切削温度を測定することができ,
工具半片−工具半片間の接触面の平均温度を切削温度と
して測定することができる。Since the method for measuring the tool edge temperature during cutting of the work material and the apparatus therefor are configured as described above, a method using a so-called thermocouple formed between the tools, that is, It provides a tool-tool thermocouple method, which can measure a cutting temperature close to the average tool rake surface temperature measured by the conventional tool-workpiece thermocouple method.
The average temperature of the contact surface between the tool halves and the tool halves can be measured as the cutting temperature.
【0017】[0017]
【発明の実施の形態】以下,図面を参照して,この発明
による被削材の切削時の工具刃先温度の測定方法及びそ
の装置の実施例を説明する。図1はこの発明による被削
材の切削時の工具刃先温度の測定装置の一実施例を示す
概略説明図,図2は図1に示す工具刃先温度の測定装置
の要部の拡大説明図,図3は工具刃先付近の切削状態を
示す説明図,図4は本発明の工具半片−工具半片間熱電
対法と,従来の工具−被削材間熱電対法との切削温度と
切削速度との関係を示すグラフ,図5は本発明の工具半
片−工具半片間熱電対法によって測定した工具半片の測
温点の接触面積と切削温度の関係を表すグラフ,図6は
各種の非導電性被削材を切削した時の切削温度と切削速
度との関係を示したグラフ,及び図7は本発明による工
具半片−工具半片間熱電対法と,従来の工具−被削材間
熱電対法とでそれぞれ測定した時の切削時間に対応した
熱起電力波形を表すグラフである。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a method for measuring a tool edge temperature when cutting a work material and an apparatus therefor according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory view showing an embodiment of a tool edge temperature measuring device at the time of cutting a work material according to the present invention, and FIG. 2 is an enlarged explanatory view of a main part of the tool edge temperature measuring device shown in FIG. FIG. 3 is an explanatory view showing a cutting state in the vicinity of a tool cutting edge, and FIG. 4 is a cutting temperature and a cutting speed of a tool half piece-tool half piece thermocouple method of the present invention and a conventional tool-workpiece thermocouple method. 5 is a graph showing the relationship between the cutting temperature and the contact area of the tool half-piece measured by the thermocouple method between the tool half-piece and the tool half-piece of the present invention, and FIG. FIG. 7 is a graph showing the relationship between the cutting temperature and the cutting speed when cutting a work material, and FIG. 7 is a tool half-tool half-piece thermocouple method according to the present invention and a conventional tool-workpiece thermocouple method. It is a graph showing the thermoelectromotive force waveform corresponding to the cutting time when each was measured with and.
【0018】この被削材の切削時の工具刃先温度の測定
方法は,木材,樹脂,セラミックス等の非導電性材料,
或いは非導電性材料と導電性材料との複合材からなって
全体として非導電性材料で構成されている工作物,即
ち,被削材4に対して工具1で切削加工する時に発生す
る工具刃先温度,言い換えれば,切削温度を測定するの
に適用して好ましいものである。The method for measuring the temperature of the cutting edge of the tool at the time of cutting the work material is a non-conductive material such as wood, resin or ceramics,
Alternatively, a workpiece made of a composite material of a non-conductive material and a conductive material, which is made of a non-conductive material as a whole, that is, a tool edge generated when the work 1 is cut by the tool 1. It is preferably applied to measure temperature, in other words, cutting temperature.
【0019】この工具刃先温度の測定方法は,互いに異
なる材料から成る一対の工具半片2A,2Bを互いに並
列に配設した工具1によって,非導電性の工作物即ち被
削材4を切削する時に発生する工具刃先26の温度を,
工具半片2A,2Bにそれぞれ接続したリード線7A,
7Bを通じて測定された工具半片2Aと2B間に発生し
た熱起電力によって工具刃先26の温度を測定するもの
である。即ち,工具半片2A,2Bの各刃先の一部を互
いに結合して高温接点即ち測温接点(以下,測温点5と
いう)を形成する。この工具刃先温度の測定方法は,被
削材4が非導電性材料の場合に,従来の工具−被削材間
熱電対法が利用できないので,導電性の被削材の代わり
に,工具1を二分割して工具半片2A,2Bを作製し,
工具半片2Aと工具半片2Bとの刃先の側面の一部を結
合して測温点5を形成し,工具半片2A,2Bにそれぞ
れ接続したリード線7A,7Bを通じて工具半片2Aと
2B間に発生した熱起電力を測定して工具刃先温度を測
定するものであり,一種の工具−工具間熱電対法といえ
るものである。This method for measuring the tool cutting edge temperature is used when cutting a non-conductive work piece, that is, a work material 4 with a tool 1 in which a pair of tool halves 2A and 2B made of different materials are arranged in parallel with each other. The temperature of the generated tool edge 26 is
Lead wires 7A, respectively connected to the tool halves 2A, 2B
The temperature of the tool cutting edge 26 is measured by the thermoelectromotive force generated between the tool halves 2A and 2B measured through 7B. That is, a part of each of the cutting edges of the tool halves 2A and 2B is joined to each other to form a high temperature contact, that is, a temperature measuring contact (hereinafter, temperature measuring point 5). In this method of measuring the tool edge temperature, when the work material 4 is a non-conductive material, the conventional tool-work material thermocouple method cannot be used. Therefore, instead of the conductive work material, the tool 1 is used. Is divided into two to make tool halves 2A and 2B,
Formed between the tool halves 2A and 2B through the lead wires 7A and 7B connected to the tool halves 2A and 2B, respectively, by forming a temperature measuring point 5 by joining part of the side surfaces of the cutting edges of the tool halves 2A and 2B. This is a kind of tool-tool thermocouple method that measures the thermoelectromotive force to measure the tool edge temperature.
【0020】次に,この発明による被削材の切削時の工
具刃先温度の測定方法を達成するための工具刃先温度の
測定装置について説明する。この工具刃先温度の測定装
置は,工作機械の一般的な旋盤に適用した場合について
説明するが,その他の工作機械にも適用できることは勿
論である。旋盤において,工具1は,工具ホルダー6に
保持されている。被削材4は,ここでは,中空孔が形成
されたものが使用されている。主軸13は,主軸台(図
示せず)に回転自在に支持されており,主軸13のチャ
ック22で保持されたマンドレル20には,被削材4の
中空孔が挿通し,マンドレル20に被削材4が固定され
ている。また,マンドレル20の先端には,テールトッ
ク21が押し当てられ,マンドレル20がテールトック
21によって回転自在に支持されている。Next, a tool edge temperature measuring device for achieving the method for measuring the tool edge temperature when cutting a work material according to the present invention will be described. This tool blade edge temperature measuring device will be described when it is applied to a general lathe of a machine tool, but it goes without saying that it can be applied to other machine tools. In the lathe, the tool 1 is held by a tool holder 6. The work material 4 used here has hollow holes formed therein. The spindle 13 is rotatably supported by a headstock (not shown), and the mandrel 20 held by the chuck 22 of the spindle 13 is inserted into the hollow hole of the work material 4 and is cut by the mandrel 20. The material 4 is fixed. A tail tok 21 is pressed against the tip of the mandrel 20, and the mandrel 20 is rotatably supported by the tail tok 21.
【0021】この工具刃先温度の測定装置では,工具1
は,絶縁部材3Bを介在して絶縁された状態に工具ホル
ダー6に保持されており,互いに異なる種類即ち2種類
の導電性材料から成る一対の工具半片2A,2Bから構
成されている。工具半片2A,2Bは,互いに熱起電力
特性の異なる材料から形成されている。工具半片2A,
2Bの刃先は,互いに接した状態に固定して測温点5が
形成されている。工具半片2A,2Bは,その刃先を除
いて,工具半片2Aと2Bとの間に工具半片2A,2B
を互いに絶縁する絶縁部材3A(第1絶縁部材)が介在
されている。また,工具半片2A,2Bは,工具1を保
持する工具ホルダー6からそれぞれ絶縁するように,そ
れらの周囲を絶縁部材3B(第2絶縁部材)によって囲
まれている。また,工具半片2A,2Bには,各リード
線7A,7Bがそれぞれ接続して工具半片2A,2Bか
ら引き出されている。リード線7A,7Bは,工具半片
2A,2Bと記録計のペンレコーダ8とをそれぞれ接続
している。ペンレコーダ8は,工具半片2A,2B間に
発生する熱起電力を測定する。そして,別途求めた工具
半片2A,2B間の熱起電力データから温度換算し,工
具刃先26の温度を測定するものである。In this tool edge temperature measuring device, the tool 1
Is held by the tool holder 6 in an insulated state with the insulating member 3B interposed therebetween, and is composed of a pair of tool halves 2A and 2B made of different kinds of conductive materials, that is, two kinds of conductive materials. The tool halves 2A and 2B are formed of materials having different thermoelectromotive force characteristics. Tool half 2A,
The blade edges of 2B are fixed in contact with each other to form a temperature measuring point 5. The tool halves 2A and 2B have the tool halves 2A and 2B between the tool halves 2A and 2B except for the cutting edge thereof.
An insulating member 3A (first insulating member) that insulates from each other is interposed. The tool halves 2A and 2B are surrounded by an insulating member 3B (second insulating member) so as to insulate the tool halves 2A and 2B from the tool holder 6 that holds the tool 1. The lead wires 7A and 7B are connected to the tool halves 2A and 2B, respectively, and are drawn out from the tool halves 2A and 2B. The lead wires 7A and 7B connect the tool halves 2A and 2B and the pen recorder 8 of the recorder, respectively. The pen recorder 8 measures thermoelectromotive force generated between the tool halves 2A and 2B. Then, the temperature is converted from the thermoelectromotive force data between the separately obtained tool halves 2A and 2B, and the temperature of the tool cutting edge 26 is measured.
【0022】一方の工具半片2Aは,超硬K10種から
構成され,他方の工具半片2Bは超硬P10種から構成
されている。或いは,一方の工具半片2Aは超硬K10
種から構成され,他方の工具半片2Bはサーメットから
構成されている。P10,或いはK10は,バイト用チ
ップとしての使用分類記号であり,例えば,P10は,
ロックウェル硬さが91以上であり,抗折力が90kg
f/mm2 以上であり,また,K10は,ロックウェル
硬さが90.5以上であり,抗折力が120kgf/m
m2 以上である。勿論,工具半片2A,2Bは,互いに
熱起電力特性が異なる材料を選定すればよいものであ
り,例えば,P10やK10の超硬チップ材以外に,例
えば,P01,P20,P30,P40,P50,又は
M10,M20,M30,M40,或いはK01,K2
0,K30,K40の超硬チップ材を適宜選定して組み
合わせることができるものであり,その時に発生する熱
起電力値に対応する温度は予めマップ等で測定しておけ
ばよいものである。One tool half piece 2A is made of cemented carbide K10 type, and the other tool half piece 2B is made of cemented carbide P10 type. Alternatively, one of the tool halves 2A is made of carbide K10
The other tool half 2B is made of cermet. P10 or K10 is a use classification symbol as a byte chip, and for example, P10 is
Rockwell hardness of 91 or more, bending strength of 90 kg
f / mm 2 or more, K10 has a Rockwell hardness of 90.5 or more, and a bending strength of 120 kgf / m.
m 2 or more. Of course, for the tool halves 2A and 2B, materials having different thermoelectromotive force characteristics may be selected. For example, other than P10 and K10 cemented carbide tip materials, for example, P01, P20, P30, P40, P50 , Or M10, M20, M30, M40, or K01, K2
Carbide chip materials of 0, K30 and K40 can be appropriately selected and combined, and the temperature corresponding to the thermoelectromotive force value generated at that time can be measured in advance by a map or the like.
【0023】絶縁部材3Aと絶縁部材3Bとは,耐熱性
の同一材料で作製してもよく,例えば,耐熱性のアルミ
ナセラミックスから構成された絶縁板で作製されてい
る。即ち,図3に示すように,工具半片2A,2Bは,
それらの工具刃先部分の三角形形状の接触部分を互いに
接触させて工具間接触部分即ち測温点5を形成し,それ
以外の工具半片2A,2B間を絶縁するために,アルミ
ナセラミックス板の絶縁部材3Aを工具半片2A,2B
間に貼り付け又は充填して工具1が成形されている。工
具ホルダー6に接する工具1の外周面は,図2に示すよ
うに,アルミナセラミックス板の絶縁部材3Bで囲み,
工具1を工具ホルダー6から完全に絶縁した。また,こ
の実施例では,工具半片−工具半片間,即ち,工具−工
具間で構成した熱電対の冷接点は,室温である。The insulating member 3A and the insulating member 3B may be made of the same heat-resistant material, for example, an insulating plate made of heat-resistant alumina ceramics. That is, as shown in FIG. 3, the tool halves 2A and 2B are
Insulating members of the alumina ceramic plate for contacting the triangular contact portions of the tool cutting edge portions with each other to form a contact portion between tools, that is, a temperature measuring point 5, and for insulating between the other tool halves 2A and 2B. 3A for tool halves 2A, 2B
The tool 1 is formed by pasting or filling in between. The outer peripheral surface of the tool 1 which is in contact with the tool holder 6 is surrounded by an insulating member 3B of an alumina ceramics plate as shown in FIG.
The tool 1 was completely insulated from the tool holder 6. In this embodiment, the cold junction of the thermocouple formed between the tool halves and the tool halves, that is, the tool and the tool, is at room temperature.
【0024】測温点5を構成する工具半片2A,2Bの
互いの接触面は,種々に形成することができるが,例え
ば,図3に示すように,三角形状に接触させて形成する
ことができ,その接触面の接触面積値によって工具半片
2A,2B間に発生する熱起電力は変化するが,例え
ば,0.125mm2 程度が好ましいものである。The contact surfaces of the tool halves 2A and 2B constituting the temperature measuring point 5 can be formed in various ways. For example, as shown in FIG. 3, the tool halves can be formed in contact with each other in a triangular shape. The thermoelectromotive force generated between the tool halves 2A and 2B varies depending on the contact area value of the contact surface, but, for example, about 0.125 mm 2 is preferable.
【0025】この工具刃先温度の測定装置は,上記のよ
うに構成されており,被削材4を切削する時に,工具半
片2A,2B間に生じる熱起電力を記録計8で測定して
切削温度を計算し,記録する。また,この工具刃先温度
の測定装置,旋盤工具刃先温度のみでなく,他の2次元
切削の形態においても使用可能であることは言うまでも
ない。This tool cutting edge temperature measuring device is constructed as described above, and when the workpiece 4 is cut, the thermoelectromotive force generated between the tool halves 2A and 2B is measured by the recorder 8 for cutting. Calculate and record the temperature. Needless to say, it can be used not only in the tool edge temperature measuring device and the lathe tool edge temperature but also in other two-dimensional cutting forms.
【0026】図3には,この工具刃先温度の測定装置を
備えた加工機は,切削初期,即ち,摩耗が大きくなって
いない切削時に,特に,逃げ面摩耗がほとんど発生して
いない時における工具刃先26の付近の切削状態を示し
ている。工具切刃稜線9は,工具半片2A,2Bから成
る工具1の刃先26と被削材4が接触し,工具1が被削
材4を切削する部分である。工具ー切屑接触領域10
は,被削材4を切削することによって生じる切粉即ち切
屑と工具1とが接触する領域であって,工具間接触部分
即ち測温点5の熱源である。従来の一般的な切削温度の
測定法である工具−被削材間熱電対法では,工具と切屑
又は工具と被削材の全接触領域の平均温度が測定される
のに対して,本発明の工具−工具間熱電対法では,工具
間接触部分の測温点5に形成される温度分布の平均温度
が測定されることになる。FIG. 3 shows that a processing machine equipped with this tool edge temperature measuring device is a tool at the initial stage of cutting, that is, at the time of cutting when the wear is not large, especially when the flank wear is hardly generated. The cutting state near the cutting edge 26 is shown. The tool cutting edge ridgeline 9 is a portion where the cutting edge 26 of the tool 1 composed of the tool halves 2A and 2B comes into contact with the work material 4, and the tool 1 cuts the work material 4. Tool-chip contact area 10
Is a region where chips 1 or chips generated by cutting the work material 4 come into contact with the tool 1, and is a heat source of the contact point between tools, that is, the temperature measuring point 5. In the conventional general method for measuring the cutting temperature, which is the tool-workpiece thermocouple method, the average temperature of the entire contact area between the tool and the chip or the tool and the workpiece is measured, whereas the present invention is used. In the tool-to-tool thermocouple method, the average temperature of the temperature distribution formed at the temperature measuring point 5 at the tool-to-tool contact portion is measured.
【0027】図4に示されているグラフは,本発明によ
る工具刃先温度の測定方法である工具−工具間熱電対法
と,従来の工具−被削材間熱電対法とで測定した時の切
削温度と切削速度との関係を示している。図4におい
て,縦軸は切削温度(℃)を示し,横軸は切削速度(m
/min)を示している。この時の,被削材4は,導電
性材料であるアルミニウム合金(A2017T6)を用
いた。本発明の工具−工具間熱電対法では,工具間接触
部分10の接触面積が2mm2 (△印と実線),0.5
mm2 (△印と一点鎖線),0.125mm2 (△印と
点線)について測定した。また,工具半片2A,2成す
る工具材料には,超硬K10種とサーメットとを使用し
た。従来の工具−被削材間熱電対法では,工具11を構
成する工具材料には,超硬K10種(〇印と実線)又は
サーメット(●印と実線)を使用した。工具1の送り
は,0.01mm/ revであり,被削材4の切削幅は
3mmであり,工具1のすくい角は−5°であり,ま
た,切削形態は乾式切削であった。The graph shown in FIG. 4 shows the temperature measured by the tool-tool thermocouple method, which is the method for measuring the tool edge temperature according to the present invention, and the conventional tool-workpiece thermocouple method. The relationship between cutting temperature and cutting speed is shown. In FIG. 4, the vertical axis represents the cutting temperature (° C) and the horizontal axis represents the cutting speed (m
/ Min). At this time, as the work material 4, an aluminum alloy (A2017T6) which is a conductive material was used. In the tool-tool thermocouple method of the present invention, the contact area of the tool-contact portion 10 is 2 mm 2 (Δ mark and solid line), 0.5.
The measurement was performed for mm 2 (Δ mark and alternate long and short dash line) and 0.125 mm 2 (Δ mark and dotted line). Further, as the tool material for forming the tool halves 2A and 2, the cemented carbide K10 type and cermet were used. In the conventional tool-to-workpiece thermocouple method, as the tool material forming the tool 11, carbide K10 type (O mark and solid line) or cermet (● mark and solid line) was used. The feed of the tool 1 was 0.01 mm / rev, the cutting width of the work material 4 was 3 mm, the rake angle of the tool 1 was −5 °, and the cutting form was dry cutting.
【0028】従来の工具−被削材間熱電対法で測定した
場合,使用した工具11の熱伝導率の相違からサーメッ
トを使用した場合に比べ,超硬K10種の方が切削温度
が低くなる。工具−被削材間熱電対法で測定した温度に
対して,本発明の工具−工具間熱電対法では,工具1の
内部接触領域での平均温度を測定するため,工具−被削
材間熱電対法より低い温度が測定された。しかし,工具
半片2Aと工具半片2Bとの間の接触面積を小さくする
につれ測定温度は高くなり,図4が示すように,接触面
積が0.125mm2 の時には工具−被削材間熱電対法
の超硬K10種で測定した切削温度に近い値が測定され
た。このことから,本発明の工具−工具間熱電対法で
は,工具半片2Aと工具半片2Bとの間の接触面積が
0.125mm 2 程度であることが好ましいことが分か
る。Measured by a conventional tool-workpiece thermocouple method
In this case, the difference in thermal conductivity of the used tools 11 causes
The cutting temperature of carbide K10 type is higher than that of
Will be lower. For the temperature measured by the thermocouple method between the tool and the work material
On the other hand, in the tool-tool thermocouple method of the present invention,
To measure the average temperature in the internal contact area, tool-cut
Lower temperatures than the inter-material thermocouple method were measured. But the tool
Reduce the contact area between the half piece 2A and the tool half piece 2B
As the measured temperature increases, as shown in Fig. 4, the contact surface
Product is 0.125 mm2Tool-workpiece thermocouple method
A value close to the cutting temperature measured with the K10 carbide
It was From this, the tool-tool thermocouple method of the present invention
Is the contact area between the tool halves 2A and 2B.
0.125 mm 2It turns out that it is preferable that the degree is
It
【0029】図5に示すグラフは,工具間接触部分即ち
測温点5の工具半片2Aと2Bとの接触面積と切削温度
の関係を表している。図5において,縦軸は切削温度
(℃)を示し,横軸は接触面積(mm2 )を示してい
る。切削速度が300m/ min,200m/ min,
100m/ min,及び50m/ minである時の工具
刃先26における切削温度(℃)をそれぞれ測定した。
工具半片2A,2Bを構成する工具材料には,超硬K1
0種とサーメットとでそれぞれ作製したものを使用し
た。被削材4には,導電性材料であるアルミニウム合金
(A2017T6)を用いた。被削材4の送りは,0.
01mm/ revであり,また,被削材4の切削幅は3
mmである。図5のグラフに示すように,測温点5の工
具半片2Aと2Bとの接触面積を小さくするにつれて,
切削温度の測定温度は高くなっているのが分かる。本発
明の工具−工具間熱電対法における工具半片2A,2B
の接触面の接触面積0.125mm2 では,従来の工具
−被削材間熱電対法の超硬K10種で測定した切削温度に
近い値が測定された。従って,工具−工具間熱電対法で
は,工具−被削材間熱電対法と同様に,工具刃先26の
温度の目安には十分信頼性があると考えられる。また,
これ以上,工具半片2A,2Bの接触面の接触面積を小
さくしても,測定温度はあまり変化がなく,工具刃先の
強度を考慮すると,接触面積0.125mm2 程度で十
分であることが分かる。The graph shown in FIG. 5 shows the relationship between the cutting temperature and the contact area between the tool, that is, the contact area between the tool halves 2A and 2B at the temperature measuring point 5. In FIG. 5, the vertical axis represents the cutting temperature (° C.) and the horizontal axis represents the contact area (mm 2 ). Cutting speed is 300m / min, 200m / min,
The cutting temperature (° C.) at the tool cutting edge 26 at 100 m / min and 50 m / min was measured.
Carbide K1 is used as the material of the tool halves 2A and 2B.
What was produced with 0 type and cermet were used. For the work material 4, an aluminum alloy (A2017T6), which is a conductive material, was used. The feed of the work material 4 is 0.
01 mm / rev, and the cutting width of the work material 4 is 3
mm. As shown in the graph of FIG. 5, as the contact area between the tool halves 2A and 2B at the temperature measuring point 5 is reduced,
It can be seen that the measured temperature of cutting temperature is high. Tool halves 2A and 2B in the tool-tool thermocouple method of the present invention
In the contact area of 0.125 mm 2 of the contact surface of No. 2 , a value close to the cutting temperature measured by the conventional tool-workpiece thermocouple method carbide K10 class was measured. Therefore, in the tool-tool thermocouple method, it is considered that the standard of the temperature of the tool cutting edge 26 is sufficiently reliable, as in the tool-workpiece thermocouple method. Also,
Even if the contact area of the contact surfaces of the tool halves 2A, 2B is made smaller than this, the measured temperature does not change so much, and considering the strength of the tool edge, a contact area of about 0.125 mm 2 is sufficient. .
【0030】図6に示すグラフは,各種の非導電性材料
を切削した時の切削温度と切削速度との関係を示してい
る。図6において,縦軸は切削温度(℃)を示し,横軸
は切削速度(m/min)を示している。被削材4に
は,木材のスギ(a),木材のラワン(b),樹脂のア
クリル(c)及びセラミックス(d)を用いた。いずれ
の切削温度も,冷接点である室温からの温度差を示して
いる。工具半片2A,2Bの工具材料には,超硬K10
種及びサーメットを使用した。工具半片2A,2Bとの
測温点5における接触面の接触面積は,0.125mm
2 に構成されているものを使用した。工具1の送りは
0.01mm/ revであり,工具1のすくい角は−5
°である。被削材4の切削幅は,(a)のスギは3m
m,(b)のラワンは7mm,(c)のアクリルは5m
m,及び(d)のセラミックスは3mmである。また,
切削形態は,乾式切削である。(a)のグラフには,比
較例として,被削材4にアルミニウム合金(A2017
T6)を用いた時の切削温度と切削速度との関係が示さ
れている。図6のグラフに示すように,それぞれの非導
電性材料で,工具切削部即ち測温点5の切削温度の測定
が可能であることが分かる。また,切削状態即ち切屑生
成状態によって,脆性破壊で切屑が生成されるセラミッ
クスでは切削温度がかなり低い温度になっていることが
分かる。The graph shown in FIG. 6 shows the relationship between the cutting temperature and the cutting speed when cutting various non-conductive materials. In FIG. 6, the vertical axis represents the cutting temperature (° C.) and the horizontal axis represents the cutting speed (m / min). As the work material 4, wood cedar (a), wood lauan (b), resin acrylic (c) and ceramics (d) were used. Each cutting temperature shows a temperature difference from room temperature which is a cold junction. Carbide K10 is used for the tool material of the tool halves 2A and 2B.
Seeds and cermet were used. The contact area of the contact surface between the tool halves 2A and 2B at the temperature measuring point 5 is 0.125 mm.
The one configured in 2 was used. The feed of the tool 1 is 0.01 mm / rev, and the rake angle of the tool 1 is -5.
°. The cutting width of the work material 4 is 3 m for the cedar in (a).
m, (b) Lauan 7mm, (c) acrylic 5m
The ceramics of m and (d) are 3 mm. Also,
The cutting form is dry cutting. In the graph of (a), the aluminum alloy (A2017
The relationship between the cutting temperature and the cutting speed when T6) is used is shown. As shown in the graph of FIG. 6, it is understood that the cutting temperature of the tool cutting portion, that is, the temperature measuring point 5 can be measured with each non-conductive material. Also, it can be seen that the cutting temperature is considerably low in ceramics in which chips are generated by brittle fracture depending on the cutting state, that is, the chip generation state.
【0031】図7に示すグラフは,従来の工具−被削材
間熱電対法と,本発明の工具−工具間熱電対法でそれぞ
れ測定した時の切削中に記録された熱起電力波形を表し
ている。図7において,縦軸は熱起電力(E.M.F.
mV)を示し,横軸は切削距離(mm)を示している。
従来の工具−被削材間熱電対法では,工具11の工具材
料として超硬K10種を使用し,また,本発明の工具−
工具間熱電対法では工具半片2A,2Bの工具材料とし
て超硬K10種とサーメットとを使用した。被削材4,
14には,導電性材料であるアルミニウム合金(A20
17T6)を用いた。被削材4,14に対する工具1,
11の切削速度は100m/ minであり,工具1,1
1の送りは0.02mm/ revであり,被削材4,1
4の切削幅は3mmであり,切削形態は乾式切削であ
る。熱電対を組み合わせる材料によって熱起電力の値は
異なる。そのため,工具−被削材間熱電対法と工具間熱
電対法の切削中の熱起電力は,図7に示すように異な
る。従来の工具−被削材間熱電対法では,比較的安定な
切削状態でも切削中に測定される熱起電力波形の変動は
大きく現れており,また,本発明の工具−工具間熱電対
法では,その変動がほとんど見られず安定していること
が分かる。この現象は,従来の工具−被削材間熱電対法
では,切削中の工具11と切屑の接触状態即ち接触抵抗
が変動することが原因と考えられ,工具11と切屑の接
触部分が測定回路上に含まれ,その変動が直接的に測定
値の変動として現れているものと推察される。上記のこ
とを考慮すると,本発明の工具−工具間熱電対法は,従
来の工具−被削材間熱電対法に比較して安定した測定値
が得られることが分かる。The graph shown in FIG. 7 shows thermoelectromotive force waveforms recorded during cutting when measured by the conventional tool-workpiece thermocouple method and the tool-tool thermocouple method of the present invention. It represents. In FIG. 7, the vertical axis represents the thermoelectromotive force (E.M.F.
mV) and the horizontal axis represents the cutting distance (mm).
In the conventional tool-workpiece thermocouple method, a carbide K10 type is used as the tool material of the tool 11, and the tool of the present invention-
In the inter-tool thermocouple method, cemented carbide K10 type and cermet were used as tool materials for the tool halves 2A and 2B. Work material 4,
14 is an aluminum alloy (A20
17T6) was used. Tool 1, for work materials 4, 14
The cutting speed of 11 is 100m / min, and the tool 1,1
The feed of 1 is 0.02mm / rev, and the work material 4,1
The cutting width of No. 4 is 3 mm, and the cutting form is dry cutting. The value of the thermoelectromotive force varies depending on the material used to combine the thermocouples. Therefore, the thermoelectromotive force during cutting in the tool-to-workpiece thermocouple method and the tool-to-workpiece thermocouple method are different as shown in FIG. 7. In the conventional tool-workpiece thermocouple method, the fluctuation of the thermoelectromotive force waveform measured during cutting appears significantly even in a relatively stable cutting state, and the tool-tool thermocouple method of the present invention is used. It can be seen that the variation is stable with almost no variation. In the conventional tool-workpiece thermocouple method, this phenomenon is considered to be caused by a change in the contact state between the tool 11 and chips during cutting, that is, the contact resistance, and the contact portion between the tool 11 and chips is the measurement circuit. It is presumed that the fluctuations included in the above are directly reflected as fluctuations in the measured values. Considering the above, it can be seen that the tool-tool thermocouple method of the present invention provides stable measured values as compared with the conventional tool-workpiece thermocouple method.
【0032】[0032]
【発明の効果】この発明による被削材の切削時の工具刃
先温度の測定方法及びその装置は,上記のように構成さ
れているので,工作物即ち被削材が非導電性又は導電性
の材料で作製された工作物であっても,工作物を切削す
る時の工具刃先の切削温度を測定することができる。特
に,本発明は,上記のように,非導電性材料の切削温度
の測定はもちろん,導電性材料の切削温度の測定も可能
である。また,工具間の接触部分の測温点の温度を測定
するので,切屑等の外乱等を受けず,熱起電力の変動が
少なく,安定して切削温度の測定が可能である。更に,
この工具刃先温度の測定装置は,工具−工具間に形成さ
れた熱電対に構成されているので,簡単な構造であり,
製造,取付け等が容易であり,測定温度も従来の工具−
被削材間熱電対法に比較して安定した熱起電力波形を得
ることができる。本発明による切削温度の測定法は,工
具半片と工具半片との測温点の接触面積を,工具半片の
強度を考慮して可及的に小さく構成すれば,従来の工具
−被削材間熱電対法で得られた切削温度にかなり近い切
削温度を測定でき,切削温度の測定法として信頼性が高
いものである。Since the method for measuring the tool edge temperature during cutting of the work material and the apparatus therefor according to the present invention are configured as described above, the work piece, ie, the work material, is non-conductive or conductive. Even for a workpiece made of material, it is possible to measure the cutting temperature of the tool edge when cutting the workpiece. In particular, the present invention can measure not only the cutting temperature of the non-conductive material but also the cutting temperature of the conductive material as described above. Further, since the temperature at the temperature measuring point at the contact portion between the tools is measured, it is possible to stably measure the cutting temperature without being affected by disturbance such as chips, fluctuation of thermoelectromotive force. Furthermore,
This tool edge temperature measuring device has a simple structure because it is composed of a thermocouple formed between tools.
It is easy to manufacture and install, and the measured temperature is the same as conventional tools.
A stable thermoelectromotive force waveform can be obtained as compared with the inter-workpiece thermocouple method. In the method for measuring the cutting temperature according to the present invention, if the contact area between the tool halves and the temperature measuring points between the tool halves is configured as small as possible in consideration of the strength of the tool halves, the conventional tool-workpiece material It is highly reliable as a method of measuring cutting temperature because it can measure a cutting temperature that is very close to the cutting temperature obtained by the thermocouple method.
【図1】この発明による被削材の切削時の工具刃先温度
の測定装置の一実施例を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an embodiment of a device for measuring a tool edge temperature when cutting a work material according to the present invention.
【図2】図1に示す工具刃先温度の測定装置の要部の拡
大説明図である。FIG. 2 is an enlarged explanatory diagram of a main part of the tool blade edge temperature measuring device shown in FIG.
【図3】工具刃先付近の切削状態を示す説明図である。FIG. 3 is an explanatory diagram showing a cutting state near a tool edge.
【図4】本発明の工具半片−工具半片間熱電対法と,従
来の工具−被削材間熱電対法との切削温度と切削速度と
の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the cutting temperature and the cutting speed between the tool half-piece thermocouple method of the present invention and the conventional tool-workpiece thermocouple method.
【図5】本発明の工具半片−工具半片間熱電対法によっ
て測定した工具半片の測温点の接触面積と切削温度の関
係を表すグラフである。FIG. 5 is a graph showing a relationship between a cutting temperature and a contact area of a temperature measuring point of a tool half piece measured by a thermocouple method between tool half pieces of the present invention.
【図6】各種の非導電性被削材を切削した時の切削温度
と切削速度との関係を示したグラフである。FIG. 6 is a graph showing a relationship between a cutting temperature and a cutting speed when various non-conductive work materials are cut.
【図7】本発明の工具半片−工具半片間熱電対法と,従
来の工具−被削材間熱電対法とでそれぞれ測定した時の
切削時間に対応した熱起電力波形を表すグラフである。FIG. 7 is a graph showing a thermoelectromotive force waveform corresponding to a cutting time when measured by the tool half-piece thermocouple method of the present invention and the conventional tool-workpiece thermocouple method. .
【図8】この発明による工具半片−工具半片間熱電対法
と,従来の工具−被削材間熱電対法とでそれぞれ測定し
た時の切削時間に対応した熱起電力波形を表すグラフで
ある。FIG. 8 is a graph showing a thermoelectromotive force waveform corresponding to the cutting time when measured by the tool half-piece thermocouple method according to the present invention and the conventional tool-workpiece thermocouple method. .
1 工具 2A,2B 工具半片 3A 第1絶縁部材 3B 第2絶縁部材 4 被削材 5 測温点(工具間接触部分) 6 工具ホルダー 7A,7B リード線 8 ペンレコーダー 26 工具刃先 1 tool 2A, 2B tool halves 3A First insulating member 3B Second insulating member 4 Work material 5 Temperature measurement points (contact area between tools) 6 tool holder 7A, 7B lead wire 8 pen recorder 26 Tool Edge
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23Q 17/09 B23B 27/00 B23Q 17/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) B23Q 17/09 B23B 27/00 B23Q 17/20
Claims (8)
片の各刃先を結合して測温点を形成した工具によって,
少なくとも非導電性の被削材を切削する時に発生する工
具刃先の温度を,前記工具半片にそれぞれ接続したリー
ド線を通じて測定された前記工具半片間に発生した熱起
電力によって前記工具刃先の温度を測定することから成
る被削材の切削時の工具刃先温度の測定方法。1. A tool comprising a pair of tool halves made of different materials, each blade edge of which is joined to form a temperature measuring point,
At least the temperature of the tool edge generated when cutting a non-conductive work material, the temperature of the tool edge by the thermoelectromotive force generated between the tool halves measured through the lead wire connected to each of the tool halves A method for measuring the tool edge temperature during cutting of a work material, which comprises measuring.
工具を形成する互いに熱起電力特性の異なる材料から成
る一対の工具半片,前記工具半片の刃先を互いに接した
状態に固定して形成した測温点,前記工具半片の前記刃
先を除いて前記工具半片間に介在されて前記工具半片を
互いに絶縁する第1絶縁部材,前記工具半片を前記工具
を保持する工具ホルダーからそれぞれ絶縁する第2絶縁
部材,前記工具半片にそれぞれ接続して引き出された各
リード線,及び前記リード線を通じて前記工具半片間に
発生する熱起電力を測定して工具刃先の温度を測定する
ペンレコーダ,から成る被削材の切削時の工具刃先温度
の測定装置。2. A pair of tool halves made of materials having different thermoelectromotive force characteristics to form a tool for cutting at least a non-conductive work material, and the tool halves of the tool halves are fixed to be in contact with each other. A temperature measuring point, a first insulating member interposed between the tool halves except the cutting edge of the tool halves to insulate the tool halves from each other, and a first insulating member for insulating the tool halves from a tool holder holding the tool, respectively. 2. Insulating member, each lead wire connected to each of the tool halves and drawn out, and a pen recorder for measuring the temperature of the tool edge by measuring the thermoelectromotive force generated between the tool halves through the lead wires. A device for measuring the temperature of the cutting edge of a tool when cutting a work material.
構成され,他方の前記工具半片は超硬P10種から構成
されていることから成る請求項2に記載の被削材の切削
時の工具刃先温度の測定装置。3. The cutting tool according to claim 2, wherein one of the tool halves is made of cemented carbide K10 type and the other of the tool halves is made of cemented carbide P10. Measuring device for tool edge temperature.
構成され,他方の前記工具半片はサーメットから構成さ
れていることから成る請求項2に記載の被削材の切削時
の工具刃先温度の測定装置。4. The tool edge temperature at the time of cutting a work material according to claim 2, wherein one of the tool halves is made of cemented carbide K10 and the other of the tool halves is made of cermet. Measuring device.
工具半片によって切削加工できる導電性又は非導電性の
材料から作製された工作物であることから成る請求項
2,請求項3又は請求項4に記載の被削材の切削時の工
具刃先温度の測定装置。5. The work material is a workpiece made of a conductive or non-conductive material that can be machined by the tool halves constituting the tool. A device for measuring a tool edge temperature when cutting a work material according to claim 4.
は,アルミナセラミックスからそれぞれ構成された絶縁
板であることから成る請求項2,請求項3,請求項4又
は請求項5に記載の被削材の切削時の工具刃先温度の測
定装置。6. The method according to claim 2, wherein the first insulating member and the second insulating member are insulating plates made of alumina ceramics, respectively. A device for measuring the temperature of the cutting edge of a tool when cutting a work material.
いの接触面積は0.125mm2 程度であることから成
る請求項2,請求項3,請求項4,請求項5又は請求項
6に記載の被削材の切削時の工具刃先温度の測定装置。7. The contact area of each other of the tool halves constituting the temperature measuring point according to claim 2 consisting of from 2 about 0.125 mm, claim 3, claim 4, claim 5 or claim 6 Device for measuring the tool edge temperature when cutting the work material described in.
いの接触面は三角形形状に形成されていることから成る
請求項2,請求項3,請求項4,請求項5,請求項6又
は請求項7に記載の被削材の切削時の工具刃先温度の測
定装置。8. The contact surfaces of the tool halves forming the temperature measuring point are formed in a triangular shape, and the contact surfaces of the tool halves are formed in a triangular shape. Or the measuring device of the tool edge temperature at the time of cutting the work material according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000380662A JP3385473B2 (en) | 2000-12-14 | 2000-12-14 | Method and apparatus for measuring tool edge temperature during cutting of work material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000380662A JP3385473B2 (en) | 2000-12-14 | 2000-12-14 | Method and apparatus for measuring tool edge temperature during cutting of work material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002178240A JP2002178240A (en) | 2002-06-25 |
JP3385473B2 true JP3385473B2 (en) | 2003-03-10 |
Family
ID=18848801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000380662A Expired - Lifetime JP3385473B2 (en) | 2000-12-14 | 2000-12-14 | Method and apparatus for measuring tool edge temperature during cutting of work material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3385473B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101436234B1 (en) | 2012-01-31 | 2014-08-29 | 도시바 기카이 가부시키가이샤 | Measurement method of cutting machine temperature |
JP6168695B2 (en) * | 2013-08-13 | 2017-07-26 | 株式会社山本金属製作所 | Real-time temperature measurement method and real-time temperature measurement device |
CN104589157A (en) * | 2014-11-26 | 2015-05-06 | 上海大学 | Measuring device for cutting temperature of lathe tool |
JP6797599B2 (en) * | 2016-08-12 | 2020-12-09 | 学校法人 芝浦工業大学 | How to measure the deformation characteristic value of a material |
CN109657307B (en) * | 2018-12-05 | 2023-05-12 | 武汉理工大学 | Three-dimensional oblique angle cutting thermal modeling method suitable for circular hard alloy turning tool |
CN114536100B (en) * | 2022-02-27 | 2022-12-23 | 重庆大学 | Temperature measuring method and device for milling cutting tool |
CN115090912B (en) * | 2022-07-28 | 2023-05-30 | 南京理工大学 | Cutting temperature monitoring system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE460403B (en) * | 1987-10-20 | 1989-10-09 | Birger Alvelid | CUTTING TOOL MADE WITH CONDITIONER |
JPH1110408A (en) * | 1997-06-20 | 1999-01-19 | Hitachi Ltd | Throw-away cutting tool and cutting method thereof |
JP3213725B2 (en) * | 1999-07-16 | 2001-10-02 | 東京工業大学長 | Method and apparatus for detecting machining state of machine tool, and cutting tool used therefor |
-
2000
- 2000-12-14 JP JP2000380662A patent/JP3385473B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002178240A (en) | 2002-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5573335A (en) | Thin film temperature sensing device for measuring the operating temperature of a cutting tool | |
JP5822441B2 (en) | Cutting evaluation system | |
CN106271880B (en) | Measuring system that is a kind of while measuring milling process milling cutter and workpiece temperature | |
CN113453827B (en) | Tool shank, cutting tool, method for manufacturing cut product, and method for collecting data | |
JP3385473B2 (en) | Method and apparatus for measuring tool edge temperature during cutting of work material | |
JPH03503862A (en) | Cutting tools with status indicators | |
CN103223625B (en) | The measuring method of machining temperature | |
Campidelli et al. | Development of a wireless system for milling temperature monitoring | |
JP7276673B2 (en) | Analysis device, provision device, determination method, provision method, determination program and provision program | |
WO2018166203A1 (en) | Apparatus and method for measuring temperature of end face during turning | |
Junge et al. | Measurement system based on the Seebeck effect for the determination of temperature and tool wear during turning of aluminum alloys | |
KR930004184B1 (en) | Method of detecting wear of cutting tool | |
Junge et al. | In-process monitoring and empirical modeling of the tool wear in turning of aluminum alloys using thermoelectric signals | |
JP7199506B2 (en) | Holders, cutting tools, manufacturing methods for cut workpieces, and data collection methods | |
Sakuma et al. | Tool wear in cutting glass-fiber-reinforced-plastics: The relation between cutting temperature and tool wear | |
Rall et al. | Heat transfer to, and temperature distribution in, a metal-cutting tool | |
Li et al. | Temperature measurement in high speed milling Ti6Al4V | |
CN217224758U (en) | Temperature distribution measuring system for drilling tool | |
JP2005014137A (en) | Cutting tool and temperature measurement calibration method of cutting tool | |
Junge et al. | Application Potential of Thermoelectric Signals for Temperature Monitoring in Turning of Aluminum Alloys | |
Trigger et al. | A Tool-Work-Thermocouple Compensating Circuit | |
Wan et al. | The assessment of cutting temperature measurements in high-speed machining | |
Seker et al. | The measurement of temperature during machining | |
JP2014140951A (en) | Method for optimizing cutting condition, and method for deciding tool replacement timing of cutting apparatus | |
JP6049476B2 (en) | Cutting temperature measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3385473 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |