JP3385440B2 - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JP3385440B2
JP3385440B2 JP4088094A JP4088094A JP3385440B2 JP 3385440 B2 JP3385440 B2 JP 3385440B2 JP 4088094 A JP4088094 A JP 4088094A JP 4088094 A JP4088094 A JP 4088094A JP 3385440 B2 JP3385440 B2 JP 3385440B2
Authority
JP
Japan
Prior art keywords
epoxy resin
parts
epoxy
equivalent
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4088094A
Other languages
Japanese (ja)
Other versions
JPH07247338A (en
Inventor
一男 石原
健次 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohto Kasei Co Ltd
Original Assignee
Tohto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohto Kasei Co Ltd filed Critical Tohto Kasei Co Ltd
Priority to JP4088094A priority Critical patent/JP3385440B2/en
Publication of JPH07247338A publication Critical patent/JPH07247338A/en
Application granted granted Critical
Publication of JP3385440B2 publication Critical patent/JP3385440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、FRP特に電子回路基
板に用いられる銅張り積層板に適した低吸水率で耐熱
性、接着性に優れる物性を、含浸性など作業性を損なう
ことなく得られるエポキシ樹脂組成物に関する。 【0002】 【従来の技術】エポキシ樹脂は接着性、電気特性、耐熱
性に優れていることから電子部品、電気機器、自動車部
品、FRP、スポ−ツ用品など広範囲に使用されてい
る。しかし、FRP、特に電子回路基板に用いられる銅
張り積層板は多層化とともに薄板化され、この用途に使
用されるエポキシ樹脂には従来以上の低吸水率と高耐熱
性が要求されている。 【0003】従来、電子回路基板用として使用されるエ
ポキシ樹脂は、テトラブロモビスフェノ−ルAとエピク
ロルヒドリンまたは、ビスフェノ−ルAグリシジルエ−
テルとから製造される臭素化エポキシ樹脂、例えば東都
化成株式会社製エポト−トYDB−400(エポキシ当
量380〜420g/eq、臭素含有量46〜50wt
%)や、エポト−トYDB−500(エポキシ当量45
0〜550g/eq、臭素含有率18〜22wt%)が
汎用品として用いられ、また、硬化剤としてはジシアン
ジアミド単独、あるいはポリアミン化合物との併用、硬
化促進剤として3級アミンまたはイミダゾ−ルなどの組
合せで用いられている。 【0004】ところで、エポキシ樹脂の吸水率低下、耐
熱性向上の手法としては、エポキシ樹脂の純度を向上さ
せる方法が知られている。例えば、エポキシ樹脂中に含
まれる不純物である加水分解性塩素成分、α−ジオ−ル
成分或いは未反応フェノ−ル成分などを極限まで減少さ
せる方法である。このタイプのエポキシ樹脂として例え
ばエポト−トYDB−530(エポキシ当量530g/
eq、臭素含有率21.7wt%)があるが耐熱性向上
には限界があった。 【0005】また、本発明者らは、先に、エポキシ樹脂
組成物に多官能性フェノ−ル化合物を添加することによ
り吸水率を低減する方法を見いだした(特開平4−22
4820号参照)。即ち、テトラブロモビスフェノ−ル
Aとエピクロルヒドリン、または、ビスフェノ−ルAグ
リシジルエ−テルとから製造される臭素化エポキシ樹脂
と、一分子中に平均して2.5個以上のフェノ−ル性水
酸基を有する化合物とを、エポキシ当量が550〜80
0g/eqの範囲となるように反応させて得られるエポ
キシ樹脂を使用することにより、例えばジシアンジアミ
ド,ポリアミン化合物等の窒素系硬化剤成分の配合量を
減少させる事ができ、これによって、吸水率を低減させ
た。 【0006】しかし、この方法においても、エポキシ当
量が800g/eq以上のエポキシ樹脂や、フェノ−ル
性水酸基を有する化合物の軟化点が高いものを使用した
エポキシ樹脂になると、樹脂粘度が増加し、ガラスクロ
スに対する含浸性が悪化するため吸水率の改良にも限界
があった。 【0007】 【0008】 【0009】以上のように、エポキシ樹脂の分子内不純
物を低減する方法あるいは、多官能フェノ−ル化合物を
用いる方法では、エポキシ樹脂の吸水率の低減や耐熱
性、接着性などの優れた特性を有するエポキシ樹脂を得
るには限界があった。 【0010】 【発明が解決しようとする課題】本発明者は、上記の欠
点を改良し、吸水率が少なく、耐熱性および接着性に優
れたエポキシ樹脂を得るため種々検討した結果、含浸性
に影響を与えることなく、吸水率悪化の原因である硬化
剤成分を低減する方法を見いだし本発明を完成したもの
で、本発明の目的は、これまでのような分子内不純物を
低減する方法、あるいは、多官能フェノ−ル化合物を用
いる方法では限界のあった吸水率の低減と耐熱性、接着
性に優れる、新規な銅張り積層板用エポキシ樹脂組成物
を含浸性など作業性に悪影響がでない方法により提供す
るものである。 【0011】 【課題を解決するための手段】本発明の要旨は、エポキ
シ樹脂と硬化剤とから成るエポキシ樹脂組成物におい
て、該エポキシ樹脂は、9,9−ビス(4−ヒドロキシ
フェニル)フルオレン、ナフタレンジオ−ル、テトラフ
ェニロ−ルエタン、フェノ−ルノボラック、クレゾ−ル
ノボラック、ナフト−ルノボラック、ビスフェノ−ルA
ノボラックからなる群から選ばれた2官能以上のフェノ
−ル類とエピハロヒドリンとから製造される多官能エポ
キシ樹脂と、多官能フェノ−ル化合物とを反応させて得
られたものであって、エポキシ当量が300〜700g
/eqの範囲であり、且つ残存フェノ−ル性水酸基当量
が500〜3000g/eqの範囲を有することを特徴
とするエポキシ樹脂組成物である。 【0012】即ち、本発明においては上述したような特
定の2官能以上のフェノ−ル類とエピハロヒドリンとか
ら製造される多官能エポキシ樹脂に、エポキシ当量が3
00〜700g/eqの範囲であり、且つ残存フェノ−
ル性水酸基当量が500〜3000g/eqの範囲とな
るように多官能フェノ−ル化合物を反応させて得られた
エポキシ樹脂を使用することによって、低吸水率で耐熱
性、接着性に優れ含浸性などの作業性も優れるエポキシ
樹脂組成物を提供することができたのである。 【0013】以下、本発明について詳細に説明する。本
発明において、9,9−ビス(4−ヒドロキシフェニ
ル)フルオレン、ナフタレンジオ−ル、テトラフェニロ
−ルエタン、フェノ−ルノボラック、クレゾ−ルノボラ
ック、ナフト−ルノボラック、ビスフェノ−ルAノボラ
ックからなる群から選ばれた2官能以上のフェノ−ル類
とエピハロヒドリンとから製造される多官能エポキシ樹
脂のエポキシ当量は、110〜400g/eq程度であ
る。これらのエポキシ樹脂は単独で使用することも複数
種使用することもでき、ビスフェノ−ルA、ビスフェノ
−ルF、テトラブロモビスフェノ−ルAとエピハロヒド
リンとから製造されるエポキシ樹脂を一部併用すること
もできる。 【0014】多官能フェノ−ル化合物としてはビスフェ
ノ−ルA、ビスフェノ−ルF、9,9−ビス(4−ヒド
ロキシフェニル)フルオレン、等を代表とするフェノ−
ル類があげられる。また、これらフェノ−ル類やフェノ
−ル、クレゾ−ルとアルデヒド類の縮合により得られる
2官能以上のフェノ−ルノボラック樹脂やフロログリシ
ノ−ル、ポリパラビニルフェノ−ル、テトラフェニロ−
ルエタン、不飽和化合物とフェノ−ル類の反応物なども
あげられる。更にこれらのハロゲン化物もあげられる。 【0015】本発明において、上記の多官能エポキシ樹
脂と多官能フェノ−ル化合物とを反応させてエポキシ当
量が300〜700g/eqの範囲であり、且つ残存フ
ェノ−ル性水酸基当量が500〜3000g/eqの範
囲のエポキシ樹脂を得るのであるが、その反応に際して
は、公知の触媒を使用する事ができる。例えば金属酸化
物、無機塩基、有機塩基およびそれらの塩類、オニウム
化合物やホスフィン類等慣用されている触媒を使用すれ
ば良い。 【0016】しかし、本発明においては、エポキシ樹脂
中に特定量のフェノ−ル性水酸基の一部分を未反応のま
ま残存させるため、触媒の量や反応温度などは使用する
原料によって種々調整する必要がある。また、ある種の
触媒では各種の方法により、触媒を失活する事ができ、
この方法により目的とする多官能エポキシ樹脂を製造す
る事もできる。触媒の失活方法としては、反応温度を下
げたりあるいは失活剤を添加したり、または温度を上げ
て触媒を熱分解するなどの手段がある。また、一軸のコ
ニ−ダ−や二軸のル−ダ−といった混合装置に代表され
る連続合成法によっても目的とする多官能エポキシ樹脂
を製造できる。要するに多官能エポキシ樹脂の末端基が
特定の数量のエポキシ基とフェノ−ル性水酸基であれ
ば、どのような方法をとっても良いのである。 【0017】本発明のエポキシ樹脂組成物におけるエポ
キシ樹脂は、エポキシ当量が300g/eq以下では硬
化剤の使用量が多くなり、その結果耐水性に劣り、ま
た、エポキシ当量が700g/eq以上では、樹脂粘度
の増加によって含浸性が悪化するのである。そして、残
存フェノ−ル性水酸基当量についても、500g/eq
以下では特定の多官能エポキシ樹脂の配合比率が低下し
て耐熱性が悪化し、3000g/eq以上では硬化剤の
使用量が多くなり、その結果耐水性に劣り、樹脂粘度の
増加によって含浸性も悪化するのである。 【0018】本発明組成物の硬化剤としては、フェノ−
ル硬化剤や酸無水物類、アミン類等の通常使用されるエ
ポキシ樹脂用硬化剤を使用する事ができるが、より好ま
しくは、貯蔵安定性、接着性及び耐熱性の面からみて、
ジシアンジアミド単独、あるいはポリアミン化合物、と
の併用あるいは硬化促進剤としての3級アミンまたはイ
ミダゾ−ル等の組み合わせで用いられる。更に、本発明
組成物には硬化促進剤、充填材、稀釈剤等の慣用の配合
剤を配合することができる。 【0019】 【作用】エポキシ樹脂組成物の吸湿性につき検討した結
果、窒素系硬化剤、特にジシアンジアミド系を使用した
場合、樹脂のエポキシ当量が小さいほど、すなわちジシ
アンジアミドの使用量が多いほど吸水率が大きい事がわ
かっている。従って、エポキシ樹脂を高分子化してエポ
キシ当量を大きくし、窒素系硬化剤の使用量を少なくす
れば吸水率を低減できるが、単純に高分子化すると架橋
密度が低下し、耐熱性が悪化する。そればかりか分子内
に生成するアルコ−ル性水酸基により吸水率も悪くなっ
てしまう。このため、一分子中に平均して2.5個以上
のフェノ−ル性水酸基を有する化合物を用いて、架橋密
度を落とすことなく高分子化することによって吸水率低
下、耐熱性向上を可能にした。 【0020】しかし、高分子化していくと樹脂の粘度が
高くなり、ガラスクロスに対する含浸性が悪化し良好な
銅張り積層板が作成できなくなる。このため、特定の多
官能エポキシ樹脂を反応させたエポキシ樹脂中に特定量
のフェノ−ル性水酸基を一部分未反応のまま残存させ、
樹脂が増粘しない分子量で反応を止める。この残存した
フェノ−ル性水酸基が硬化剤として作用することによ
り、硬化剤として添加するジシアンジアミドの使用量が
減る。これによって、吸水率が低下し、耐熱性も維持で
き、銅箔及び層間の接着力は増し、ガラスクロスに対す
る含浸性の良好なエポキシ樹脂組成物が得られるのであ
る。 【0021】 【実施例】次に実施例及び比較例をあげて本発明を具体
的に説明する。なお、合成したエポキシ樹脂のエポキシ
当量はJIS K 7236に準じて測定を行った。ま
た、合成例1〜4のフェノ−ル性水酸基当量は、水酸化
カリウムにより酸価を測定し、その値を換算してフェノ
−ル性水酸基当量とした。合成例5〜7のフェノ−ル性
水酸基当量は305nmのUV吸光光度計により測定し
た。 【0022】合成例1 攪拌機、温度計、冷却管、窒素ガス導入装置をそなえた
四つ口フラスコに、エポト−トYD−128(東都化成
株式会社製 ビスフェノ−ルA型エポキシ樹脂エポキシ
当量186g/eq)484部、ZX−1142L(東
都化成株式会社製 α−ナフト−ルノボラックエポキシ
樹脂 エポキシ当量240g/eq)100部、ビスフ
ェノ−ルA 50部を仕込み、窒素ガスを流しながら加
熱溶融したのち、トリフェニルホスフィン0.05部を
加え160℃で2.5時間反応を行った。その後、テト
ラブロモビスフェノ−ルAを366部加え溶融した。こ
れに、トリフェニルホスフィン0.01部を加え160
℃で4時間反応を行ないエポキシ樹脂を得た。得られた
エポキシ樹脂のエポキシ当量は546.2g/eq、フ
ェノ−ル性水酸基当量は1510g/eqであった。 【0023】合成例2 合成例1と同様な装置により、YD−128 314
部、YDCN−702(東都化成株式会社製 o−クレ
ゾ−ルノボラックエポキシ樹脂 エポキシ当量204g
/eq)300部、ビスフェノ−ルA 62部を仕込
み、窒素ガスを流しながら加熱溶融したのち、トリフェ
ニルホスフィン0.05部を加え160℃で2.5時間
反応を行った。その後、テトラブロモビスフェノ−ルA
を324部加え溶融した。これに、トリフェニルホスフ
ィン0.01部を加え160℃で4時間反応を行ないエ
ポキシ樹脂を得た。得られたエポキシ樹脂のエポキシ当
量は421.0g/eq、フェノ−ル性水酸基当量は1
311g/eqであった。 【0024】合成例3 合成例1と同様な装置により、YD−128 490
部、YDG−414(東都化成株式会社製 テトラフェ
ニロ−ルエタンエポキシ樹脂 エポキシ当量188g/
eq)88部、ビスフェノ−ルA 57部を仕込み、窒
素ガスを流しながら加熱溶融したのち、トリフェニルホ
スフィン0.05部を加え160℃で2.5時間反応を
行った。その後、テトラブロモビスフェノ−ルAを36
6部加え溶融した。これに、トリフェニルホスフィン
0.01部を加え160℃で4時間反応を行ないエポキ
シ樹脂を得た。得られたエポキシ樹脂のエポキシ当量は
554.9g/eq、フェノ−ル性水酸基当量は171
9g/eqであった。 【0025】合成例4 合成例1と同様な装置により、YD−128 476
部、YDG−414 88部 9,9−ビス(4−ヒド
ロキシフェニル)フルオレン 70部を仕込み、窒素ガ
スを流しながら加熱溶融したのち、トリフェニルホスフ
ィン0.05部を加え160℃で2.5時間反応を行っ
た。その後、、テトラブロモビスフェノ−ルA 366
部を仕込み、加熱溶融した。これに、トリフェニルホス
フィン0.01部を加え160℃で4時間反応を行ない
エポキシ樹脂を得た。得られたエポキシ樹脂のエポキシ
当量は489.1g/eq、フェノ−ル性水酸基当量は
1301g/eqであった。 【0026】合成例5(比較例) 合成例1と同様な装置により、YD−128 590
部、ビスフェノ−ルA45部、テトラブロモビスフェノ
−ルA 366部を仕込み、加熱溶融した。これに、ト
リフェニルホスフィン0.5部を加え160℃で4時間
反応を行ないエポキシ樹脂を得た。得られたエポキシ樹
脂のエポキシ当量は709.4g/eq、フェノ−ル性
水酸基当量は375,100g/eqであった。 【0027】合成例6(比較例) 合成例1と同様な装置により、YD−128 575
部、ZX−1236(東都化成株式会社製 pクレゾ−
ル−ジシクロペンタジエンの縮合物)59部、テトラブ
ロモビスフェノ−ルA 366部を仕込み、加熱溶融し
た。これに、トリフェニルホスフィン0.5部を加え1
60℃で4時間反応を行ないエポキシ樹脂を得た。得ら
れたエポキシ樹脂のエポキシ当量は694.1g/e
q、フェノ−ル性水酸基当量は471,200g/eq
であった。 【0028】合成例7(比較例) 合成例1と同様な装置により、YD−128 576
部、D−5(東都化成株式会社製 o−クレゾ−ルノボ
ラック樹脂)58部、テトラブロモビスフェノ−ルA
366部を仕込み、加熱溶融した。これに、トリフェニ
ルホスフィン0.5部を加え160℃で4時間反応を行
ないエポキシ樹脂を得た。得られたエポキシ樹脂のエポ
キシ当量は807.4g/eq、フェノ−ル性水酸基当
量は253,400g/eqであった。 【0029】上記の合成法によって得られたエポキシ樹
脂を硬化剤と混合し、得られたエポキシ樹脂組成物を使
用して銅張り積層板を製造し、その積層板の評価を行っ
た。なお、銅張り積層板の作成は以下の条件により行っ
た。メチルエチルケトンに溶解した各エポキシ樹脂に、
硬化剤ジシアンジアミド(日本カ−バイド工業株式会社
製)、硬化促進剤2エチル4メチルイミダソ−ル(四国
化成工業株式会社製)をメチルセロソルブ/ジメチルホ
ルムアミド溶液として加え、ガラスクロス(日東紡株式
会社製 WEA−116E−105F115−N)に含
浸し、150℃×6分の乾燥を行ってB−ステ−ジ化し
た。このプリプレグ8プライの上下に35μmの銅箔
(三井金属鉱業株式会社製 3EC)を重ね、170℃
×20kgf/cm2×2時間の硬化条件で成形し、厚
さ0.8mmの積層板を得た。 【0030】評価方法は次の通りである。含浸性の評価
は配合した樹脂ワニスをガラスクロスに含浸し、目視で
判定した。含浸性がたいへん良かったものをa印で示
し、やや良かったものをb印で示した。また、通常の含
浸方法では限界に近かったものをc印で示した。吸水率
の測定はJIS C 6481 3.2に準じて銅箔を
エッチング除去したのち、JIS C 5023を参考
にして湿度90%×温度60℃の条件で96時間放置
し、重量変化から吸水率を測定した。ガラス転移温度の
測定はDuPont社製DMA 982を使用し、昇温
速度2℃/分でTanδ値を測定した。銅箔ピ−ル強さ
の測定はJIS C 6486 7.7に準じて行っ
た。層間接着強さは、銅箔をつけたままでガラスクロス
の表面の1層と下の7層の間の接着強さを銅箔ピ−ル強
さと同じように測定した。 【0031】実施例1 合成例1で得られたエポキシ樹脂90部にエポト−トY
DCN−704(東都化成株式会社製 オルソクレゾ−
ルノボラックエポキシ樹脂 エポキシ当量215g/e
q)10部混合し、硬化剤としてジシアンジアミドを
1.59部、硬化促進剤として2エチル4メチルイミダ
ゾ−ルを0.10部配合し、積層板評価を行った。得ら
れた積層板としての性能を表1に示す。 【0032】 【表1】【0033】実施例2 合成例2で得られたエポキシ樹脂100部に、硬化剤と
してジシアンジアミドを1.69部、硬化促進剤として
2エチル4メチルイミダゾ−ルを0.03部配合し、積
層板評価を行った。得られた積層板としての性能を表1
に示す。 【0034】実施例3 合成例3で得られたエポキシ樹脂90部にエポト−トY
DCN−704 10部混合し、硬化剤としてジシアン
ジアミドを1.64部、硬化促進剤として2エチル4メ
チルイミダゾ−ルを0.05部配合し、積層板評価を行
った。得られた積層板としての性能を表1に示す。 【0035】実施例4 合成例4で得られたエポキシ樹脂90部にエポト−トY
DCN−704 10部混合し、硬化剤としてジシアン
ジアミドを1.69部、硬化促進剤として2エチル4メ
チルイミダゾ−ルを0.05部配合し、積層板評価を行
った。得られた積層板としての性能を表1に示す。 【0036】比較例1 エポキシ樹脂としてエポト−トYDB−500(東都化
成株式会社製 臭素化エポキシ樹脂 エポキシ当量51
4g/eq)90部にエポト−トYDCN−70410部混
合し、硬化剤としてジシアンジアミドを2.33部、硬
化促進剤として2エチル4メチルイミダゾ−ルを0.0
5部配合し、積層板評価を行った。得られた積層板とし
ての性能を表2に示す。 【0037】 【表2】【0038】比較例2 合成例5で得られたエポキシ樹脂90部にYDCN−7
04 10部混合し、硬化剤としてジシアンジアミドを
1.82部、硬化促進剤として2エチル4メチルイミダ
ゾ−ルを0.07部配合し、積層板評価を行った。得ら
れた積層板としての性能を表2に示す。 【0039】比較例3 合成例6で得られたエポキシ樹脂90部にYDCN−7
04 10部混合し、硬化剤としてジシアンジアミドを
1.85部、硬化促進剤として2エチル4メチルイミダ
ゾ−ルを0.10部配合し、積層板評価を行った。得ら
れた積層板としての性能を表2に示す。 【0040】比較例4 合成例7で得られたエポキシ樹脂90部にYDCN−7
04 10部混合し、硬化剤としてジシアンジアミドを
1.64部、硬化促進剤として2エチル4メチルイミダ
ゾ−ルを0.07部配合し、積層板評価を行った。得ら
れた積層板としての性能を表2に示す。以上の結果よ
り、実施例の物はすべての点において良好であったが、
比較例1では含浸性、ガラス転移温度は良好であるが、
吸水性は実施例1〜4より高く、比較例8は吸水性、ガ
ラス転移温度は良好であるが、含浸性、銅箔ピ−ル強
さ、層間接着強さにおいて実施例1〜4より劣る。 【0041】 【発明の効果】以上のように、特定の多官能エポキシ樹
脂と多官能フェノ−ル化合物とから製造されるエポキシ
樹脂において、エポキシ当量が300〜700g/eq
の範囲であり、且つ残存フェノ−ル性水酸基当量が50
0〜3000g/eqの範囲となるように反応させて得
られるエポキシ樹脂を用いることによって、含浸性など
の作業性を損なうことなく、耐熱性及び耐湿性、接着性
を改良できるという効果をあげたものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a FRP, particularly to a copper-clad laminate used for an electronic circuit board, which has low water absorption, excellent heat resistance, and excellent physical properties. The present invention relates to an epoxy resin composition obtained without impairing workability such as impregnation. [0002] Epoxy resins are widely used in electronic parts, electric equipment, automobile parts, FRP, sporting goods and the like because of their excellent adhesiveness, electrical properties and heat resistance. However, copper-clad laminates used for FRP, especially for electronic circuit boards, are becoming thinner with increasing number of layers, and epoxy resins used for this purpose are required to have lower water absorption and higher heat resistance than ever before. [0003] Conventionally, epoxy resins used for electronic circuit boards include tetrabromobisphenol A and epichlorohydrin or bisphenol A glycidyl ether.
And a brominated epoxy resin such as Epototo YDB-400 manufactured by Toto Kasei Co., Ltd. (epoxy equivalent: 380 to 420 g / eq, bromine content: 46 to 50 wt.
%), Epototo YDB-500 (epoxy equivalent 45
0 to 550 g / eq, bromine content: 18 to 22 wt%) is used as a general-purpose product, and dicyandiamide alone or in combination with a polyamine compound is used as a curing agent, and a tertiary amine or imidazole is used as a curing accelerator. Used in combination. Meanwhile, as a method for reducing the water absorption of the epoxy resin and improving the heat resistance, a method for improving the purity of the epoxy resin is known. For example, there is a method in which impurities such as a hydrolyzable chlorine component, an α-diol component or an unreacted phenol component contained in the epoxy resin are reduced to the utmost. As this type of epoxy resin, for example, Epototo YDB-530 (epoxy equivalent 530 g /
eq and bromine content of 21.7 wt%), but there was a limit to improvement in heat resistance. The present inventors have previously found a method of reducing the water absorption by adding a polyfunctional phenol compound to an epoxy resin composition (Japanese Patent Laid-Open No. 4-22).
No. 4820). That is, a brominated epoxy resin produced from tetrabromobisphenol A and epichlorohydrin or bisphenol A glycidyl ether, and an average of 2.5 or more phenolic hydroxyl groups in one molecule With an epoxy equivalent of 550-80.
By using an epoxy resin obtained by reacting to be in the range of 0 g / eq, it is possible to reduce the compounding amount of a nitrogen-based curing agent component such as dicyandiamide, polyamine compound, etc., thereby reducing the water absorption. Reduced. However, even in this method, when an epoxy resin having an epoxy equivalent of 800 g / eq or more or a compound having a high softening point of a compound having a phenolic hydroxyl group is used, the resin viscosity increases, Since the impregnating property of the glass cloth deteriorates, there is a limit in improving the water absorption rate. As described above, the method of reducing the intramolecular impurities of the epoxy resin or the method of using the polyfunctional phenol compound reduces the water absorption of the epoxy resin, heat resistance and adhesiveness. There is a limit in obtaining an epoxy resin having excellent properties such as these. The present inventor has made various studies to improve the above-mentioned drawbacks and obtain an epoxy resin having a low water absorption rate and excellent heat resistance and adhesiveness. Without affecting the present invention, the present invention was completed by finding a method of reducing the curing agent component causing the deterioration of the water absorption, and an object of the present invention is to reduce the intramolecular impurities as described above, or A method using a polyfunctional phenolic compound, which has limitations in reducing water absorption, and has excellent heat resistance and adhesiveness, and has no adverse effect on workability such as impregnation with a novel epoxy resin composition for a copper-clad laminate. It is provided by. [0011] The gist of the present invention is to provide an epoxy resin composition comprising an epoxy resin and a curing agent, wherein the epoxy resin comprises 9,9-bis (4-hydroxyphenyl) fluorene, Naphthalene diol, tetraphenyl ethane, phenol novolak, cresol novolak, naphtho novolak, bisphenol A
A polyfunctional epoxy resin produced from a bifunctional or higher phenol selected from the group consisting of novolaks and epihalohydrin, and a polyfunctional phenol compound, which is obtained by reacting an epoxy equivalent But 300-700g
/ Eq and a residual phenolic hydroxyl group equivalent of 500 to 3000 g / eq. That is, in the present invention, the polyfunctional epoxy resin produced from the above-mentioned specific bifunctional or higher-functional phenol and epihalohydrin has an epoxy equivalent of 3
In the range of 100 to 700 g / eq and the residual pheno-
By using an epoxy resin obtained by reacting a polyfunctional phenol compound such that the hydroxyl equivalent is in the range of 500 to 3000 g / eq, low water absorption, excellent heat resistance, excellent adhesion and impregnation. Thus, it was possible to provide an epoxy resin composition having excellent workability. Hereinafter, the present invention will be described in detail. In the present invention, it is selected from the group consisting of 9,9-bis (4-hydroxyphenyl) fluorene, naphthalenediol, tetraphenylolethane, phenol-novolak, cresol-novolak, naphtho-novolak, and bisphenol-A novolak. The epoxy equivalent of the polyfunctional epoxy resin produced from bifunctional or more phenols and epihalohydrin is about 110 to 400 g / eq. These epoxy resins can be used alone or in combination of two or more, and some epoxy resins produced from bisphenol A, bisphenol F, tetrabromobisphenol A and epihalohydrin are used in combination. You can also. Examples of the polyfunctional phenol compound include phenol represented by bisphenol A, bisphenol F, 9,9-bis (4-hydroxyphenyl) fluorene, and the like.
And the like. Further, bifunctional or more functional phenol novolak resins, phloroglycinols, polyparavinylphenols, tetraphenylols obtained by condensation of these phenols, phenols, cresols and aldehydes.
Examples thereof include reaction products of ethane, unsaturated compounds and phenols. Furthermore, these halides can also be mentioned. In the present invention, the above polyfunctional epoxy resin is reacted with a polyfunctional phenol compound so that the epoxy equivalent is in the range of 300 to 700 g / eq, and the residual phenolic hydroxyl group equivalent is 500 to 3000 g. An epoxy resin in the range of / eq is obtained, and a known catalyst can be used in the reaction. Conventional catalysts such as metal oxides, inorganic bases, organic bases and salts thereof, onium compounds and phosphines may be used. However, in the present invention, in order to leave a specific amount of a part of the phenolic hydroxyl group in the epoxy resin unreacted, it is necessary to adjust the amount of the catalyst, the reaction temperature and the like variously according to the raw materials used. is there. Also, with certain catalysts, the catalyst can be deactivated by various methods,
By this method, a target polyfunctional epoxy resin can be produced. As a method for deactivating the catalyst, there are methods such as lowering the reaction temperature, adding a deactivator, or raising the temperature to thermally decompose the catalyst. The desired polyfunctional epoxy resin can also be produced by a continuous synthesis method represented by a mixing device such as a uniaxial coneder or a biaxial rudder. In short, any method may be used as long as the terminal groups of the polyfunctional epoxy resin are a specific number of epoxy groups and phenolic hydroxyl groups. When the epoxy resin in the epoxy resin composition of the present invention has an epoxy equivalent of 300 g / eq or less, the amount of the curing agent used increases, resulting in poor water resistance. The impregnating property is deteriorated by the increase in the resin viscosity. The residual phenolic hydroxyl group equivalent is also determined to be 500 g / eq.
Below, the compounding ratio of the specific polyfunctional epoxy resin is reduced to deteriorate heat resistance. At 3000 g / eq or more, the amount of the curing agent used is increased, and as a result, the water resistance is inferior, and the impregnating property is increased due to an increase in resin viscosity. It gets worse. As the curing agent for the composition of the present invention, pheno-
Curing agents and acid anhydrides, amine resins and other commonly used curing agents for epoxy resins can be used, more preferably from the viewpoint of storage stability, adhesion and heat resistance,
Dicyandiamide is used alone or in combination with a polyamine compound or in combination with a tertiary amine or imidazole as a curing accelerator. The composition of the present invention may further contain conventional additives such as a curing accelerator, a filler and a diluent. As a result of examining the hygroscopicity of the epoxy resin composition, when a nitrogen-based curing agent, particularly dicyandiamide, is used, the smaller the epoxy equivalent of the resin, that is, the larger the amount of dicyandiamide used, the higher the water absorption. I know it's big. Therefore, if the epoxy resin is polymerized to increase the epoxy equivalent and the amount of the nitrogen-based curing agent used is reduced, the water absorption can be reduced. However, when the polymer is simply polymerized, the crosslink density decreases and the heat resistance deteriorates. . In addition, the alcoholic hydroxyl group generated in the molecule deteriorates the water absorption. Therefore, by using a compound having an average of 2.5 or more phenolic hydroxyl groups in one molecule and polymerizing without lowering the crosslink density, it is possible to lower the water absorption and improve the heat resistance. did. However, as the polymer becomes higher, the viscosity of the resin becomes higher, the impregnating property of the glass cloth becomes worse, and a good copper-clad laminate cannot be produced. For this reason, a specific amount of a phenolic hydroxyl group is left unreacted in an epoxy resin reacted with a specific polyfunctional epoxy resin,
The reaction is stopped at a molecular weight at which the resin does not thicken. The remaining phenolic hydroxyl group acts as a curing agent, thereby reducing the amount of dicyandiamide added as a curing agent. As a result, the water absorption is reduced, the heat resistance can be maintained, the adhesive strength between the copper foil and the interlayer is increased, and an epoxy resin composition having good impregnation with glass cloth can be obtained. The present invention will now be described specifically with reference to examples and comparative examples. The epoxy equivalent of the synthesized epoxy resin was measured according to JIS K7236. The phenolic hydroxyl group equivalents in Synthesis Examples 1 to 4 were obtained by measuring the acid value with potassium hydroxide and converting the value to the phenolic hydroxyl group equivalent. Phenolic properties of Synthesis Examples 5 to 7
Hydroxyl equivalent is measured with a 305 nm UV absorption spectrophotometer.
Was. Synthesis Example 1 In a four-necked flask equipped with a stirrer, a thermometer, a cooling tube, and a nitrogen gas introducing device, Epototo YD-128 (bisphenol A type epoxy resin manufactured by Toto Kasei Co., Ltd., epoxy equivalent: 186 g / eq) 484 parts, 100 parts of ZX-1142L (α-naphthol-novolak epoxy resin epoxy equivalent 240 g / eq, manufactured by Toto Kasei Co., Ltd.) and 50 parts of bisphenol A were charged and heated and melted while flowing nitrogen gas. 0.05 parts of triphenylphosphine was added and reacted at 160 ° C. for 2.5 hours. Thereafter, 366 parts of tetrabromobisphenol A was added and melted. To this, 0.01 part of triphenylphosphine was added to add 160 parts.
The reaction was performed at 4 ° C. for 4 hours to obtain an epoxy resin. The epoxy equivalent of the obtained epoxy resin was 546.2 g / eq, and the phenolic hydroxyl group equivalent was 1510 g / eq. Synthesis Example 2 Using the same apparatus as in Synthesis Example 1, YD-128 314
Part, YDCN-702 (o-cresol novolak epoxy resin manufactured by Toto Kasei Co., Ltd., epoxy equivalent 204 g)
/ Eq) 300 parts and 62 parts of bisphenol A were charged and heated and melted while flowing a nitrogen gas, and then 0.05 part of triphenylphosphine was added and reacted at 160 ° C. for 2.5 hours. Thereafter, tetrabromobisphenol A
324 parts was added and melted. To this, 0.01 part of triphenylphosphine was added and reacted at 160 ° C. for 4 hours to obtain an epoxy resin. The epoxy equivalent of the obtained epoxy resin is 421.0 g / eq, and the phenolic hydroxyl equivalent is 1
It was 311 g / eq. Synthesis Example 3 Using the same apparatus as in Synthesis Example 1, YD-128 490
Part, YDG-414 (Tohto Kasei Co., Ltd., tetraphenylolethane epoxy resin, epoxy equivalent 188 g /
eq) 88 parts and bisphenol A 57 parts were charged and melted by heating while flowing a nitrogen gas, and then 0.05 parts of triphenylphosphine was added and reacted at 160 ° C. for 2.5 hours. Thereafter, tetrabromobisphenol A was added to 36
Six parts were added and melted. To this, 0.01 part of triphenylphosphine was added and reacted at 160 ° C. for 4 hours to obtain an epoxy resin. The epoxy equivalent of the obtained epoxy resin was 554.9 g / eq, and the phenolic hydroxyl equivalent was 171.
It was 9 g / eq. Synthesis Example 4 Using the same apparatus as in Synthesis Example 1, YD-128 476
Parts, YDG-414 88 parts 9,9-bis (4-hydroxyphenyl) fluorene 70 parts were charged and heated and melted while flowing a nitrogen gas. Then, 0.05 parts of triphenylphosphine was added, and added at 160 ° C. for 2.5 hours. The reaction was performed. Thereafter, tetrabromobisphenol A 366
Was heated and melted. To this, 0.01 part of triphenylphosphine was added and reacted at 160 ° C. for 4 hours to obtain an epoxy resin. The epoxy equivalent of the obtained epoxy resin was 489.1 g / eq, and the phenolic hydroxyl group equivalent was 1301 g / eq. Synthesis Example 5 (Comparative Example) YD-128 590 using the same apparatus as in Synthesis Example 1.
Parts, bisphenol A 45 parts and tetrabromobisphenol A 366 parts were charged and heated and melted. To this was added 0.5 part of triphenylphosphine and reacted at 160 ° C. for 4 hours to obtain an epoxy resin. The epoxy equivalent of the obtained epoxy resin was 709.4 g / eq, and the phenolic hydroxyl group equivalent was 375,100 g / eq. Synthesis Example 6 (Comparative Example) YD-128 575 using the same apparatus as in Synthesis Example 1.
, ZX-1236 (p Crezo manufactured by Toto Kasei Co., Ltd.)
59 parts of condensate of ru-dicyclopentadiene) and 366 parts of tetrabromobisphenol A were charged and melted by heating. To this, 0.5 part of triphenylphosphine was added and 1 part was added.
The reaction was carried out at 60 ° C. for 4 hours to obtain an epoxy resin. The epoxy equivalent of the obtained epoxy resin is 694.1 g / e.
q, phenolic hydroxyl equivalent is 471,200 g / eq
Met. Synthesis Example 7 (Comparative Example) YD-128 576 using the same apparatus as in Synthesis Example 1.
Part, D-5 (o-cresol novolak resin manufactured by Toto Kasei Co., Ltd.), 58 parts, tetrabromobisphenol A
366 parts were charged and heated and melted. To this was added 0.5 part of triphenylphosphine and reacted at 160 ° C. for 4 hours to obtain an epoxy resin. The epoxy equivalent of the obtained epoxy resin was 807.4 g / eq, and the phenolic hydroxyl group equivalent was 253,400 g / eq. The epoxy resin obtained by the above synthesis method was mixed with a curing agent, and a copper-clad laminate was manufactured using the obtained epoxy resin composition, and the laminate was evaluated. The copper-clad laminate was prepared under the following conditions. For each epoxy resin dissolved in methyl ethyl ketone,
A curing agent dicyandiamide (manufactured by Nippon Carbide Industrial Co., Ltd.) and a curing accelerator 2ethyl 4-methylimidazole (manufactured by Shikoku Chemical Industry Co., Ltd.) are added as a solution of methylcellosolve / dimethylformamide, and a glass cloth (WEA manufactured by Nittobo Co., Ltd.) is added. −116E-105F115-N) and dried at 150 ° C. for 6 minutes to form a B-stage. A 35 μm copper foil (3EC manufactured by Mitsui Mining & Smelting Co., Ltd.) is layered on and under the 8 plies of prepreg,
Molding was performed under curing conditions of × 20 kgf / cm 2 × 2 hours to obtain a laminate having a thickness of 0.8 mm. The evaluation method is as follows. The impregnating property was evaluated by visually impregnating a glass cloth with the compounded resin varnish. Those with very good impregnation are indicated by a, and those with slightly better impregnation are indicated by b. Further, those which were close to the limit in the ordinary impregnation method were indicated by c marks. The water absorption was measured by removing the copper foil by etching in accordance with JIS C 6481 3.2, and then leaving it under a condition of 90% humidity × 60 ° C. for 96 hours with reference to JIS C 5023. It was measured. For the measurement of the glass transition temperature, a Tan 98 value was measured at a heating rate of 2 ° C./min using DMA 982 manufactured by DuPont. The copper foil peel strength was measured according to JIS C 6486 7.7. The interlaminar bond strength was measured by measuring the bond strength between one layer on the surface of the glass cloth and the seven lower layers with the copper foil still attached, in the same manner as the copper foil peel strength. Example 1 An epoxy resin Y was added to 90 parts of the epoxy resin obtained in Synthesis Example 1.
DCN-704 (Orthocreso manufactured by Toto Kasei Co., Ltd.)
Lunovolak epoxy resin Epoxy equivalent 215g / e
q) 10 parts were mixed, and 1.59 parts of dicyandiamide as a curing agent and 0.10 part of 2-ethyl 4-methylimidazole as a curing accelerator were blended, and the laminate was evaluated. Table 1 shows the performance of the obtained laminate. [Table 1] Example 2 To 100 parts of the epoxy resin obtained in Synthesis Example 2, 1.69 parts of dicyandiamide as a curing agent and 0.03 part of 2-ethyl-4-methylimidazole as a curing accelerator were blended. An evaluation was performed. Table 1 shows the performance of the obtained laminate.
Shown in Example 3 An epoxy Y was added to 90 parts of the epoxy resin obtained in Synthesis Example 3.
DCN-704 (10 parts) was mixed, dicyandiamide (1.64 parts) as a curing agent and 2-ethyl 4-methylimidazole (0.05 parts) as a curing accelerator were blended, and the laminate was evaluated. Table 1 shows the performance of the obtained laminate. Example 4 An epoxy resin Y was added to 90 parts of the epoxy resin obtained in Synthesis Example 4.
DCN-704 (10 parts) was mixed, and dicyandiamide (1.69 parts) as a curing agent and 2-ethyl 4-methylimidazole (0.05 parts) as a curing accelerator were blended, and the laminate was evaluated. Table 1 shows the performance of the obtained laminate. Comparative Example 1 Epototo YDB-500 (a brominated epoxy resin manufactured by Toto Kasei Co., Ltd., epoxy equivalent: 51 as an epoxy resin)
90 g of 4 g / eq) were mixed with 90 parts of YDCN-potato, 2.33 parts of dicyandiamide as a curing agent, and 0.03 of 2-ethyl-4-methylimidazole as a curing accelerator.
Five parts were mixed and the laminate was evaluated. Table 2 shows the performance of the obtained laminate. [Table 2] Comparative Example 2 YDCN-7 was added to 90 parts of the epoxy resin obtained in Synthesis Example 5.
The mixture was mixed with 1.8 parts of dicyandiamide as a curing agent and 0.07 parts of 2-ethyl 4-methylimidazole as a curing accelerator, and the laminate was evaluated. Table 2 shows the performance of the obtained laminate. Comparative Example 3 90 parts of the epoxy resin obtained in Synthesis Example 6 was added to YDCN-7.
04 parts were mixed, 1.85 parts of dicyandiamide as a curing agent and 0.10 parts of 2-ethyl 4-methylimidazole as a curing accelerator were blended, and the laminate was evaluated. Table 2 shows the performance of the obtained laminate. Comparative Example 4 YDCN-7 was added to 90 parts of the epoxy resin obtained in Synthesis Example 7.
04 10 parts, and 1.64 parts of dicyandiamide as a curing agent and 0.07 part of 2-ethyl 4-methylimidazole as a curing accelerator were blended, and the laminate was evaluated. Table 2 shows the performance of the obtained laminate. From the above results, the product of Example was good in all respects,
In Comparative Example 1, the impregnation property and the glass transition temperature are good,
The water absorption is higher than Examples 1 to 4. Comparative Example 8 has good water absorption and glass transition temperature, but is inferior to Examples 1 to 4 in impregnation, copper foil peel strength and interlayer adhesion strength. . As described above, an epoxy resin produced from a specific polyfunctional epoxy resin and a polyfunctional phenol compound has an epoxy equivalent of 300 to 700 g / eq.
And the residual phenolic hydroxyl equivalent is 50.
By using an epoxy resin obtained by reacting in the range of 0 to 3000 g / eq, the heat resistance, moisture resistance, and adhesion can be improved without impairing workability such as impregnation. Things.

フロントページの続き (56)参考文献 特開 平6−41277(JP,A) 特開 平4−224820(JP,A) 特開 昭62−283969(JP,A) 特開 平4−272919(JP,A) 特開 平3−170521(JP,A) 特開 昭63−48324(JP,A) 特開 昭61−43614(JP,A) 特開 昭58−79011(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 59/20 - 59/30 C08G 59/14 C08J 5/24 CFC H05K 1/03 630 H Continuation of the front page (56) References JP-A-6-41277 (JP, A) JP-A-4-224820 (JP, A) JP-A-62-283969 (JP, A) JP-A-4-272919 (JP) JP-A-3-170521 (JP, A) JP-A-63-48324 (JP, A) JP-A-61-43614 (JP, A) JP-A-58-79011 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) C08G 59/20-59/30 C08G 59/14 C08J 5/24 CFC H05K 1/03 630 H

Claims (1)

(57)【特許請求の範囲】 【請求項1】エポキシ樹脂と硬化剤とから成るエポキシ
樹脂組成物において、該エポキシ樹脂は、9,9−ビス
(4−ヒドロキシフェニル)フルオレン、ナフタレンジ
オール、テトラフェニロールエタン、フェノールノボラ
ック、クレゾールノボラック、ナフトールノボラック、
ビスフェノールAノボラックからなる群から選ばれた2
官能以上のフェノール類とエピハロヒドリンとから製造
される多官能エポキシ樹脂と、2官能フェノール化合物
とを反応させて得られたものであって、エポキシ当量が
300〜700g/eqの範囲であり、且つ残存フェノ
ール性水酸基当量が500〜3000g/eqの範囲を
有することを特徴とするエポキシ樹脂組成物。
(57) [Claim 1] In an epoxy resin composition comprising an epoxy resin and a curing agent, the epoxy resin comprises 9,9-bis (4-hydroxyphenyl) fluorene, naphthalenediol, tetra Phenylolethane, phenol novolak, cresol novolak, naphthol novolak,
2 selected from the group consisting of bisphenol A novolak
It is obtained by reacting a polyfunctional epoxy resin produced from a phenol having more than one functionality and epihalohydrin with a bifunctional phenol compound, wherein the epoxy equivalent is in the range of 300 to 700 g / eq, and An epoxy resin composition having a phenolic hydroxyl group equivalent in the range of 500 to 3000 g / eq.
JP4088094A 1994-03-11 1994-03-11 Epoxy resin composition Expired - Fee Related JP3385440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4088094A JP3385440B2 (en) 1994-03-11 1994-03-11 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4088094A JP3385440B2 (en) 1994-03-11 1994-03-11 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH07247338A JPH07247338A (en) 1995-09-26
JP3385440B2 true JP3385440B2 (en) 2003-03-10

Family

ID=12592831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4088094A Expired - Fee Related JP3385440B2 (en) 1994-03-11 1994-03-11 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP3385440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039188A1 (en) * 1998-12-25 2000-07-06 Mitsubishi Rayon Co., Ltd. Epoxy resin composition, prepreg, and roll made of resin reinforced with reinforcing fibers

Also Published As

Publication number Publication date
JPH07247338A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
JP3593347B2 (en) Copolymer of styrene and maleic anhydride containing epoxy resin composition and crosslinking aid
US20090321117A1 (en) A curable epoxy resin composition having a mixed catalyst system and laminates made therefrom
US20090159313A1 (en) Curable epoxy resin composition and laminates made therefrom
EP0507271A2 (en) Epoxy resin compositions for use in electrical laminates
JPH0819213B2 (en) Epoxy resin composition and copper clad laminate
JP3252291B2 (en) Epoxy resin composition
JP3385440B2 (en) Epoxy resin composition
JPH08198949A (en) Epoxy resin composition
JP3261061B2 (en) Resin composition for laminate, prepreg and laminate using the composition
JP3010535B2 (en) Epoxy resin composition
JPH068388A (en) Epoxy resin laminated sheet
JPH10182794A (en) Fast-curing epoxy resin composition
JPH11181124A (en) Prepreg
JP3010534B2 (en) Epoxy resin composition
JP3440365B2 (en) Epoxy resin composition for laminated board
US5364925A (en) Epoxy resin advanced with a dihydric phenol and further chain extended with an additional dihydric phenol for use in electrical laminates
JP3218436B2 (en) Epoxy resin composition
JPH04323216A (en) Epoxy resin composition
JP3529118B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH05202170A (en) Epoxy resin composition for electrical laminated sheet
JPH06122753A (en) Epoxy resin composition and cured product thereof
JPH06145297A (en) Epoxy resin composition and cured product therefrom
JPH11181123A (en) Prepreg
JPH0670122B2 (en) Epoxy resin composition
JPH0641273A (en) Epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120110

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120110

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees