JP3383874B2 - Diesel engine combustion simulation method - Google Patents

Diesel engine combustion simulation method

Info

Publication number
JP3383874B2
JP3383874B2 JP19883593A JP19883593A JP3383874B2 JP 3383874 B2 JP3383874 B2 JP 3383874B2 JP 19883593 A JP19883593 A JP 19883593A JP 19883593 A JP19883593 A JP 19883593A JP 3383874 B2 JP3383874 B2 JP 3383874B2
Authority
JP
Japan
Prior art keywords
combustion
fuel
diesel engine
evaporation
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19883593A
Other languages
Japanese (ja)
Other versions
JPH0734894A (en
Inventor
克享 小西
修 吉田
利幸 中島
Original Assignee
克享 小西
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 克享 小西, 石川島播磨重工業株式会社 filed Critical 克享 小西
Priority to JP19883593A priority Critical patent/JP3383874B2/en
Publication of JPH0734894A publication Critical patent/JPH0734894A/en
Application granted granted Critical
Publication of JP3383874B2 publication Critical patent/JP3383874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Testing Of Engines (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はディーゼル機関の燃焼状
態をコンピュータを用いてシミュレートするためのディ
ーゼル機関の燃焼シミュレーション方法に関するもので
ある。 【0002】 【従来の技術】大型船舶では、一般に、燃料油として、
石油精製過程で生じる残渣油に粘度調整のために若干の
軽質油を混合したC重油と呼ばれるブレンド油が使用さ
れており、石油精製設備の性能が上がれば上がるほど、
それにつれて低質化し主機の燃焼障害や大気汚染問題が
惹起される。 【0003】したがって、このような問題を改善するた
めには、燃料の性状に基づいて、状況に合った最適な運
転状態が得られるように燃料を燃焼させることが必要と
なる。 【0004】 【発明が解決しようとする課題】ところが、燃料の性状
に基づいた機関の最適な運転状態を指標するには、予
め、ディーゼル機関の実機を用いて、あらゆる性状の燃
料について、各種の燃焼条件を設定して広角度な燃焼実
験を行う必要があるが、その場合、多大な労力及び費用
がかかるばかりでなく、大型舶用ディーゼル機関による
C重油の燃焼実験については、公害規制上陸上では実験
が困難である、という問題がある。そのため、あらゆる
種類の燃料に対して簡単に燃焼実験結果が得られるよう
な技術の開発が要望されているが、現時点では開発され
ていないのが実情である。 【0005】そこで、本発明は、ディーゼル機関の燃焼
を、種々の簡略化モデルの採用によりシミュレートして
燃料の性状に応じた機関の最適運転状態を簡単に指標す
ることができるようなディーゼル機関の燃焼シミュレー
ション方法を提供しようとするものである。 【0006】 【課題を解決するための手段】本発明は、上記課題を解
決するために、対象となるディーゼル機関の機関形状や
燃料噴射タイミング、冷却水温度、掃気温度、燃料への
水分混合率の各パラメータ等の各種既存値と対象となる
燃料の分析値とを基に、先ず、燃料液滴を液体燃焼成分
・水分蒸発層と水分蒸発層と固体炭素表面燃焼層との3
つの層に分けて燃料液滴の蒸発を計算し、次に、火炎伝
播を計算し、更に、燃料液滴の蒸発、予混合燃焼、拡散
燃焼、残留炭素燃焼の4項目についての熱発生率を計算
してトータル的な熱発生率を求め、その結果を出力させ
るようにすることを特徴とするディーゼル機関の燃焼シ
ミュレーション方法とする。 【0007】 【作用】燃料液滴を3つの層に分けて液滴の蒸発を計算
するので、燃料蒸発量、水分蒸発量、炭素燃焼量等が正
確に求められる。又、火炎伝播が計算された後、燃料液
滴の蒸発、予混合燃焼、拡散燃焼、残留炭素燃焼の4項
目を計算してトータルな熱発生率を求めるので、実測値
に極めて近い値が得られる。 【0008】 【実施例】以下、本発明の実施例を図面を参照して説明
する。 【0009】図1は本発明のディーゼル機関の燃焼シミ
ュレーション方法を実施するためのフローチャートを示
すもので、パソコンの如きコンピュータを用い、データ
ベースに蓄えておいた各種の燃料分析値のうち、対象燃
料の分析値と、対象機関の各種既存値(機関形状や、燃
料噴射タイミング(FQS)、冷却水温度、掃気温度、
燃料への水分混合率の各パラメータ)を入力し、先ず、
燃料液滴の蒸発計算を行い、次に、火炎伝播を計算し、
続いて、液滴の蒸発、予混合燃焼、拡散燃焼、残留炭素
燃焼の4項目についての熱発生率を計算してトータル的
な熱発生率を求め、更に、NOx生成の計算、すす生成
の計算、燃焼室の壁面温度の決定等を行い、正味熱発生
率を求めてディスプレイ上に表示して出力させるように
したものである。なお、上記各計算のプログラムはハー
ドディスクあるいは基板などにソフトとして取り込ませ
ておくようにする。 【0010】以下、詳述する。 【0011】先ず、ステップ1として、機関スペック、
物性値、初期値等の各種既存値の読み込みを行わせ、し
かる後、ステップ2として、対象とする燃料の分析値を
読み込ませる。 【0012】次に、ステップ3として、下死点から排気
弁閉までの掃気圧力や温度を固定し、続いて、ステップ
4として、排気弁閉から燃料噴射開始までのシリンダ内
圧力や温度を計算する。 【0013】次いで、本発明の特徴をなすステップ5と
して、燃料噴射開始から終了までを、上記燃料分析値
と、既存値としての機関形状や燃料噴射タイミング、ジ
ャケット冷却温度、掃気温度、燃料への水分混合率のパ
ラメータ等とにより、所定の計算を下記の如く行わせ
る。 【0014】すなわち、図2は燃料液滴の蒸発モデルを
示すもので、この際、液滴は、液体燃焼成分・水分蒸発
層としての第I層と、水分蒸発層としての第II層と、固
形炭素表面燃焼層としての第III 層との3つの層を考え
る。 【0015】液滴は常に球形とし、液体燃料及び水の蒸
発は次式に従うものとする。 【0016】 【数1】 但し、Dd は液滴直径、kf は蒸発係数である。 【0017】固形炭素分は次式で示される表面燃焼によ
り、直径が減少するものとする。 【0018】 mc ′=ks 02 …(2) 但し、ks は表面反応速度定数、P02は酸素分圧であ
る。排気弁が開くときに燃焼が終了していない未燃量を
燃焼残渣とする。 【0019】又、図3は噴霧燃焼モデルを示し、計算刻
み毎に噴射される液滴の集団を燃料噴霧ユニットとし、
ユニット内のみで液滴の蒸発及び燃焼が起こるものとす
る。ユニット内の燃焼ガスは瞬時に拡散し、周囲ガスと
混合する。 【0020】噴霧の到達距離は噴射時のユニット内の運
動量が保存されるものとして、次式の関係から計算す
る。 【0021】 噴射時の燃料の運動量=液滴の運動量+ユニット内ガスの運動量 …(3) 噴霧先端で燃焼が開始すると、上流側に予混合燃焼によ
る火炎面が伝播する。この際、予混合気の燃焼速度は次
式で計算する。 【0022】 【数2】 但し、su0は基準圧力P0 及び基準温度T0 における燃
焼速度である。火炎伝播速度は燃料噴霧ユニットの速度
と燃焼速度の差として計算される。 【0023】予混合燃焼終了後のユニットは、蒸発律則
による拡散燃焼をする。 【0024】又、NOxの生成については、次式に示す
拡大Zeldovich機構を採用した。 【0025】 【数3】 反応速度は次式で計算する。但し、化学種Aのモル濃度
を[A]、反応速度定数をkで表す。化学種の濃度には
ユニット内の化学平衡濃度を用いる。 【0026】 【数4】 反応後、ユニット内外のガスは瞬時に相互拡散によって
混合するものとする。 【0027】一方、すすの生成と酸化はアレニウス形の
反応式で記述し、実際の生成量は両者の差として次式で
計算する。 【0028】 【数5】 又、燃焼室壁面温度の決定には、燃焼室壁面をシリンダ
カバー、ライナー、ピストンの3つの部分に分け、冷却
水入口温度と流量を与えて準定常伝熱計算を行う。これ
により各部の冷却水出口温度と燃焼室壁面温度を計算す
る。壁面熱伝達率にはWoschniの式を使用した。 【0029】更に、シリンダ内での正味の熱発生率は次
式で計算する。 【0030】 【数6】 但し、右辺第1〜3項はそれぞれ予混合燃焼、拡散燃
焼、固形炭素の燃焼による熱発生であり、右辺第4と5
項はそれぞれ燃料の蒸発及び水の蒸発による熱損失であ
り、右辺第6項は壁面熱損失である。 【0031】上記の如くしてステップ5が終了すると、
次に、ステップ6として、燃焼終了から排気弁開までの
シリンダ内圧力や温度を計算し、続いて、ステップ7と
して、排気弁開から掃気ポート開までのシリンダ内圧力
の直線近似化やシリンダ内温度の計算を行い、更に、ス
テップ8として、掃気ポート開から下死点までのシリン
ダ内圧力を固定すると共に、シリンダ内温度の直線近似
化を行い、終了とする。 【0032】これらのシミュレーションの結果は、図4
に一例を示す如くディスプレイ上に表示して出力させ
る。なお、図4において、イはシリンダ内圧、ロはシリ
ンダ内温度、ハは熱発生率のそれぞれ予測値としての計
算値を、又、ニはシリンダ内圧の実測値を示し、イとニ
がほとんど一致する結果が得られた。 【0033】なお、本発明は舶用ディーゼル機関に限ら
ず、あらゆる分野で用いられているディーゼル機関の燃
焼をシミュレーションすることができること、その他本
発明の要旨を逸脱しない範囲内において種々変更を加え
得ることは勿論である。 【0034】 【発明の効果】以上述べた如く、本発明のディーゼル機
関の燃焼シミュレーション方法によれば、対象となるデ
ィーゼル機関の既存値と燃料の分析値を基に、燃焼によ
る熱発生率を計算により求めて出力させるようにするの
で、実機による燃焼実験を行うことなく、燃料の性状に
応じたディーゼル機関の最適運転状態を簡単に指標する
ことができ、特に、公害規制上陸上では実験が困難な大
型舶用ディーゼル機関によるC重油についても容易に実
施することができる、という優れた効果を発揮する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diesel engine combustion simulation method for simulating the combustion state of a diesel engine using a computer. [0002] In a large ship, generally, as fuel oil,
Blend oil called C heavy oil, which is a mixture of residual oil generated in the oil refining process with some light oil for viscosity adjustment, is used.
As a result, the quality of the engine deteriorates, causing a combustion failure of the main engine and an air pollution problem. [0003] Therefore, in order to improve such a problem, it is necessary to burn the fuel based on the properties of the fuel so as to obtain an optimal operating state suitable for the situation. [0004] However, in order to indicate the optimum operating state of the engine based on the properties of the fuel, various types of fuels of various properties were previously determined using an actual diesel engine. It is necessary to set a combustion condition and conduct a wide-angle combustion experiment.In that case, not only is it labor and cost intensive, but also about the combustion experiment of heavy fuel oil C with a large marine diesel engine, the pollution regulation land There is a problem that the experiment is difficult. For this reason, there is a demand for the development of a technology that can easily obtain the results of combustion experiments for all types of fuels, but at present it has not been developed. Accordingly, the present invention provides a diesel engine in which combustion of a diesel engine is simulated by employing various simplified models to easily indicate the optimum operating state of the engine according to the properties of the fuel. It is intended to provide a combustion simulation method. SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an engine shape, fuel injection timing, cooling water temperature, scavenging temperature, and water mixing ratio of a target diesel engine. First, based on the various existing values such as the above parameters and the analysis values of the target fuel, the fuel droplets are first divided into a liquid combustion component / water evaporation layer, a water evaporation layer, and a solid carbon surface combustion layer.
Calculate the evaporation of the fuel droplets in two layers, then calculate the flame propagation, and further calculate the heat release rates for the four items of fuel droplet evaporation, premixed combustion, diffusion combustion, and residual carbon combustion. A combustion simulation method for a diesel engine is characterized in that a total heat release rate is obtained by calculation and the result is output. Since the evaporation of the droplet is calculated by dividing the fuel droplet into three layers, the amount of fuel evaporation, the amount of water evaporation, the amount of carbon combustion, and the like can be accurately obtained. After the flame propagation is calculated, the total heat release rate is calculated by calculating the four items of fuel droplet evaporation, premixed combustion, diffusion combustion, and residual carbon combustion, so that a value very close to the measured value is obtained. Can be An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a flow chart for carrying out the method for simulating combustion of a diesel engine according to the present invention, wherein a computer such as a personal computer is used to analyze a target fuel among various fuel analysis values stored in a database. The analysis values and various existing values of the target engine (engine shape, fuel injection timing (FQS), cooling water temperature, scavenging temperature,
Parameters of the water mixing ratio into the fuel)
Calculate the evaporation of the fuel droplets, then calculate the flame propagation,
Next, the total heat release rate is calculated by calculating the heat release rates for the four items of droplet evaporation, premixed combustion, diffusion combustion, and residual carbon combustion, and further, the calculation of NOx generation and the calculation of soot generation In addition, the wall temperature of the combustion chamber is determined, and the net heat generation rate is obtained and displayed on a display for output. In addition, the program for each of the above calculations is loaded as software on a hard disk or a substrate. The details will be described below. First, as step 1, the engine specifications,
Various existing values, such as physical property values and initial values, are read. Thereafter, as step 2, the analysis values of the target fuel are read. Next, in step 3, the scavenging pressure and temperature from the bottom dead center to the closing of the exhaust valve are fixed, and then in step 4, the pressure and temperature in the cylinder from the closing of the exhaust valve to the start of fuel injection are calculated. I do. Next, as a step 5 which is a feature of the present invention, from the start to the end of the fuel injection, the fuel analysis value and the existing values of the engine shape, fuel injection timing, jacket cooling temperature, scavenging temperature, fuel Predetermined calculation is performed as follows based on the parameters of the water mixing ratio and the like. That is, FIG. 2 shows an evaporation model of a fuel droplet. At this time, the droplet is composed of a first layer as a liquid combustion component / water evaporation layer, a second layer as a water evaporation layer, and a second layer as a water evaporation layer. Consider three layers, the third layer as a solid carbon surface combustion layer. The droplets are always spherical and the evaporation of liquid fuel and water follows the formula: ## EQU1 ## Here, D d is the droplet diameter, and k f is the evaporation coefficient. The diameter of the solid carbon content is reduced by surface combustion represented by the following formula. M c ′ = k s P 02 (2) where k s is a surface reaction rate constant and P 02 is an oxygen partial pressure. The unburned amount of the combustion that has not been completed when the exhaust valve is opened is defined as a combustion residue. FIG. 3 shows a spray combustion model, in which a group of droplets injected at each calculation step is defined as a fuel spray unit.
It is assumed that evaporation and burning of droplets occur only in the unit. The combustion gases in the unit diffuse instantaneously and mix with the surrounding gases. The reach of the spray is calculated from the following equation, assuming that the momentum in the unit at the time of injection is preserved. Momentum of fuel at the time of injection = Momentum of droplet + Momentum of gas in unit ... (3) When combustion starts at the spray tip, a flame surface due to premix combustion propagates to the upstream side. At this time, the combustion speed of the premixed gas is calculated by the following equation. ## EQU2 ## However, s u0 is the burn rate of the reference pressure P 0 and the reference temperature T 0. The flame propagation speed is calculated as the difference between the speed of the fuel spray unit and the burning speed. After completion of the premixed combustion, the unit performs diffusion combustion according to the evaporation rule. For the generation of NOx, an extended Zeldovich mechanism shown in the following equation was adopted. [Equation 3] The reaction rate is calculated by the following equation. Here, the molar concentration of the species A is represented by [A], and the reaction rate constant is represented by k. The chemical equilibrium concentration in the unit is used for the concentration of the chemical species. [Mathematical formula-see original document] After the reaction, the gas inside and outside the unit is instantaneously mixed by mutual diffusion. On the other hand, soot formation and oxidation are described by an Arrhenius type reaction equation, and the actual amount of formation is calculated by the following equation as the difference between the two. (Equation 5) To determine the temperature of the combustion chamber wall surface, the combustion chamber wall surface is divided into three parts, a cylinder cover, a liner, and a piston, and a quasi-stationary heat transfer calculation is performed by giving a cooling water inlet temperature and a flow rate. Thereby, the cooling water outlet temperature and the combustion chamber wall surface temperature of each part are calculated. The Wosni equation was used for the wall heat transfer coefficient. Further, the net heat release rate in the cylinder is calculated by the following equation. (Equation 6) However, the first to third terms on the right side represent heat generation by premixed combustion, diffusion combustion, and solid carbon combustion, respectively.
The terms are heat loss due to fuel evaporation and water evaporation, respectively, and the sixth term on the right side is wall heat loss. When step 5 is completed as described above,
Next, in Step 6, the pressure and temperature in the cylinder from the end of combustion to the opening of the exhaust valve are calculated. Subsequently, in Step 7, linear approximation of the pressure in the cylinder from the opening of the exhaust valve to the opening of the scavenging port, and the calculation in the cylinder are performed. The temperature is calculated, and in step 8, the pressure in the cylinder from the scavenging port opening to the bottom dead center is fixed, and the temperature in the cylinder is linearly approximated. The results of these simulations are shown in FIG.
Is displayed on a display as shown in FIG. In FIG. 4, A indicates the cylinder pressure, B indicates the cylinder temperature, C indicates the calculated value of the heat release rate as a predicted value, and D indicates the actual measured value of the cylinder pressure. Results were obtained. The present invention is not limited to marine diesel engines, but can simulate the combustion of diesel engines used in various fields, and can make various changes without departing from the gist of the present invention. Of course. As described above, according to the combustion simulation method for a diesel engine of the present invention, the heat generation rate due to combustion is calculated based on the existing values of the target diesel engine and the analyzed values of the fuel. It is possible to easily determine the optimal operating condition of the diesel engine according to the properties of the fuel without conducting a combustion experiment with an actual machine, and it is particularly difficult to perform an experiment on land with pollution regulations. An excellent effect is exhibited in that it is easy to carry out heavy fuel oil C by a large marine diesel engine.

【図面の簡単な説明】 【図1】本発明のディーゼル機関の燃焼シミュレーショ
ン方法のフローチャートである。 【図2】燃料液滴の蒸発モデルを示す概略図である。 【図3】燃料の噴霧燃焼モデルを示す概略図である。 【図4】得られた結果の一例を示すシミュレーション出
力図である。 【符号の説明】 1 ステップ1 2 ステップ2 3 ステップ3 4 ステップ4 5 ステップ5 6 ステップ6 7 ステップ7 8 ステップ8
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart of a combustion simulation method for a diesel engine according to the present invention. FIG. 2 is a schematic diagram showing an evaporation model of a fuel droplet. FIG. 3 is a schematic diagram showing a fuel spray combustion model. FIG. 4 is a simulation output diagram showing an example of the obtained result. [Description of Signs] 1 Step 1 2 Step 2 3 Step 3 4 Step 4 5 Step 5 6 Step 6 7 Step 7 8 Step 8

フロントページの続き (72)発明者 中島 利幸 東京都江東区豊洲二丁目1番1号 石川 島播磨重工業株式会社 東京第一工場内 (56)参考文献 特表 平3−504042(JP,A) (58)調査した分野(Int.Cl.7,DB名) G06F 17/00 G01M 15/00 Continuation of front page (72) Inventor Toshiyuki Nakajima 2-1-1, Toyosu, Koto-ku, Tokyo Ishikawa Shima-Harima Heavy Industries Co., Ltd. Tokyo 1st Factory (56) References 58) Fields surveyed (Int. Cl. 7 , DB name) G06F 17/00 G01M 15/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 対象となるディーゼル機関の各種既存値
と対象となる燃料の分析値を基に、先ず、燃料液滴を液
体燃焼成分・水分蒸発層と水分蒸発層と固体炭素表面燃
焼層との3つの層に分けて燃料液滴の蒸発を計算し、次
に、火炎伝播を計算し、更に、燃料液滴の蒸発、予混合
燃焼、拡散燃焼、残留炭素燃焼の4項目についての熱発
生率を計算してトータル的な熱発生率を求め、その結果
を出力させるようにすることを特徴とするディーゼル機
関の燃焼シミュレーション方法。
(57) [Claims] [Claim 1] First, based on various existing values of a target diesel engine and analysis values of a target fuel, a fuel droplet is first formed into a liquid combustion component / moisture evaporating layer and water. Calculate the evaporation of fuel droplets in three layers, evaporating layer and solid carbon surface combustion layer, then calculate flame propagation, further evaporate fuel droplets, premix combustion, diffusion combustion, residual combustion A combustion simulation method for a diesel engine, wherein a total heat release rate is calculated by calculating heat release rates for four items of carbon combustion, and the result is output.
JP19883593A 1993-07-19 1993-07-19 Diesel engine combustion simulation method Expired - Fee Related JP3383874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19883593A JP3383874B2 (en) 1993-07-19 1993-07-19 Diesel engine combustion simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19883593A JP3383874B2 (en) 1993-07-19 1993-07-19 Diesel engine combustion simulation method

Publications (2)

Publication Number Publication Date
JPH0734894A JPH0734894A (en) 1995-02-03
JP3383874B2 true JP3383874B2 (en) 2003-03-10

Family

ID=16397712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19883593A Expired - Fee Related JP3383874B2 (en) 1993-07-19 1993-07-19 Diesel engine combustion simulation method

Country Status (1)

Country Link
JP (1) JP3383874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860380A4 (en) * 2012-06-08 2016-01-06 Toyota Motor Co Ltd Device for diagnosing combustion states in internal combustion engines

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464585B1 (en) * 1997-11-20 2002-10-15 Nintendo Co., Ltd. Sound generating device and video game device using the same
JP4158747B2 (en) * 2004-06-28 2008-10-01 日産自動車株式会社 Ignition timing control device for internal combustion engine
JP4424242B2 (en) 2005-03-30 2010-03-03 トヨタ自動車株式会社 Mixture state estimation device and emission generation amount estimation device for internal combustion engine
JP5413874B2 (en) * 2008-08-01 2014-02-12 学校法人立命館 Combustion analysis method, combustion analysis apparatus, and computer program
US8353196B2 (en) 2008-09-24 2013-01-15 Toyota Jidosha Kabushiki Kaisha Gas-mixture-nonuniformity acquisition apparatus and gas-mixture-state acquisition apparatus for internal combustion engine
JP5330932B2 (en) * 2009-08-24 2013-10-30 富士重工業株式会社 Spray measurement method and spray measurement device
JP6813163B2 (en) * 2016-04-25 2021-01-13 国立研究開発法人 海上・港湾・航空技術研究所 Fuel evaporation process analysis method, evaporation process analysis program and fuel injection control system using it
CN107269408B (en) * 2017-05-15 2022-08-05 吉林大学 Diesel engine optimized combustion controller and simulation model control method
CN108998112B (en) * 2018-07-20 2020-09-25 太原理工大学 F-T diesel oil characterization fuel skeleton mechanism model construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860380A4 (en) * 2012-06-08 2016-01-06 Toyota Motor Co Ltd Device for diagnosing combustion states in internal combustion engines

Also Published As

Publication number Publication date
JPH0734894A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
Duclos et al. 3D modeling of combustion for DI-SI engines
JP3383874B2 (en) Diesel engine combustion simulation method
Karaky et al. Development and validation of a new zero-dimensional semi-physical NOx emission model for a DI diesel engine using simulated combustion process
Ismail et al. Numerical investigations on the performance and emissions of a turbocharged engine using an ethanol-gasoline blend
Subramanian et al. New developments in turbulent combustion modeling for engine design: ECFM-CLEH combustion submodel
Puduppakkam et al. Accurate and dynamic accounting of fuel composition in flame propagation during engine simulations
Bordet et al. A physical 0D combustion model using tabulated chemistry with presumed probability density function approach for multi-injection diesel engines
Oppenheim et al. Refinement of heat release analysis
Krenn et al. A new approach for combustion modeling of large dual-fuel engines
Regner et al. Analysis of transient drive cycles using CRUISE-BOOST co-simulation techniques
Murthy et al. Modeling and prediction of NOx emission in an LPG–diesel dual‐fuel CI engine
Chan et al. Prediction of transient nitric oxide in diesel exhaust
Falfari et al. Hydrogen Application as a Fuel in Internal Combustion Engines. Energies 2023, 16, 2545
Leman et al. Engine modelling of a single cylinder diesel engine fuelled by diesel-methanol blend
Alizadeh Attar Optimization and knock modeling of a gas fueled spark ignition engine.
Bozza et al. Experimental investigation and numerical modelling of an advanced turbocharged DI diesel engine
Subramanian et al. Modeling engine turbulent auto-ignition using tabulated detailed chemistry
Karaky et al. Semi-empirical 0D modeling for engine-out soot emission prediction in DI diesel engines
Tavakoli et al. Natural gas engine thermodynamic modeling concerning offshore dynamic condition
Poetsch et al. A Real-Time Capable and Modular Modeling Concept for Virtual SI Engine Development
Tromellini Investigation of post-oxidation by means of 3D-CFD virtual engine development
Liu et al. Numerical Investigation of Different Combustion Models for Dual‐Fuel Engine Combustion Processes
Bohbot et al. Multiscale engine simulations using a coupling of 0-d/1-dmodel with a 3-d combustion code
Held et al. A 3D computational study of the formation, growth and oxidation of soot particles in an optically accessible direct-injection spark-ignition engine using quadrature-based methods of moments
Schnapp et al. A Phenomenological Unburned Hydrocarbon Model for Diesel Engines

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees