JP3379642B2 - Hazardous substance stabilization method using zeolite - Google Patents

Hazardous substance stabilization method using zeolite

Info

Publication number
JP3379642B2
JP3379642B2 JP2000054258A JP2000054258A JP3379642B2 JP 3379642 B2 JP3379642 B2 JP 3379642B2 JP 2000054258 A JP2000054258 A JP 2000054258A JP 2000054258 A JP2000054258 A JP 2000054258A JP 3379642 B2 JP3379642 B2 JP 3379642B2
Authority
JP
Japan
Prior art keywords
zeolite
pores
adsorbed
solution
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000054258A
Other languages
Japanese (ja)
Other versions
JP2001238980A (en
Inventor
修司 野田
隆信 塩村
仁一 小川
直人 今若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
Original Assignee
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture filed Critical Shimane Prefecture
Priority to JP2000054258A priority Critical patent/JP3379642B2/en
Publication of JP2001238980A publication Critical patent/JP2001238980A/en
Application granted granted Critical
Publication of JP3379642B2 publication Critical patent/JP3379642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は多孔質鉱物、特に
ゼオライトを用いた有害物質の安定化処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of stabilizing harmful substances using porous minerals, especially zeolite.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来知
られている有害重金属含有物質、放射性物質その他の有
害物質の安定化処理方法としては、溶融ガラス化、セメ
ント固化、化学的薬剤処理が主流である。これらの方法
の特徴と問題点は以下のとおりである。
2. Description of the Related Art As a known stabilization treatment method for harmful heavy metal-containing substances, radioactive substances and other harmful substances, conventionally known are melt vitrification, cement solidification and chemical treatment. Is. The features and problems of these methods are as follows.

【0003】(1)溶融ガラス化:有害重金属含有物質
等を1500℃以上の高温で溶融後に冷却してガラス固
化体として安定化する方法。この方法は溶出性は極めて
低いが、ガラス化に多量のエネルギーを要する点と高温
の溶融処理の過程で揮発性の有害重金属が、気化拡散す
るのが問題である。
(1) Molten vitrification: A method of stabilizing a vitrified body by melting a substance containing a harmful heavy metal at a high temperature of 1500 ° C. or higher and then cooling it. Although this method has a very low elution property, it has a problem that a large amount of energy is required for vitrification and that a volatile harmful heavy metal is vaporized and diffused during the high temperature melting process.

【0004】(2)セメント固化:有害重金属含有物質
等をセメントモルタル中に練り混み安定化させる方法。
この方法は有害物質の体積が余り減少しないほか、セメ
ントモルタルの経年劣化により溶出性の抑止効果が長期
間に渡って保証できない点で問題がある。
(2) Cement solidification: A method in which harmful heavy metal-containing substances and the like are kneaded into cement mortar and stabilized.
This method is problematic in that the volume of harmful substances is not reduced so much and that the effect of suppressing dissolution is not guaranteed over a long period of time due to deterioration of cement mortar over time.

【0005】(3)化学的薬剤処理:キレート剤等の化
学薬品で処理することにより、有害重金属を溶出性の少
ない化学的に安定な形態にして固化する方法。この方法
は薬剤コストがかさむほか、比較的短期間で化学的安定
性が損なわれ溶出性の抑止効果が継続しない点に問題が
ある。
(3) Chemical agent treatment: A method of treating harmful chemicals with a chemical such as a chelating agent to solidify harmful heavy metals into a chemically stable form with little elution. This method has a problem in that the cost of the drug is high, and the chemical stability is impaired in a relatively short period of time, and the effect of suppressing the dissolution is not continued.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めの本発明の方法は第1に、ゼオライトの結晶構造中の
細孔内に有害物質を取り込み、上記結晶の内部構造を保
持した状態で前記細孔の開口部を閉塞することにより有
害物質をゼオライト細孔内に封入することを特徴とす
る。
The method of the present invention for solving the above-mentioned problems is as follows. First, a state in which a harmful substance is incorporated into pores in the crystal structure of zeolite and the internal structure of the crystal is retained. The toxic substance is enclosed in the zeolite pores by closing the opening of the pores.

【0007】第2に開口部の閉塞をゼオライト表面を加
熱焼成することによって行うことを特徴とする。
Secondly, the opening is closed by heating and calcining the zeolite surface.

【0008】第3に加熱焼成を約800℃〜1000℃
の比較的低温域で行うことを特徴とする。
Third, heating and baking is performed at about 800 ° C to 1000 ° C.
It is characterized in that it is performed in a relatively low temperature range.

【0009】[0009]

【発明の実施の形態】本発明においては、ゼオライトの
結晶構造中の細孔内に、イオン交換作用等により有害重
金属を取り込み、そのゼオライトを例えば800℃〜1
000℃程度の比較的低温で加熱焼成する。それによ
り、結晶内部のゼオライトの細孔構造を保持したまま細
孔の出入り口のみを閉鎖して、有害重金属をゼオライト
の細孔内に封入し、安定な形で無害化するものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, harmful heavy metals are taken into the pores in the crystal structure of zeolite by an ion exchange action or the like, and the zeolite is heated to, for example, 800 ° C to 1 ° C.
It is heated and baked at a relatively low temperature of about 000 ° C. As a result, only the entrance and exit of the pores are closed while maintaining the pore structure of the zeolite inside the crystal, and harmful heavy metals are enclosed in the pores of the zeolite to render it harmless in a stable form.

【0010】一般にゼオライト内には、結晶構造に起因
するトンネル状で、直径数オングストロームの細孔が多
数存在し、その細孔内でイオン交換作用、ガス吸着作
用、分子ふるい、触媒作用等の機能が発現されることが
知られている。
In general, a large number of pores having a diameter of several angstroms are present in a zeolite due to the crystal structure, and the pores have functions such as ion exchange, gas adsorption, molecular sieving and catalytic action. Is known to be expressed.

【0011】また、ゼオライトのうちでも、天然ゼオラ
イトは一般的に同一方向に伸びる、トンネル状の細孔が
並列しており、トンネル間の横の連絡路はない。これに
対し、合成ゼオライトでは、トンネル間の横の連絡路が
存在する。従って、本方法に特有の細孔の出入り口を閉
鎖することによる安定化と言う観点からは、天然ゼオラ
イトの方がより適していると言える。
Among the zeolites, natural zeolites generally have tunnel-shaped pores extending in the same direction and arranged in parallel, and there is no lateral communication path between the tunnels. On the other hand, in synthetic zeolite, there is a lateral connecting path between the tunnels. Therefore, it can be said that the natural zeolite is more suitable from the viewpoint of stabilization by closing the entrance and exit of the pores peculiar to this method.

【0012】尚、本発明における安定化処理とは、水中
及び高濃度塩溶液中あるいは、酸、アルカリ溶液中に浸
漬しても、有害重金属等の有害物質が溶出しない状態に
することを言う。安定化すれば、管理型の廃棄物処理場
における埋め立て処分が可能となる。
The stabilization treatment in the present invention means a state in which harmful substances such as harmful heavy metals do not elute even when immersed in water, a high-concentration salt solution, or an acid or alkali solution. Once stabilized, landfill disposal at a managed waste treatment plant becomes possible.

【0013】[0013]

【実施例】次に天然ゼオライトである島根県産のモルデ
ナイトを用いてPbの安定化処理をおこなった事例につ
いて詳述する。
EXAMPLES Next, a detailed description will be given of a case where Pb is stabilized by using mordenite, which is a natural zeolite produced in Shimane Prefecture.

【0014】先ずガラス製円筒形カラム(直径30m
m,長さ300mm)に0.75〜1.5mm粒径のN
a型モルデナイト(ゼオライト重量85g,充填体積9
0ml)を充填した。
First, a glass cylindrical column (diameter 30 m
m, length 300 mm) and N of 0.75-1.5 mm particle size
a-type mordenite (zeolite weight 85g, filling volume 9
0 ml).

【0015】続いてこのカラムにPb含有量1035m
g/lの溶液を通水して、カラム通過後の溶液のPb含
有量を連続的に計測した。この時のカラム温度は室温、
溶液の流速は30ml/minである。
Subsequently, the Pb content in this column was 1035 m.
After passing through the solution of g / l, the Pb content of the solution after passing through the column was continuously measured. The column temperature at this time is room temperature,
The flow rate of the solution is 30 ml / min.

【0016】上記カラム通過後の溶液中のPb含有量
は、溶液の累積送液量が約30CV(カラム体積CVの
30倍=2700ml)までは検出限界以下であり、約
60CV(カラム体積CVの60倍=5400ml)ま
では原溶液のPb含有量の1/20以下であった(図1参
照)。
The Pb content in the solution after passing through the column is below the detection limit up to about 30 CV (30 times the column volume CV = 2700 ml) of the cumulative solution delivery volume, and about 60 CV (column volume CV). Up to 60 times = 5400 ml), it was 1/20 or less of the Pb content of the stock solution (see Fig. 1).

【0017】以上により、溶液中のPbはイオン交換作
用によりモルデナイト中に捕捉されることが確認でき
た。このような手法により溶液相の有害重金属のゼオラ
イト中への捕捉が可能であることも確認できた。また、
粉末状固体中の有害重金属は、その酸による抽出液をゼ
オライトカラムに通水する方法、あるいは少量の水を添
加して重金属含有粉末とゼオライト粒を混練攪拌する方
法等によりゼオライト中への捕捉が可能である。
From the above, it was confirmed that Pb in the solution was trapped in the mordenite by the ion exchange action. It was also confirmed that it is possible to capture harmful heavy metals in the solution phase in the zeolite by such a method. Also,
The harmful heavy metals in the powdery solid can be captured in the zeolite by a method of passing the extract solution by the acid through a zeolite column, or a method of adding a small amount of water and kneading and stirring the heavy metal-containing powder and the zeolite particles. It is possible.

【0018】上記のようにこのPbを捕捉したゼオライ
ト粒を、電気炉により加熱処理して溶出性を確認した結
果は、表1のとおりであった(図8,図9参照)。ただ
し、表1中の結果はゼオライト中のPb含有量に対する
溶出率(%)で表示してある。
As shown in Table 1, the results of confirming the elution properties of the zeolite particles trapped with Pb as described above by heat treatment in an electric furnace (see FIGS. 8 and 9). However, the results in Table 1 are shown as the elution rate (%) with respect to the Pb content in the zeolite.

【0019】[0019]

【表1】加熱処理温度の変化によるPb溶出率の変化
(単位:%) 溶出条件:温度=室温,溶出時間=96時間 固/液比=1/50(g/ml),連続振とう攪拌
[Table 1] Change in Pb elution rate due to change in heat treatment temperature (unit:%) Elution conditions: temperature = room temperature, elution time = 96 hours solid / liquid ratio = 1/50 (g / ml), continuous shaking and stirring

【0020】なお、溶出試験に用いたゼオライト中のP
b含有量は非加熱処理物で10.63wt%であり,90
0℃加熱処理物は10.69wt%であった。したがって、加
熱焼成処理の過程におけるPb成分の揮発拡散は認めら
れなかった。
The P in the zeolite used for the dissolution test
b content is 10.63 wt% in the non-heat treated product, 90
The 0 ° C. heat-treated product was 10.69 wt%. Therefore, volatilization and diffusion of the Pb component was not observed in the process of heating and baking.

【0021】以上から、イオン交換作用でPbを捕捉し
たゼオライトからのPbの溶出は1000℃程度の加熱
処理により、極めて低減化され安定化処理が達成できる
ことが確認された。
From the above, it was confirmed that the elution of Pb from the zeolite that has captured Pb by the ion exchange action is extremely reduced by the heat treatment at about 1000 ° C. and the stabilization treatment can be achieved.

【0022】次に個別実施例における各種データに関す
る図面の説明とその評価について詳述する。 [図1]Pb交換破過曲線 島根県内産ゼオライトであるオクタゼオ(オクタゼオラ
イト)とイズカライトを試料として、Pbの吸着能力を
評価した。Pb溶液濃度=1035ppm,温度=室
温,溶液流速=30ml/minの条件でカラム実験をおこな
った。
Next, the description of the drawings and the evaluation thereof for various data in the individual embodiments will be described in detail. [FIG. 1] Pb exchange breakthrough curve The adsorption capacity of Pb was evaluated using octazeo (octazeolite) and Izcalite, which are zeolites produced in Shimane Prefecture, as samples. A column experiment was conducted under the conditions of Pb solution concentration = 1035 ppm, temperature = room temperature, and solution flow rate = 30 ml / min.

【0023】カラム通過後の溶液中のPb濃度が原溶液
の1/20(C/C0=0.05)以下であれば、ゼオライトにPb
が吸着されて除去できると判定した。この判定基準で2
種類のゼオライトのPb除去能力を評価すると、オクタ
ゼオはカラム体積の30倍量,イズカライトはカラム体
積の60倍量の溶液の処理が可能で、いずれのゼオライ
トもPb溶液に関しては高い吸着能力を有していた。
If the Pb concentration in the solution after passing through the column is 1/20 (C / C0 = 0.05) or less of the original solution, Pb is added to the zeolite.
Was determined to be adsorbed and removed. 2 according to this criterion
Evaluating the Pb removal capacity of each type of zeolite, octazeo can treat a solution with a volume 30 times the column volume and Izcalite with a volume 60 times the column volume. Was there.

【0024】[図2]Cs交換破過曲線 図1と同様に溶液中の重金属がCsである場合の吸着能
力を評価した。Cs溶液濃度=2125ppm,温度=
室温,溶液流速=30ml/minの条件でカラム実験をおこ
なった。オクタゼオ,イズカライトともにカラム体積の
約50倍量の溶液の処理が可能で、いずれのゼオライト
もCs溶液に関して高い吸着能力を有していた。
[FIG. 2] Cs exchange breakthrough curve As in FIG. 1, the adsorption capacity was evaluated when the heavy metal in the solution was Cs. Cs solution concentration = 2125 ppm, temperature =
A column experiment was conducted under the conditions of room temperature and solution flow rate = 30 ml / min. Both octazeo and Izcalite were capable of treating a solution having a volume of about 50 times the column volume, and all the zeolites had a high adsorption capacity for the Cs solution.

【0025】[図3]Sr交換破過曲線 図1,2と同様に溶液中の重金属がSrである場合の吸
着能力を評価した。Sr溶液濃度=769ppm,温度
=室温,溶液流速=30ml/minの条件でカラム実験をお
こなった。オクタゼオはカラム体積の10倍量,イズカ
ライトはカラム体積の20倍量の溶液の処理が可能で、
いずれのゼオライトもSr溶液に関してはある程度の吸
着能力を有していた。
[FIG. 3] Sr exchange breakthrough curve Similar to FIGS. 1 and 2, the adsorption capacity when the heavy metal in the solution was Sr was evaluated. A column experiment was conducted under the conditions of Sr solution concentration = 769 ppm, temperature = room temperature, and solution flow rate = 30 ml / min. Octazeo can treat 10 times the column volume and Izcalite can treat 20 times the column volume.
All the zeolites had a certain adsorption capacity for the Sr solution.

【0026】[図4]イズカライトの加熱によるX線回折
パターンの変化 Csを吸着したイズカライトを加熱処理した場合のX線
回折パターンの変化を示す。加熱処理温度が上昇するに
つれて、ゼオライト鉱物であるモルデナイト結晶のピー
ク強度が次第に減少する。そして、加熱処理温度が10
00℃以下ではモルデナイトのピークが残存している
が、1100℃以上の加熱処理でモルデナイトのピーク
は消滅する。つまり、Csを吸着したイズカライトは、
1000℃以上に加熱すると完全にゼオライトの結晶構
造が崩壊する。
[Fig. 4] Change in X-ray diffraction pattern due to heating of Izucarite [0027] Fig. 4 shows a change in X-ray diffraction pattern when Izucarite adsorbing Cs is heat-treated. As the heat treatment temperature increases, the peak intensity of the mordenite crystal, which is a zeolite mineral, gradually decreases. The heat treatment temperature is 10
The mordenite peak remains at 00 ° C or lower, but the mordenite peak disappears by the heat treatment at 1100 ° C or higher. In other words, Izcalite that adsorbed Cs is
When heated to 1000 ° C or higher, the crystal structure of zeolite is completely destroyed.

【0027】[図5]加熱によるX線回折ピーク強度の変
化 Pb,Cs,Srを吸着したオクタゼオとイズカライト
について、加熱にともなうゼオライト結晶のX線回折の
ピーク強度の変化を示す。いずれも800〜1000℃
前後の加熱処理によりゼオライト結晶のピーク強度は0
となり、完全にゼオライト構造が崩壊する。ただし、結
晶崩壊の温度は、ゼオライトの種類や吸着している重金
属イオンの種類により多少異なる。
[Fig. 5] Change in X-ray diffraction peak intensity due to heating The change in peak intensity of X-ray diffraction of zeolite crystals due to heating is shown for octazeo and Izcalite adsorbing Pb, Cs, and Sr. All are 800-1000 ℃
Zeolite crystal peak intensity is 0 by heat treatment before and after
And the zeolite structure collapses completely. However, the temperature of crystal collapse differs slightly depending on the type of zeolite and the type of heavy metal ions adsorbed.

【0028】[図6]Cs吸着イズカライトの加熱による
細孔分布の変化 Csを吸着したイズカライトについて、加熱処理にとも
なうゼオライト細孔の分布状態の変化を示す。なお、測
定は、アルゴンガス吸着法によりおこなった。
[Fig. 6] Change in pore distribution of Cs-adsorbed Izcalite by heating The change in the distribution of zeolite pores due to heat treatment of Cs-adsorbed Izucarite is shown. The measurement was performed by the argon gas adsorption method.

【0029】直径7オングストローム程度のゼオライト
細孔の量が加熱とともに減少して、900℃以上の加熱
処理ではほとんど0になる。しかし、図4に示すX線回
折の結果によると、900℃の加熱処理ではまだゼオラ
イト結晶のピークは残存しており完全には結晶が崩壊し
ていない。つまり、ゼオライトの結晶が崩壊する温度よ
り低温で、ゼオライト中の細孔量は0となる。
The amount of zeolite pores having a diameter of about 7 angstroms decreases with heating, and becomes almost zero in the heat treatment at 900 ° C. or higher. However, according to the result of X-ray diffraction shown in FIG. 4, the peak of the zeolite crystal still remains after the heat treatment at 900 ° C., and the crystal is not completely collapsed. That is, the amount of pores in the zeolite becomes 0 at a temperature lower than the temperature at which the zeolite crystals collapse.

【0030】これは、加熱処理によりゼオライト細孔の
両端の出入り口が閉鎖された結果、結晶構造的にはゼオ
ライトが残存しているが、細孔量が0になったと推定さ
れる。そして、ゼオライト中の細孔の両端が閉鎖されて
細孔内部に吸着された重金属は、アンプル状の細孔中に
封入された状態になっていると考えられる。
It is presumed that, as a result of the heat treatment closing the entrances and exits at both ends of the zeolite pores, the zeolite remained in terms of crystal structure, but the pore amount became 0. It is considered that the both ends of the pores in the zeolite are closed and the heavy metal adsorbed inside the pores is in a state of being enclosed in the ampoule-shaped pores.

【0031】[図7]Pb吸着したゼオライトの加熱にと
もなうCEC等の変化Pb吸着したオクタゼオ,イズカ
ライトについて、加熱処理温度の変化によるCEC,N
4交換性Pb,固体ゼオライト中Pb量の変化を示
す。加熱により固体ゼオライト中のPb量はほとんど変
化しないが、CEC,NH4交換性Pbは次第に減少し
て0になる。
[FIG. 7] Changes in CEC and the like due to heating of Pb-adsorbed zeolite For octazeo and Izcalite adsorbed Pb, CEC and N due to changes in heat treatment temperature
The change of H 4 exchangeable Pb and Pb amount in solid zeolite is shown. Although the amount of Pb in the solid zeolite hardly changes by heating, the CEC and NH 4 exchangeable Pb gradually decrease to 0.

【0032】つまりゼオライト中のPbは加熱処理によ
っても揮発することはなく、また溶出しにくくなりゼオ
ライト細孔中に安定に封入された状態となる。なお、固
体ゼオライト中のPb量の精密測定の結果では、非加熱
処理物と1100℃加熱処理物中のPb量の差は含有量
の0.2%以内であった。
That is, Pb in the zeolite is not volatilized even by the heat treatment, is hard to elute, and is stably encapsulated in the zeolite pores. As a result of precise measurement of the amount of Pb in the solid zeolite, the difference in the amount of Pb between the non-heat-treated product and the 1100 ° C heat-treated product was within 0.2% of the content.

【0033】[図8]Pb吸着したゼオライトの酸に対す
る溶出性 pH4の酸溶液に浸漬した場合の溶出性を示す。もとも
と未処理であってもほとんどPbは溶出しないが、10
00℃程度の加熱処理を施すことにより溶出性は極めて
小さくなる。
[Fig. 8] Dissolution of Pb-adsorbed zeolite to acid The dissolution of the zeolite when immersed in an acid solution of pH 4 is shown. Almost no Pb elutes even if originally untreated, but 10
By subjecting to a heat treatment at about 00 ° C, the elution property becomes extremely small.

【0034】[図9]Pb吸着したゼオライトのアルカリ
に対する溶出性 pH10のアルカリ溶液に浸漬した場合の溶出性を示
す。未処理の場合は、多少Pbが溶出するが、900℃
程度の加熱処理を施すことにより溶出性はほとんど0に
なる。 [図10]Cs吸着したゼオライトの加熱にともなうCEC
等の変化 [図11]Cs吸着したゼオライトの酸に対する溶出性 [図12]Cs吸着したゼオライトのアルカリに対する溶出
[FIG. 9] Dissolution of Pb-adsorbed zeolite to alkali The dissolution of the zeolite when immersed in an alkaline solution having a pH of 10 is shown. When untreated, some Pb elutes, but 900 ° C
The elution property becomes almost 0 by performing a heat treatment to a degree. [Figure 10] CEC accompanying heating of zeolite adsorbed with Cs
Etc. [Fig. 11] Elution of Cs-adsorbed zeolite to acid [Fig. 12] Elution of Cs-adsorbed zeolite to alkali

【0035】図7〜9において対象重金属がCsの場合
の結果。Csについては、加熱処理をおこなっても1/10
%オーダーの溶出性があり、完全に安定化するのは難し
い。 [図13]Sr吸着したゼオライトの加熱にともなうCEC
等の変化 [図14]Sr吸着したゼオライトの酸に対する溶出性 Sr吸着したゼオライトのアルカリに対する溶出性は、
オクタゼオ、イズカライト共に全試料について検出限界
以下であったため図示を省略した。
Results obtained when the target heavy metal is Cs in FIGS. Cs is 1/10 even if it is heat-treated
It has a% order of dissolution and is difficult to completely stabilize. [Figure 13] CEC with heating of Sr-adsorbed zeolite
Etc. [Fig. 14] Dissolution of Sr-adsorbed zeolite to acid The dissolution of Sr-adsorbed zeolite to alkali is
Both octazeo and Izcalite were below the detection limit for all samples, so illustration is omitted.

【0036】図7〜9において対象重金属がSrの場合
の結果。Srについては、800℃程度の加熱処理をお
こなうと溶出性がなくなり、完全に安定化できる。
Results when the target heavy metal is Sr in FIGS. When Sr is heat-treated at about 800 ° C., the dissolution property disappears and it can be completely stabilized.

【0037】[適用可能な分野および波及効果]以下に示
した本発明の方法は、例示した有害重金属以外にも例え
ば800℃〜1000℃の熱に対しても一定の安定性を
もつ各種有害又は不要元素の安定化処理ができ、危険性
又は有害性をもつ放射性元素等の処理にも応用が可能で
あり、以下に述べる具体的な分野での利用が可能であ
る。また上記実施例では主としてイオン交換作用による
有害物質の取り込みについて説明したが、ゼオライトの
細孔内に封入できる分子の大きさであればイオン交換を
伴わない吸着への応用も可能である。
[Applicable Fields and Ripple Effects] In addition to the harmful heavy metals exemplified above, the method of the present invention is not limited to various harmful or stable metals having a certain stability against heat of 800 ° C. to 1000 ° C. It can stabilize unnecessary elements, can be applied to the treatment of radioactive elements that are dangerous or harmful, and can be used in the specific fields described below. Further, in the above-mentioned examples, the uptake of harmful substances by the ion exchange action was mainly described, but application to adsorption without ion exchange is also possible as long as the size of the molecule can be enclosed in the pores of zeolite.

【0038】(1)有害重金属を含有する廃液中の重金
属の濃縮と安定化が可能であるので、排水処理分野に適
用できる。 (2)産業廃棄物の焼却処理の過程で発生する、高濃度
に有害重金属を含有している、飛灰や焼却灰の安定化処
理が可能であるので、産業廃棄物処理業界に適用ができ
る。 (3)放射性廃液中の各種放射性核種の濃縮と安定化処
理が可能なので、原子力産業分野に適用できる。
(1) Since heavy metals in waste liquid containing harmful heavy metals can be concentrated and stabilized, it can be applied to the field of wastewater treatment. (2) It can be applied to the industrial waste treatment industry because it can stabilize fly ash and incineration ash generated in the process of incineration of industrial waste, which contains harmful heavy metals in high concentration. . (3) Since various radioactive nuclides in radioactive liquid waste can be concentrated and stabilized, they can be applied to the nuclear industry.

【0039】[0039]

【発明の効果】以上のように構成される本発明によれ
ば、以下に述べるような具体的効果を奏するものであ
る。
According to the present invention configured as described above, the following concrete effects are exhibited.

【0040】(1)ゼオライト結晶内の細孔の両端の出
入り口のみを閉鎖すれば良いので、有害物質の処理に当
たり溶融ガラス化処理に比べてはるかに低温である80
0℃〜1000℃程度の加熱処理で有害重金属の安定化
処理が可能である。
(1) Since it is sufficient to close only the entrances and exits of both ends of the pores in the zeolite crystal, the temperature of treatment of harmful substances is much lower than that of the molten vitrification treatment.
Stabilization of harmful heavy metals is possible by heat treatment at 0 ° C to 1000 ° C.

【0041】(2)低温処理であるため、エネルギーコ
ストが低減できる。
(2) Energy cost can be reduced because of low temperature treatment.

【0042】(3)低温処理であるため、既存の安定化
処理方法である溶融ガラス化において問題となっている
処理過程における揮発性有害重金属等の気化拡散を、極
めて低いレベルに抑えることができる。
(3) Since it is a low-temperature treatment, vaporization and diffusion of volatile harmful heavy metals and the like in the treatment process, which is a problem in the existing stabilization treatment method of molten vitrification, can be suppressed to an extremely low level. .

【0043】(4)ゼオライトの結晶構造中の細孔に有
害重金属等を封入するので、原子レベルの強固なカプセ
ル内への封じ込めとなり、高度な溶出性抑止効果が達成
できる。
(4) Since harmful heavy metals and the like are encapsulated in the pores in the crystal structure of zeolite, they are contained in a strong capsule at the atomic level, and a high dissolution inhibiting effect can be achieved.

【0044】(5)ゼオライト細孔は、直径数オングス
トロームと超微細であるので、通常の粉砕操作等の機械
的損傷により細孔が露出する可能性は皆無であり、半永
久的な安定化が期待できる。
(5) Since the zeolite pores are ultrafine with a diameter of several angstroms, there is no possibility that the pores will be exposed due to mechanical damage such as normal pulverization operation, and semipermanent stabilization is expected. it can.

【0045】(6)本方法と既存の安定化処理方法を複
合化させることにより、さらに高度な安定化が達成でき
る。つまり本方法を適用して、有害重金属等を吸着した
ゼオライトを加熱処理により安定化して、さらにそのゼ
オライトを既存の安定化処理方法であるガラス溶融処理
またはコンクリート固化処理すれば、化学的にも形状的
にも安定な形態とすることができる。
(6) By combining this method with the existing stabilization treatment method, a higher degree of stabilization can be achieved. In other words, applying this method to stabilize zeolite that has adsorbed harmful heavy metals, etc. by heat treatment, and further subjecting the zeolite to glass melting treatment or concrete solidification treatment, which is an existing stabilization treatment method, it is possible to chemically shape it. A stable form can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A),(B)は計測のレンジと濃度(C/Co)
軸の目盛り倍率を変えて表示したPb交換破過曲線を示
す。
[Figure 1] (A) and (B) are measurement range and concentration (C / Co)
The Pb exchange breakthrough curve displayed by changing the scale magnification of the axis is shown.

【図2】(A),(B)は計測のレンジと濃度(C/Co)
軸の目盛り倍率を変えて表示したCs交換破過曲線を示
す。
[Figure 2] (A) and (B) are measurement range and concentration (C / Co)
The Cs exchange breakthrough curve displayed by changing the scale magnification of the axis is shown.

【図3】(A),(B)は計測のレンジと濃度(C/Co)
軸の目盛り倍率を変えて表示したSr交換破過曲線を示
す。
[FIG. 3] (A) and (B) are measurement range and concentration (C / Co)
The Sr exchange breakthrough curve displayed by changing the scale magnification of the axis is shown.

【図4】イズカライトの加熱によるX線回折パターンの
変化を示す線図である。
FIG. 4 is a diagram showing a change in X-ray diffraction pattern due to heating of Izucarite.

【図5】(A),(B)はオクタゼオライトとイズカラ
イトの加熱によるX線回折ピーク強度の変化を示す図表
である。
5 (A) and 5 (B) are charts showing changes in X-ray diffraction peak intensity due to heating of octazeolite and Izcalite.

【図6】Cs吸着イズカライトの加熱による細孔分布の
変化を示す図表である。
FIG. 6 is a chart showing changes in pore distribution due to heating of Cs-adsorbed iscalite.

【図7】(A),(B)はPb吸着したオクタゼオライ
トとイズカライトの加熱にともなうCEC等の変化を示
す線図である。
7A and 7B are diagrams showing changes in CEC and the like accompanying heating of Pb-adsorbed octazeolite and Izcalite.

【図8】(A),(B)はPb吸着したオクタゼオライ
トとイズカライトの酸に対する溶出性を示す線図であ
る。
8 (A) and 8 (B) are diagrams showing the elution properties of Pb-adsorbed octazeolite and Izcalite for acids.

【図9】(A),(B)はPb吸着したオクタゼオライ
トとイズカライトのアルカリに対する溶出性を示す線図
である。
9 (A) and 9 (B) are diagrams showing the elution properties of Pb-adsorbed octazeolite and Izcalite to alkali.

【図10】(A),(B)はCs吸着したオクタゼオラ
イトとイズカライトの加熱にともなうCEC等の変化を
示す図表である。
10 (A) and (B) are charts showing changes in CEC and the like due to heating of Cs-adsorbed octazeolite and Izcalite.

【図11】(A),(B)はCs吸着したオクタゼオラ
イトとイズカライトの酸に対する溶出性を示す線図であ
る。
11 (A) and (B) are diagrams showing the elution properties of Cs-adsorbed octazeolite and Izcalite for acids.

【図12】(A),(B)はCs吸着したオクタゼオラ
イトとイズカライトのアルカリに対する溶出性を示す線
図である。
12 (A) and (B) are diagrams showing the elution properties of Cs-adsorbed octazeolite and Izcalite to alkali.

【図13】(A),(B)はSr吸着したオクタゼオラ
イトとイズカライトの加熱にともなうCEC等の変化を
示す線図である。
13A and 13B are diagrams showing changes in CEC and the like due to heating of Sr-adsorbed octazeolite and Izcalite.

【図14】(A),(B)はSr吸着したオクタゼオラ
イトとイズカゼオライトの酸に対する溶出性を示す線図
である。
14 (A) and 14 (B) are diagrams showing the elution properties of Sr-adsorbed octazeolite and Izca zeolite with respect to acids.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今若 直人 島根県八束郡東出雲町出雲郷219 島根 県立工業技術センター内 (56)参考文献 特開 平11−76981(JP,A) 特開 平8−10739(JP,A) (58)調査した分野(Int.Cl.7,DB名) A62D 3/00 ZAB B01J 20/18 B09B 3/00 301 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoto Imakaka 219 Izumogo, Higashi Izumo-cho, Yatsuka-gun, Shimane Prefecture Shimane Prefectural Industrial Technology Center (56) Reference JP-A-11-76981 (JP, A) JP-A 8-10739 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) A62D 3/00 ZAB B01J 20/18 B09B 3/00 301

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ゼオライトの結晶構造中の細孔内に有
害物質を取り込み、上記結晶の内部構造を保持した状態
ゼオライト表面を加熱焼成することによって前記細孔
の開口部を閉塞することにより有害物質をゼオライト細
孔内に封入するゼオライトを用いた有害物質の安定化処
理方法。
1. A harmful substance is incorporated by incorporating a harmful substance into the pores in the crystal structure of zeolite, and heating and calcining the surface of the zeolite while maintaining the internal structure of the crystal to block the openings of the pores. A method for stabilizing a harmful substance by using a zeolite in which the substance is enclosed in zeolite pores.
【請求項2】 加熱焼成を約800℃〜1000℃の
比較的低温域で行う請求項1のゼオライトを用いた有害
物質の安定化処理方法。
2. Heating and baking at a temperature of about 800 ° C. to 1000 ° C.
The method for stabilizing a harmful substance using the zeolite according to claim 1, which is carried out in a relatively low temperature range .
JP2000054258A 2000-02-29 2000-02-29 Hazardous substance stabilization method using zeolite Expired - Fee Related JP3379642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054258A JP3379642B2 (en) 2000-02-29 2000-02-29 Hazardous substance stabilization method using zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054258A JP3379642B2 (en) 2000-02-29 2000-02-29 Hazardous substance stabilization method using zeolite

Publications (2)

Publication Number Publication Date
JP2001238980A JP2001238980A (en) 2001-09-04
JP3379642B2 true JP3379642B2 (en) 2003-02-24

Family

ID=18575538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054258A Expired - Fee Related JP3379642B2 (en) 2000-02-29 2000-02-29 Hazardous substance stabilization method using zeolite

Country Status (1)

Country Link
JP (1) JP3379642B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270685A (en) * 2004-03-22 2005-10-06 Kentaro Asakura Harmful substance removing agent
WO2005097368A1 (en) * 2004-04-08 2005-10-20 Newearth Pte Ltd Method for waste stabilisation and products obtained therefrom

Also Published As

Publication number Publication date
JP2001238980A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
Moon et al. Preparation of organic-inorganic composite adsorbent beads for removal of radionuclides and heavy metal ions
CH650614A5 (en) METHOD FOR ENCLOSING TOXIC MATERIALS IN A GLASS MATRIX AND A POROUS SILICATE GLASS OR POROUS SILICA GEL FOR CARRYING OUT THIS PROCESS.
KR20190087293A (en) Compositions Containing Modified Chromate-Deficient Red Mud and Methods of Producing Same
JP2004532725A (en) Inorganic ion exchanger for removing contaminant metal ions from liquid streams
Mohamadiun et al. Removal of cadmium from contaminated soil using iron (III) oxide nanoparticles stabilized with polyacrylic acid
KR20160102259A (en) Inorganic cellular monobloc cation-exchange materials, the preparation method thereof, and separation method using same
JP5684102B2 (en) Method and apparatus for treating radioactive cesium-containing material
JP2013160666A (en) Method for safely disposing burned ash containing radioactive cesium
JP3379642B2 (en) Hazardous substance stabilization method using zeolite
Devasena et al. In situ stabilization of entrapped elemental mercury
JP2020109369A (en) Adsorbent of iodine ion and iodate ion and removing method thereof
JPH1062598A (en) Method for solidifying waste containing radioactive iodine
JP4191486B2 (en) Decontamination method for solid iodine filter
JP6092076B2 (en) Method and system for processing contaminated fly ash
Liao et al. Electrokinetic stabilization of heavy metals in MSWI fly ash after water washing
Moon et al. Preparation of PAN-zeolite 4A composite ion exchanger and its uptake behavior for Sr and Cs ions in acid solution
US10562791B2 (en) Process for preparation of granular material
JP7089971B2 (en) Insolubilization method for heavy metals and insolubilizer
JP6825193B1 (en) Radioactive material adsorbent and its manufacturing method
Wang et al. Use of cyclodextrin and calcium chloride for enhanced removal of mercury from soil
JP4067601B2 (en) Waste disposal body, manufacturing method thereof, and manufacturing apparatus thereof
JP2005144341A (en) Insolubilizing processing method of arsenic and lead in soil
JP2023107550A (en) Hydrogel decontamination reagent and manufacturing method of the same
JP2019113484A (en) Decontamination method of fluid containing radioactive iodine
Mohammed et al. Sustainable use of contaminated soils amended with nano calcium silicate mixture for nickel encapsulation in an aqueous medium

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3379642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees