JP3379185B2 - Oil resistant material - Google Patents

Oil resistant material

Info

Publication number
JP3379185B2
JP3379185B2 JP33081493A JP33081493A JP3379185B2 JP 3379185 B2 JP3379185 B2 JP 3379185B2 JP 33081493 A JP33081493 A JP 33081493A JP 33081493 A JP33081493 A JP 33081493A JP 3379185 B2 JP3379185 B2 JP 3379185B2
Authority
JP
Japan
Prior art keywords
weight
parts
core
pvc
plasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33081493A
Other languages
Japanese (ja)
Other versions
JPH07188492A (en
Inventor
聡 雪岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP33081493A priority Critical patent/JP3379185B2/en
Publication of JPH07188492A publication Critical patent/JPH07188492A/en
Application granted granted Critical
Publication of JP3379185B2 publication Critical patent/JP3379185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はポリ塩化ビニル系樹脂
(以下、PVCという)、コア−シェル型のラテックス
ゴム及び高分子量可塑剤を含むポリ塩化ビニル系樹脂組
成物からなり、圧縮永久歪や材料強度に優れ、耐油性及
び耐熱性の良好な点から燃料油、潤滑油周辺のシーリン
グ用各種パッキン材料、ホース・チューブ用材料および
ブーツ材料に適した耐油性ゴム成形品材料に関するもの
である。 【0002】 【従来の技術】PVCにDOP(フタル酸ジ−2−エチ
ルヘキシル)に代表される可塑剤を適当量配合させると
柔軟性、弾力性に優れるゴム状成形品を得ることがで
き、各種ホース・チューブ、シーリング材、パッド、ブ
ーツ等に広く使用されている。しかしながら、この組成
物では圧縮永久歪等のゴム弾性的性質は充分とはいえ
ず、かつまた自動車関係のゴム成形材料に用いる場合は
使用温度において弾性率変化が少なく耐熱性の改良され
たゴム成形品が要求され、燃料用、潤滑油用ホースまた
はオイルシーリング用パッキン等に使用する場合はさら
に耐油性の改良された材料が望まれている。 【0003】また、一般にPVCと相溶性の良い架橋あ
るいは部分架橋NBR(アクリロニトリル−ブタジエン
ゴム)などをPVCにブレンドすると圧縮永久歪は改善
されることが知られているが、このものについては圧縮
永久歪が依然として充分とはいえず、耐油性に関しても
さらなる改良が望まれているのが現状である。 【0004】 【発明が解決しようとする課題】本発明は圧縮永久歪や
材料強度が優れ、耐油性及び耐熱性の良好なゴム成形品
材料を得ることを目的とする。 【0005】 【課題を解決するための手段】本発明者らは上述のよう
な現状に鑑み、PVCと高分子量可塑剤の混合系にコア
−シェル型のラテックスゴムを配合してなる樹脂組成物
について鋭意検討した結果、本発明を完成するに至っ
た。すなわち本発明は、PVC100重量部に対して特
定のコア−シェル型のラテックスゴムが20〜200重
量部、特定の可塑剤がPVCとコア−シェル型のラテッ
クスゴム総重量100重量部に対して20〜200重量
部含まれるPVC組成物を成形してなる耐油性材料であ
る。以下に本発明の詳細を記述する。 【0006】本発明で用いられるPVCとは、塩化ビニ
ル単独重合樹脂、塩素化塩化ビニル樹脂、塩化ビニル単
量体と共重合し得るすべての単量体のうち1つ以上とラ
ンダム共重合あるいはブロック共重合して得られる塩化
ビニル共重合樹脂で、共重合できる単量体としてはエチ
レン、酢酸ビニル、塩化ビニリデン、メタクリル酸メチ
ル、メタクリル酸エチル等のメタクリル酸エステル類、
アクリル酸メチル、アクリル酸エチル等のアクリル酸エ
ステル類、メチルマレイミド、エチルマレイミド等のア
ルキルマレイミド、フェニルマレイミド等のマレイミド
単量体、スチレン、α−メチルスチレン等のスチレン系
単量体、アクリロニトリル等が挙げられる。また上記樹
脂の単品あるいは2種類以上の混合物を使用することも
可能である。 【0007】本発明に用いるコア−シェル型ラテックス
ゴムの構造はブチルアクリレートを主な主成分として2
個以上の反応性の等しい二重結合を持つ単量体、例えば
ジビニルベンゼン等の芳香族ジビニル単量体、あるいは
ブチレングリコールジアクリレート等の化合物で架橋が
施されたコア材および該コア材の表面部分がポリ塩化ビ
ニル系樹脂との相溶性に優れるスチレン−アクリロニト
リル共重合体で構成されるシェル材とからなるコア−シ
ェル型のラテックスゴムである。このコア材は架橋の程
度に関わらず架橋が施されていれば本発明の目的を達成
し、さらにコア材を構成するアクリル系ゴムは耐油性、
耐熱性にも優れるので本発明の目的とする用途に好まし
い。 【0008】本発明において用いられるコア−シェル型
ラテックスゴムは多段式に乳化、シード重合を行うこと
でコア材部分の平均粒子径やシェル材の平均厚みを均一
に調製することができる。本発明においてはこのコア材
部分の平均粒子径が0.05〜5μmのものが用いら
れ、さらに0.15〜1μmであるものを用いることが
好ましい。平均粒子径が0.05μmより小さいと充分
なゴム弾性すなわち圧縮永久歪を発現させることが困難
となり、5μmより大きいと材料強度を損なうおそれが
ある。また、平均粒子径の大きいものは同一添加量のと
き圧縮永久歪の改善に効果的である。 【0009】本発明において用いられるPVC組成物中
のコア−シェル型ラテックスゴムの添加量は、PVC1
00重量部に対し20〜200重量部であり、さらに好
ましくは40〜150重量部である。この量が20重量
部未満では、ゴム弾性すなわち圧縮永久歪の改良がなさ
れないばかりでなく、充分な耐油性及び耐熱性を得るこ
とができず、200重量部を超えると圧縮永久歪は改善
されるもののその他の物性バランス例えば材料強度が損
なわれる。 【0010】また本発明に用いられるコア−シェル型ラ
テックスゴムのシェル材樹脂の化学組成はPVCとの相
溶性に優れるスチレン−アクリロニトリル共重合体より
なるものである。なお、ここでいう相溶性とは2種類の
高分子を適当な混合法(溶融ブレンド、溶液ブレンド)
で調整し、例えば示差走査熱量分析(DSC)や動的粘
弾性測定におけるガラス転移温度(Tg)が単一となる
混合状態をいう。この相溶性は2相(層)間の界面接着
性を介して材料強度に反映され、PVCとコア−シェル
型ラテックスゴムの界面接着性については積層体の剥離
強度を一目安とすることができる。すなわちPVCの2
mm厚シート(可塑剤としてポリエステル系高分子可塑
剤をPVC100重量部に対して100重量部含む)と
コア−シェル型ラテックスゴムの2mm厚シートの積層
体を引張速度50mm/分において剥離試験し、PVC
とシェル材が相溶するときの剥離強度は500g/cm
以上であることが好ましく、さらに好ましくは800g
/cm以上である。因みにシェル材がスチレン−アクリ
ロニトリル共重合体のときは1100g/cmである。 【0011】本発明において用いられるコア−シェル型
ラテックスゴムのシェル材の厚みは5〜50nmであ
り、さらに好ましくは10〜30nmである。すなわち
シェル厚みが5nmより薄いと組成物のゴムとしての柔
軟性には優れるもののPVCとシェル材を構成する樹
脂、あるいはシェル材同士の絡み合いが充分でなく、材
料強度が損なわれる。一方、シェル材の厚みを増加する
ことのよって材料強度や圧縮永久歪を向上させることが
できるが、必要以上に厚くすると材料強度には優れるも
ののPVC組成物の硬度が著しく高くなり、成形物は樹
脂ライクになり熱可塑性エラストマーとしての柔軟性を
損なう。なお、ここでいうシェル厚みと絡み合いとは密
接な関係があり、同一シェル厚みのときは絡み点間分子
量の小さい方が絡み易く、本発明においてこの絡み合い
点間分子量は20000以下とすることが好ましく、さ
らに好ましくは15000以下である。 【0012】本発明において使用する可塑剤は、数平均
分子量が1000以上であってPVCを効率よく可塑化
する高分子量可塑剤が用いられる。このような高分子量
可塑剤としてはアジピン酸系、セバシン酸系、フタル酸
系のポリエステル高分子量可塑剤およびエポキシ系高分
子量可塑剤等が挙げられる。この数平均分子量が100
0未満では充分な耐油性を具現することができない。ま
た分子量が1000以上であれば種類の異なる高分子量
可塑剤も併用することができ、必要に応じてこの高分子
量可塑剤に加えてフタル酸ジ−2−エチルヘキシル(D
OP)等に代表されるフタル酸系可塑剤やトリメリット
酸系可塑剤、リン酸エステル系可塑剤などの低分子量可
塑剤も併用することができる。ただし、その際には高分
子量可塑剤と低分子量可塑剤の混合比率は重量比で10
/0〜5/5の範囲とすることが好ましく、低分子量可
塑剤の混合比が5割を超えると充分な耐油性を得ること
ができないおそれがある。 【0013】上記可塑剤の使用量はPVCとコア−シェ
ル型ラテックスゴムの総重量100重量部に対して20
〜200重量部であり、好ましくは30〜100重量
部、さらに好ましくは40〜70重量部である。すなわ
ち20重量部未満では得られる材料の耐油性は優れるも
のの熱可塑性エラストマーとしての柔軟性に欠け、一方
200重量部を越えると得られる材料は柔軟性、低粘度
性、圧縮永久歪に優れるものの、著しく材料強度が損な
われ、表面のベタつき等可塑剤のブリードの問題が生じ
る。 【0014】本発明において用いられるPVC組成物に
は、その性能を極端に低下させない程度にPVCとの相
溶性に優れる熱可塑性樹脂やPVCに通常添加される炭
酸カルシウム、タルク、クレー、カーボンブラック、金
属酸化物等に代表される無機充填材、三酸化アンチモン
やホウ酸亜鉛に代表される難燃剤、ステアリン酸バリウ
ム、ステアリン酸亜鉛等の熱安定剤、酸化防止剤、紫外
線吸収剤などの各種添加剤を必要に応じて添加すること
ができる。 【0015】本発明の耐油性材料は上述したPVC組成
物を成形してなるものである。そしてこの成形のための
混練及び成形加工方法は特に限定されるものではなく、
一般的な混練及び成形加工方法を用いることができる。
すなわち、PVC、可塑剤、コア−シェル型のラテック
スゴムを配合してなるPVC組成物をロール混練機、バ
ンバリー型混練機および1軸あるいは2軸押出機等によ
り剪断力下、加熱溶融混合することで容易に混練するこ
とができる。さらに該PVC組成物の混練物は通常の成
形加工方法、すなわちプレス成形機、押出し成形機、射
出成形機等を用いて容易に加熱溶融成形することができ
る。 【0016】以上述べた本発明の材料は耐油性の優れた
燃料油、潤滑油周辺のシーリング用各種パッキン材料、
ホース・チューブ用材料およびブーツ材料等に幅広く使
用することができる。 【0017】 【実施例】以下に本発明を実施例を用いて説明するが、
本発明はこれら実施例に限定されるものではない。 【0018】実施例1 PVCとしてエチレン−塩化ビニル共重合体(リューロ
ンE−2800,東ソー(株)製)100重量部、安定
剤としてステアリン酸バリウム2重量部、ステアリン酸
亜鉛1重量部、高分子量可塑剤(旭電化(株)製、アデ
カサイザーPN280)をPVCに対して100重量
部、コア−シェルラテックス(武田薬品工業(株)製ス
タフィロイド1413、平均粒子径0.6μm、シェル
組成アクリロニトリル(AN)−スチレン共重合体(A
N含量=25wt%、絡み合い点間分子量9200)、
シェル厚み10〜15nm)を70重量部配合し、8イ
ンチロールを用いて150℃、15分間溶融混練した。
得られた混合試料はプレス成形し各材料試験に供した。
試験結果を表1に示す。 【0019】 【0020】 【0021】実施例 実施例1において用いた可塑剤とフタル酸ジ−2−エチ
ルヘキシル(DOP)の混合物(混合比率(重量比)は
5/5)を可塑剤として用いた以外は実施例1と同様に
して試料を得、評価を行った。その結果を表1に示す。 【0022】比較例1 PVCとしてエチレン−塩化ビニル共重合体(リューロ
ンE−2800,東ソー(株)製)100重量部、安定
剤としてステアリン酸バリウム2重量部、ステアリン酸
亜鉛1重量部、可塑剤として実施例1において用いた高
分子量可塑剤をPVCに対して100重量部、部分架橋
NBR(日本合成ゴム( 株) 製PNC−38、アクリロ
ニトリル含量40%、粒子径0.05〜0.1μm)7
0重量部を配合し実施例1と同様に成形及び材料試験を
行った。その結果を表1に示す。以下、得られた材料試
験の方法を示す。 (圧縮永久歪の評価)JIS K6301に準拠し圧縮
永久歪試験を行った(70℃、22時間)。 【0023】(材料強度の評価)JIS K6723に
準拠し引張強度の評価を行った。 【0024】(耐油性の評価)JIS K6301に準
拠し、100℃に保たれた1号油、3号油およびエンジ
ンオイルに70時間浸積した後の重量変化率で評価し
た。 【0025】(耐熱性の評価)JIS K6723に準
拠し加熱変形率で評価した。 【0026】(耐寒性の評価)JIS K6301に準
拠し脆化温度を評価した。 【0027】【表1】 【0028】 【発明の効果】以上述べたとおり、本発明の材料は圧縮
永久歪や引張強度に優れ、なおかつ耐油性及び耐熱性の
良好なゴム成形品用材料として用いることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyvinyl chloride resin (hereinafter referred to as "PVC"), a core-shell type latex rubber and a polyvinyl chloride resin containing a high molecular weight plasticizer. Made of resin composition, excellent in compression set and material strength, good oil resistance and heat resistance, suitable for various packing materials for sealing around fuel oil, lubricating oil, hose and tube, and boot materials The present invention relates to a rubber molded article material. 2. Description of the Related Art When an appropriate amount of a plasticizer represented by DOP (di-2-ethylhexyl phthalate) is mixed with PVC, a rubber-like molded article having excellent flexibility and elasticity can be obtained. Widely used for hoses, tubes, sealing materials, pads, boots, etc. However, this composition does not have sufficient rubber elastic properties such as compression set, and when used as a rubber molding material for automobiles, it has a small change in elastic modulus at a use temperature and has improved heat resistance. When a product is required and used for a fuel hose, a lubricating oil hose or an oil sealing packing, a material having further improved oil resistance is desired. It is generally known that blending PVC with a crosslinked or partially crosslinked NBR (acrylonitrile-butadiene rubber) having good compatibility with PVC can improve the compression set. At present, distortion is still not sufficient, and further improvement in oil resistance is desired at present. SUMMARY OF THE INVENTION An object of the present invention is to provide a rubber molded material having excellent compression set and material strength, and excellent oil resistance and heat resistance. [0005] In view of the above-mentioned situation, the present inventors have formulated a resin composition comprising a mixture of PVC and a high-molecular-weight plasticizer mixed with a core-shell type latex rubber. As a result of intensive studies, the present invention has been completed. That is, in the present invention, the specific core-shell type latex rubber is 20 to 200 parts by weight based on 100 parts by weight of PVC, and the specific plasticizer is 20 to 200 parts by weight of the total weight of PVC and the core-shell type latex rubber. It is an oil resistant material obtained by molding a PVC composition containing up to 200 parts by weight. The details of the present invention are described below. [0006] The PVC used in the present invention is a random copolymer or a block copolymer of at least one of vinyl chloride homopolymer resin, chlorinated vinyl chloride resin, and all monomers copolymerizable with vinyl chloride monomer. In the vinyl chloride copolymer resin obtained by copolymerization, monomers that can be copolymerized include ethylene, vinyl acetate, vinylidene chloride, methyl methacrylate, methacrylates such as ethyl methacrylate,
Acrylic esters such as methyl acrylate and ethyl acrylate; alkylmaleimides such as methylmaleimide and ethylmaleimide; maleimide monomers such as phenylmaleimide; styrene monomers such as styrene and α-methylstyrene; and acrylonitrile. No. It is also possible to use a single resin or a mixture of two or more of the above resins. The structure of the core-shell type latex rubber used in the present invention is mainly composed of butyl acrylate as a main component.
A core material cross-linked with a monomer having two or more reactive double bonds, for example, an aromatic divinyl monomer such as divinylbenzene, or a compound such as butylene glycol diacrylate, and the surface of the core material; Partially styrene-acrylonitrile with excellent compatibility with polyvinyl chloride resin
It is a core-shell type latex rubber composed of a shell material composed of a ril copolymer . This core material achieves the object of the present invention if crosslinked regardless of the degree of crosslinking, and the acrylic rubber constituting the core material has oil resistance,
Because of its excellent heat resistance, it is preferable for the intended use of the present invention. The core-shell type latex rubber used in the present invention can be prepared in a multistage manner by emulsification and seed polymerization, whereby the average particle diameter of the core material portion and the average thickness of the shell material can be uniformly adjusted. In the present invention, a core material having an average particle diameter of 0.05 to 5 μm is used, and more preferably 0.15 to 1 μm. If the average particle diameter is less than 0.05 μm, it is difficult to develop sufficient rubber elasticity, that is, compression set, and if it is more than 5 μm, the material strength may be impaired. Further, those having a large average particle diameter are effective in improving the compression set when the same amount is added. The amount of the core-shell type latex rubber added to the PVC composition used in the present invention is PVC 1
The amount is 20 to 200 parts by weight, more preferably 40 to 150 parts by weight, per 100 parts by weight. When the amount is less than 20 parts by weight, not only the rubber elasticity, that is, the compression set cannot be improved, but also sufficient oil resistance and heat resistance cannot be obtained. When the amount exceeds 200 parts by weight, the compression set is improved. However, the balance of other physical properties, such as material strength, is impaired. Further, the chemical composition of the shell material resin of the core-shell type latex rubber used in the present invention is based on a styrene-acrylonitrile copolymer having excellent compatibility with PVC.
It becomes . The term “compatibility” used herein refers to an appropriate mixing method of two kinds of polymers (melt blending, solution blending).
And refers to a mixed state where the glass transition temperature (Tg) in differential scanning calorimetry (DSC) or dynamic viscoelasticity measurement is unity. This compatibility is reflected in the material strength through the interfacial adhesion between the two phases (layers), and the interfacial adhesion between PVC and the core-shell type latex rubber can be determined based on the peel strength of the laminate. . That is, PVC 2
A peel test is performed on a laminate of a 2 mm-thick sheet of a mm-thick sheet (containing 100 parts by weight of a polyester polymer plasticizer as a plasticizer with respect to 100 parts by weight of PVC) and a 2 mm-thick sheet of core-shell type latex rubber, PVC
Peel strength when the shell material and the shell material are compatible with each other is 500 g / cm
Or more, more preferably 800 g
/ Cm or more. Incidentally shell material is a styrene - When the acrylonitrile copolymer is 1100 g / cm. The thickness of the shell material of the core-shell type latex rubber used in the present invention is 5 to 50 nm, more preferably 10 to 30 nm. That is, if the shell thickness is less than 5 nm, the composition has excellent flexibility as rubber, but the PVC and the resin constituting the shell material or the entanglement between the shell materials is not sufficient, and the material strength is impaired. On the other hand, the material strength and the compression set can be improved by increasing the thickness of the shell material, but when the thickness is increased more than necessary, the hardness of the PVC composition becomes extremely high although the material strength is excellent, and the molded product is hardly formed. It becomes resin-like and impairs flexibility as a thermoplastic elastomer. Note that the shell thickness and the entanglement here have a close relationship, and when the shell thickness is the same, the smaller the molecular weight between entanglement points, the easier it is to entangle. In the present invention, the molecular weight between entanglement points is preferably 20,000 or less. , More preferably 15,000 or less. As the plasticizer used in the present invention, a high molecular weight plasticizer having a number average molecular weight of 1,000 or more and capable of efficiently plasticizing PVC is used. Examples of such high molecular weight plasticizers include adipic acid-based, sebacic acid-based, and phthalic acid-based polyester high-molecular-weight plasticizers and epoxy-based high-molecular-weight plasticizers. This number average molecular weight is 100
If it is less than 0, sufficient oil resistance cannot be realized. If the molecular weight is 1000 or more, different kinds of high molecular weight plasticizers can be used in combination. If necessary, di-2-ethylhexyl phthalate (D
OP) and other low-molecular-weight plasticizers such as phthalic acid plasticizers, trimellitic acid plasticizers, and phosphate ester plasticizers. However, in that case, the mixing ratio of the high molecular weight plasticizer and the low molecular weight plasticizer is 10% by weight.
/ 0/5/5, and when the mixing ratio of the low molecular weight plasticizer exceeds 50%, sufficient oil resistance may not be obtained. The amount of the plasticizer used is 20 parts by weight based on 100 parts by weight of the total weight of PVC and the core-shell type latex rubber.
To 200 parts by weight, preferably 30 to 100 parts by weight, more preferably 40 to 70 parts by weight. That is, when the amount is less than 20 parts by weight, the obtained material has excellent oil resistance, but lacks flexibility as a thermoplastic elastomer. On the other hand, when the amount exceeds 200 parts by weight, the obtained material has excellent flexibility, low viscosity, and excellent compression set. The material strength is remarkably impaired, causing a problem of bleeding of the plasticizer such as stickiness of the surface. The PVC composition used in the present invention includes a thermoplastic resin having excellent compatibility with PVC to such an extent that its performance is not extremely deteriorated, calcium carbonate, talc, clay, carbon black and the like which are usually added to PVC. Various additives such as inorganic fillers such as metal oxides, flame retardants such as antimony trioxide and zinc borate, heat stabilizers such as barium stearate and zinc stearate, antioxidants, and ultraviolet absorbers Agents can be added as needed. The oil-resistant material of the present invention is obtained by molding the above-mentioned PVC composition. And the kneading and molding method for this molding is not particularly limited,
General kneading and forming methods can be used.
That is, a PVC composition comprising a PVC, a plasticizer, and a core-shell type latex rubber is heated and melt-mixed under a shearing force by a roll kneader, a Banbury kneader, a single-screw or twin-screw extruder, or the like. And can be easily kneaded. Further, the kneaded product of the PVC composition can be easily heated and melt-molded using a usual molding method, that is, a press molding machine, an extrusion molding machine, an injection molding machine or the like. The above-mentioned materials of the present invention include various oil-resistant fuel oils, various packing materials for sealing around lubricating oils,
It can be widely used for hose and tube materials and boot materials. EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited to these examples. Example 1 100 parts by weight of ethylene-vinyl chloride copolymer (Ryuron E-2800, manufactured by Tosoh Corporation) as PVC, 2 parts by weight of barium stearate, 1 part by weight of zinc stearate as a stabilizer, high molecular weight 100 parts by weight of a plasticizer (Adekaizer PN280 manufactured by Asahi Denka Co., Ltd.) based on PVC, core-shell latex (Staphyroid 1413 manufactured by Takeda Pharmaceutical Co., Ltd., average particle diameter 0.6 μm, shell composition acrylonitrile ( AN) -styrene copolymer (A
N content = 25 wt%, molecular weight between entanglement points 9200),
70 parts by weight of a shell thickness of 10 to 15 nm) were melt-kneaded at 150 ° C. for 15 minutes using an 8-inch roll.
The obtained mixed sample was press-formed and subjected to each material test.
Table 1 shows the test results. Example 2 A mixture of the plasticizer used in Example 1 and di-2-ethylhexyl phthalate (DOP) (mixing ratio (weight ratio) is 5/5) was used as the plasticizer. A sample was obtained and evaluated in the same manner as in Example 1 except for the presence of the sample. Table 1 shows the results. Comparative Example 1 100 parts by weight of an ethylene-vinyl chloride copolymer (Ryuron E-2800, manufactured by Tosoh Corporation) as PVC, 2 parts by weight of barium stearate, 1 part by weight of zinc stearate as a stabilizer, plasticizer 100 parts by weight, based on PVC, of the high molecular weight plasticizer used in Example 1 and partially cross-linked NBR (PNC-38 manufactured by Nippon Synthetic Rubber Co., Ltd., acrylonitrile content 40%, particle diameter 0.05 to 0.1 μm) 7
0 parts by weight were blended, and molding and material tests were performed as in Example 1. Table 1 shows the results. Hereinafter, the method of the obtained material test is shown. (Evaluation of Compression Set) A compression set test was performed in accordance with JIS K6301 (70 ° C., 22 hours). (Evaluation of Material Strength) The tensile strength was evaluated in accordance with JIS K6723. (Evaluation of Oil Resistance) According to JIS K6301, the weight change rate after immersion in No. 1 oil, No. 3 oil and engine oil kept at 100 ° C. for 70 hours was evaluated. (Evaluation of heat resistance) Evaluation was made based on JIS K6723 by a heat deformation ratio. (Evaluation of Cold Resistance) The embrittlement temperature was evaluated according to JIS K6301. [ Table 1] As described above, the material of the present invention is excellent in compression set and tensile strength, and can be used as a material for a rubber molded product having good oil resistance and heat resistance.

Claims (1)

(57)【特許請求の範囲】 【請求項1】ポリ塩化ビニル系樹脂100重量部に対し
て(標記1)に記載のコア−シェル型のラテックスゴム
が20〜200重量部、(標記2)に記載の可塑剤がポ
リ塩化ビニル系樹脂とコア−シェル型のラテックスゴム
の総重量100重量部に対して20〜200重量部含ま
れるポリ塩化ビニル系樹脂組成物を成形してなる耐油性
材料。 (標記1)コア材部分の 平均粒子径が0.05〜5μm、コア材が
ポリブチルアクリレート架橋体、シェル材がスチレン−
アクリロニトリル共重合体で構成され、かつその厚みが
5〜50nmであるコア−シェル型のラテックスゴム。 (標記2) 分子量が1000以上のポリエステル系高分子量可塑剤
および/または分子量が1000以上のエポキシ系高分
子量可塑剤。
(57) [Claim 1] 20 to 200 parts by weight of a core-shell type latex rubber described in (Title 1), based on 100 parts by weight of a polyvinyl chloride resin, (Title 2) Oil-resistant material obtained by molding a polyvinyl chloride resin composition containing the plasticizer described in 20 to 20 to 200 parts by weight based on 100 parts by weight of the total weight of the polyvinyl chloride resin and the core-shell type latex rubber . (Title 1) The average particle diameter of the core material portion is 0.05 to 5 μm, the core material is a crosslinked polybutyl acrylate, and the shell material is styrene-
A core-shell type latex rubber composed of an acrylonitrile copolymer and having a thickness of 5 to 50 nm. (Title 2) A polyester high molecular weight plasticizer having a molecular weight of 1000 or more and / or an epoxy high molecular weight plasticizer having a molecular weight of 1000 or more .
JP33081493A 1993-12-27 1993-12-27 Oil resistant material Expired - Fee Related JP3379185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33081493A JP3379185B2 (en) 1993-12-27 1993-12-27 Oil resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33081493A JP3379185B2 (en) 1993-12-27 1993-12-27 Oil resistant material

Publications (2)

Publication Number Publication Date
JPH07188492A JPH07188492A (en) 1995-07-25
JP3379185B2 true JP3379185B2 (en) 2003-02-17

Family

ID=18236849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33081493A Expired - Fee Related JP3379185B2 (en) 1993-12-27 1993-12-27 Oil resistant material

Country Status (1)

Country Link
JP (1) JP3379185B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3305844A4 (en) * 2015-06-04 2018-12-05 Kaneka Corporation Vinyl chloride resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235834A (en) * 2009-03-31 2010-10-21 Kaneka Corp Thermoplastic elastomer composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3305844A4 (en) * 2015-06-04 2018-12-05 Kaneka Corporation Vinyl chloride resin composition
US10329413B2 (en) 2015-06-04 2019-06-25 Kaneka Corporation Vinyl chloride resin composition

Also Published As

Publication number Publication date
JPH07188492A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
EP0158764B1 (en) Compatibilized blends of acrylic ester copolymer rubber
US6066697A (en) Thermoplastic compositions containing elastomers and fluorine containing thermoplastics
JPH09302169A (en) Composite rubber particle and composite rubbery graft copolymer particle
CA2538475A1 (en) Blends of diene rubber with thermoplastic copolymer modified with nitrile rubber
JPH0784541B2 (en) Thermoplastic elastomer-like composition
AU586617B2 (en) Polymer blends containing a polymer having pendant oxazoline groups
JP3059532B2 (en) Polyketone polymer composition
EP0004547B1 (en) Impact modified chlorinated polyvinyl chloride compositions.
US6951899B2 (en) Blend compositions of hard and soft crosslinkable acrylate copolymers
JP3379185B2 (en) Oil resistant material
EP0190334A1 (en) Polyblends of a copolymer of a vinyl aromatic monomer and an unsaturated dicarboxylic acid anhydride with a methyl methacrylate homopolymer or copolymer
JP3395309B2 (en) Cold-resistant material
JPS60155253A (en) Graft copolymer/plastic vonyl polychloride blend as thermoplastic elastomer
JP4798482B2 (en) Thermoplastic elastomer excellent in heat resistance and chemical resistance, its production method and its use
JPH0641443A (en) Resin composition for vibration-damping material
US3883614A (en) ABS/vinyl acetate polymer blends
JP2618644B2 (en) Thermoplastic polymer composition
JP3379175B2 (en) Thermoplastic elastomer
DE10017149A1 (en) Thermoplastic elastomer composition, especially for joint gaiters in cars, contains acrylate- or ethylene-based rubber and special thermoplastic copolyester elastomer with aromatic, aliphatic and polyether units
JPH10101942A (en) Thermoplastic resin composition
JPH0753852A (en) Flame-retardant thermoplastic polyester resin composition
JPH0348223B2 (en)
JP2709137B2 (en) Resin composition
JPS6284152A (en) Polycarbonate resin composition
JPS6323221B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees