JP3378941B2 - Position automatic tracking type ultrasonic blood flow measurement device - Google Patents

Position automatic tracking type ultrasonic blood flow measurement device

Info

Publication number
JP3378941B2
JP3378941B2 JP2000195623A JP2000195623A JP3378941B2 JP 3378941 B2 JP3378941 B2 JP 3378941B2 JP 2000195623 A JP2000195623 A JP 2000195623A JP 2000195623 A JP2000195623 A JP 2000195623A JP 3378941 B2 JP3378941 B2 JP 3378941B2
Authority
JP
Japan
Prior art keywords
blood vessel
ultrasonic
blood flow
measuring
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000195623A
Other languages
Japanese (ja)
Other versions
JP2002011008A (en
Inventor
友二 平尾
陽介 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokushima Prefecture
Original Assignee
Tokushima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokushima Prefecture filed Critical Tokushima Prefecture
Priority to JP2000195623A priority Critical patent/JP3378941B2/en
Publication of JP2002011008A publication Critical patent/JP2002011008A/en
Application granted granted Critical
Publication of JP3378941B2 publication Critical patent/JP3378941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は超音波診断装置、特
に反射エコー信号に基づいて生体内の血流情報を計測す
る超音波血流計測装置に係り、詳しくは血管位置の検出
と血管の自動追尾が可能で、運動中でも血管血流の計測
を実現する位置自動追尾型超音波血流計測装置に関する
ものである。 【0002】 【従来の技術】従来、医用分野で用いられている超音波
診断装置は、人体の表面に超音波送信用プローブと、受
信用プローブを測定しようとする人体の両端に配置し、
パルス発振器により送信用プローブから体内に超音波パ
ルスを送り、この超音波パルスが体内を伝播し、受信用
プローブに到達したときの状態を検知して内蔵器官部位
の断層データをリアルタイムでモニタ表示したり、また
パルスドプラ法を用いて特定血管部位の血流速度を測定
し、この速度分布や平均血流速度をモニタ表示すること
などを行っている。また、断層情報をモニタに表示する
と共に、断層情報が表示されたモニタの関心領域に血流
情報を並べて表示するようにしたものも知られている。 【0003】更に一方、超音波プローブとして広帯域化
をはかり、広い周波数領域にわたって高い信号を得るた
め複数の振動子をアレイ状に配列した超音波プローブを
用いることは特開平11−76239号公報に開示され
ている。 【0004】 【発明が解決しようとする課題】しかし、上述した従来
の超音波診断装置、特に血流状態を計測する超音波血流
計測装置は、生体内の血流状態を計測するにあたり、静
止状態にあってはそれに応じた計測値が得られるとして
も、運動に伴って表皮上につけられたプローブと、生体
内部の血管との相対位置関係が変化することに対して、
位置を検出する機能を有していないため、表皮につけら
れたプローブと、生体内部の血管との相対位置関係が変
化するような場合には照射された超音波の焦点領域外に
動脈血管が移動することにより表皮上のプローブで計測
することが出来なくなるという問題があった。 【0005】更に運動に伴い表皮につけられたプローブ
と、生体内部の血管との相対位置関係の変化量を検出
し、超音波の照射位置を変えることができないために、
運動に伴う筋ポンプ現象などの影響により対象動脈血管
外の組織が運動し、音響ノイズを生じ、この影響を大き
く受けることによって計測出来ないという問題もあっ
た。 【0006】本発明は上述の如き従来の装置による問題
を解決すべく、特に新規な超音波プローブの利用を見出
すことにより計測対象血管位置の検出と、血管の自動追
尾を可能として、被験者が姿勢を変えたり運動するなど
の動きを伴ったとしても対象血管の血流を計測すること
ができ、血管性疾患の予防、早期発見などに有効ならし
めることを目的とするものである。 【課題を解決するための手段】 【0007】即ち、上記目的に適合するため本発明は、
被検体の血管内血流情報を計測する超音波血流計におい
て、振動子を縦方向に2段以上、かつ横方向に複数個直
線上に配列し、少なくとも1つの段の振動子列を計測対
象血管位置を測定する血管位置測定用となし、一方、他
の段の振動子列を血流速度検出用となした2次元アレイ
型超音波プローブと、このプローブを制御する制御手段
とを備え、前記血管位置測定用振動子列から同時刻に超
音波インパルスを発信することにより計測対象血管位置
を測定すると共に、血管位置測定用振動子列の中で該測
定によって得た血管からの反射波を受信した振動子に対
応する血流速度検出用振動子が超音波ビーム照射位置と
検出時間を可変制御することにより血管内の血流情報の
みを計測し得るように構成されている点にある。 【0008】なかでも、特に超音波プローブの具体的構
成において、横方向複数個以上で構成された超音波プロ
ーブが縦方向上段と下段の少なくとも2段となってお
り、その1つの段、例えば下段の超音波素子を血管位置
検出用超音波送受信部とし、一方、上段の超音波素子
血流速度検出用超音波送受信部としていることは本発明
の重要な特徴である。 【0009】 【発明の実施の形態】以下、更に添付図面にもとづいて
本発明の詳細を説明する。 【0010】図1は本発明に係る超音波血流計測装置の
概要を示し、図において1は2次元アレイ型の超音波プ
ローブ、2は超音波パルス放射後の時間の経過に対応し
た信号を出力する血流計測用トランスデューサ制御回
路、3は同じく超音波放射後の時間の経過に対応した信
号を出力する血管位置検出用トランスデューサ制御回路
であり、超音波プローブ1は図示の如く縦方向には上段
1aと下段1bの2段で、横方向には複数個が並列され
た各トランスデューサ列よりなるリニアアレイ型の超音
波プローブとなっていて、上段1aの血流計測用トラン
スデューサ列は血流計測用の制御回路2に、一方、下段
1bの血管位置検出用トランスデューサ列は血管位置検
出用の制御回路3に夫々連結されている。なお、超音波
プローブの段数及び列数は必ずしも図示例に限らず、縦
方向に3段以上、横方向に適宜の列数として構成するこ
とも可能である。 【0011】そして、超音波プローブ1は図示のように
動脈血管4に対向して配置され、上段又は下段の超音波
素子より夫々超音波パルスを矢示の如く発信し、動脈血
管4で反射してその反射波を矢示のように同じ上段又は
下段の超音波素子で受信するが、例えばプローブ1を上
腕部などの表皮部に取り付け、腕内部の上腕動脈血管を
狙うものとすると、例えば下段1bを位置検出用超音波
送受信部、上段1aを血流速度検出用超音波送受信部と
する。 【0012】図2は上記超音波プローブ1を用いて下段
1bにより血管位置の検出をする原理を示し、(イ)図
に示すように下段の超音波素子から同時刻に超音波イン
パルスを発信すると、超音波インパルスaは動脈血管4
で反射してその反射波bが矢示の如く同じ下段の超音波
素子で受信される。即ち、各素子(振動子)から発信さ
れた探信音波aは血管壁で反射し、血管径に応じた幅の
反射波bが所要の素子(振動子)に受信され、このと
き、動脈4からの反射は血管の直上の素子でのみ強く受
信され、他の素子ではほとんど受信されない。従って、
これによって血管の位置が推定できる。また、音波の進
行速度は時間と距離に比例しているため、送信時刻と受
信時刻の差が血管までの距離となる。更に(ロ)図の如
き発信された超音波パルスaは表皮で反射波形bとし
て反射されると共に血管壁で反射されるが、血管は円筒
形の壁を持っているため、理想的には(ハ)図の如くそ
の表皮に近い側(血管前壁)とその反対側の遠い側(血
管後壁)の2つの反射波形b,bが確認できる。従
って、受信された2つの反射波b,bの差が血管径
となる。かくして、以上より、血管の位置と深さと直径
を検出することができる。 【0013】図3は上記図2における血管位置検出で得
た情報を基にして血流計測を行う原理を示しており、上
記情報を基に上段1aの超音波素子列の中で前記の血管
直上に相当する超音波素子から図3(イ)のような超音
波パルスcを表皮5を通じて発信する。発信された超音
波パルスcは血管4に至るまでの細胞組織の運動(血管
外組織の運動)と血管内を流れる血流の双方の運動速度
を反映したドップラ偏移反射を経て発信した超音波素子
で反射波dとして受信される。このとき、図3(ロ)の
ように前記図2(ハ)で得られた血管直上での受信波形
である2つの反射波b,b(血管径に相当)でゲー
トを掛けて取り出してやると、ゲートを掛けて取り出さ
れた波形部分wは音波の時間距離関係から血管内部で
の反射のみを抽出することが出来る。なお、wは血管
外組織からの超音波エコーである。以上のことから、血
管位置の検出と血管の自動追尾が可能となり、運動によ
る音響雑音を受けにくい血流計測が実現できる。 【0014】かくして、本発明は2つの異なった制御機
構を有する列上に配された超音波素子を1つのプローブ
内に構成し、列上に配された超音波素子の1群をもって
生体内の血管の位置と、深さと直径を計測し、これを基
にして他群の超音波素子を制御することにより血管内に
相当する領域からの反射音のみを抽出することによって
運動に伴う音響のノイズの影響を除去し、運動中の生体
内の血管血流の計測を実現することができる。 【0015】 【発明の効果】本発明は以上のように複数の振動子を2
以上で、かつ2行以上の2次元アレイ状に配列した超
音波プローブであって、前記振動子の中の少なくとも1
つの段の列が計測対象血管位置を測定する血管位置測定
手段を有していると共に、前記振動子列による血管位置
測定情報によって前記振動子の中の他の段の少なくとも
1つの列が超音波ビーム照射位置と検出時間を可変制御
することにより、血管内の血流情報のみを計測できるよ
うにしたものであり、1つの段の振動子列の血管位置測
定手段の振動子から発信された音波が血管壁で反射し、
血管径に応じた幅で、かつ表皮側血管壁と内側血管壁か
らの反射波として振動子に受信されることから、血管の
位置と深さと直径を検出でき、これにもとづいて他の
列の対応する振動子を制御することによって血管内に
相当する領域から反射音のみを抽出することができるの
で、運動中であるとしても運動による音響雑音を除去し
て正確な生体内血管血流の計測を実現することができる
顕著な効果を有し、医療分野において動脈梗塞や閉塞・
狭窄などの血管性疾患の予防・早期発見のための運動負
荷試験等に利用でき、また、手術中の患者の血流状態モ
ニタに利用できる外、定期健康診断やリハビリなどへの
適用も考えられるなど、種々の実効が期待できる。 【0016】しかもまた、本発明は基礎医学分野におい
ては、運動中の血流の変化等の解明、運動血管性疾患・
貧血などの発生メカニズムの解明にも利用することがで
きると共に、体力医学分野においても、アスリート達の
トレーニング効果の評価や効果的トレーニングや運動に
伴う血流のダイナミクスの解明に効果的であり、日常生
活においては、健康管理や体力増進のために行う運動の
安全性の確保ならびに独居老人の生存確認などへの応用
も考えられるメリットを有している。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an ultrasonic blood flow measuring apparatus for measuring blood flow information in a living body based on a reflected echo signal. More specifically, the present invention relates to an automatic position-tracking type ultrasonic blood flow measuring device capable of detecting a blood vessel position and automatically tracking a blood vessel and realizing measurement of a blood flow even during exercise. 2. Description of the Related Art Conventionally, an ultrasonic diagnostic apparatus used in the medical field has an ultrasonic transmitting probe and a receiving probe arranged on both ends of a human body to be measured on the surface of the human body.
An ultrasonic pulse is sent into the body from the transmitting probe by the pulse oscillator, the ultrasonic pulse propagates through the body, detects the state when it reaches the receiving probe, and displays the tomographic data of the internal organ parts in real time on the monitor. In addition, the blood flow velocity at a specific blood vessel site is measured using the pulse Doppler method, and the velocity distribution and the average blood flow velocity are displayed on a monitor. Further, there is also known an apparatus in which tomographic information is displayed on a monitor, and blood flow information is arranged and displayed in a region of interest of the monitor on which the tomographic information is displayed. On the other hand, Japanese Patent Application Laid-Open No. H11-76239 discloses the use of an ultrasonic probe in which a plurality of transducers are arranged in an array to obtain a high signal over a wide frequency range. Have been. [0004] However, the above-mentioned conventional ultrasonic diagnostic apparatus, particularly an ultrasonic blood flow measuring apparatus for measuring a blood flow state, is not suitable for measuring a blood flow state in a living body. In the state, even if a measurement value corresponding to it is obtained, the relative positional relationship between the probe attached on the epidermis and the blood vessel inside the living body changes with exercise,
Since there is no function to detect the position, if the relative positional relationship between the probe attached to the epidermis and the blood vessel inside the living body changes, the arterial blood vessel moves out of the focal region of the irradiated ultrasonic wave As a result, there is a problem that the measurement cannot be performed with the probe on the epidermis. Further, since the amount of change in the relative positional relationship between the probe attached to the epidermis due to the movement and the blood vessel inside the living body is detected, and the irradiation position of the ultrasonic wave cannot be changed,
There is also a problem that the tissue outside the blood vessel of the target artery moves due to the influence of the muscle pump phenomenon and the like due to the movement, generating acoustic noise, and measurement cannot be performed due to the influence of the influence. In order to solve the problems of the conventional apparatus as described above, the present invention makes it possible to detect the position of the blood vessel to be measured and automatically track the blood vessel by finding a new ultrasonic probe. An object of the present invention is to measure the blood flow of a target blood vessel even when the subject is accompanied by movement such as changing or exercising, and is intended to be effective for prevention of vascular disease, early detection, and the like. That is, in order to meet the above object, the present invention provides:
In an ultrasonic blood flow meter that measures blood flow information in a blood vessel of a subject, transducers are arranged in two or more stages in a vertical direction and a plurality of lines in a horizontal direction, and a transducer row in at least one stage is measured. A two-dimensional array-type ultrasonic probe for measuring a blood vessel position for measuring a target blood vessel position, while using another transducer row for detecting a blood flow velocity, and control means for controlling the probe At the same time from the blood vessel position measuring transducer row.
By transmitting the sound wave impulse, the position of the blood vessel to be measured is measured, and the blood flow velocity detecting vibration corresponding to the vibrator that has received the reflected wave from the blood vessel obtained by the measurement in the vibrator array for measuring the blood vessel position The configuration is such that the child can measure only the blood flow information in the blood vessel by variably controlling the ultrasonic beam irradiation position and the detection time. [0008] Among them, particularly Oite the specific configuration of the ultrasonic probe, and transverse ultrasonic probe made up of a plurality or turned in the longitudinal direction between the upper and lower at least two stages, one stage that For example, the present invention is characterized in that the lower ultrasonic element is used as an ultrasonic transmitting / receiving section for detecting a blood vessel position , while the upper ultrasonic element is used as an ultrasonic transmitting / receiving section for detecting a blood flow velocity.
Is an important feature. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an outline of an ultrasonic blood flow measuring apparatus according to the present invention. In FIG. 1, reference numeral 1 denotes a two-dimensional array type ultrasonic probe, and reference numeral 2 denotes a signal corresponding to a lapse of time after ultrasonic pulse emission. The output blood flow measurement transducer control circuit 3 is a blood vessel position detection transducer control circuit that outputs a signal corresponding to the lapse of time after ultrasonic emission, and the ultrasonic probe 1 is arranged in the vertical direction as shown in the figure. An upper row 1a and a lower row 1b constitute a linear array type ultrasonic probe composed of a plurality of parallelly arranged transducer rows in the horizontal direction. The upper row 1a has a blood flow measurement transducer row. On the other hand, the lower row 1b of the transducer row for detecting the blood vessel position is connected to the control circuit 3 for detecting the blood vessel position. The number of rows and the number of rows of the ultrasonic probe are not necessarily limited to the illustrated example, and may be configured to have three or more rows in the vertical direction and an appropriate number of rows in the horizontal direction. The ultrasonic probe 1 is disposed opposite the arterial blood vessel 4 as shown in the figure, and transmits an ultrasonic pulse from the upper or lower ultrasonic element as indicated by an arrow, and is reflected by the arterial blood vessel 4. As shown by the arrow, the reflected wave is received by the same upper or lower ultrasonic element. For example, if the probe 1 is attached to the epidermis such as the upper arm and the blood vessel is aimed at the brachial artery inside the arm, for example, 1b is an ultrasonic transmission / reception unit for position detection, and the upper stage 1a is an ultrasonic transmission / reception unit for blood flow velocity detection. FIG. 2 shows the principle of detecting the position of a blood vessel by the lower stage 1b using the ultrasonic probe 1. When an ultrasonic impulse is transmitted from the lower ultrasonic element at the same time as shown in FIG. , The ultrasonic impulse a is the arterial blood vessel 4
And the reflected wave b is received by the same lower ultrasonic element as shown by the arrow. That is, the probe sound wave a transmitted from each element (vibrator) is reflected by the blood vessel wall, and a reflected wave b having a width corresponding to the blood vessel diameter is received by a required element (vibrator). Is strongly received only by the element directly above the blood vessel, and is hardly received by other elements. Therefore,
Thereby, the position of the blood vessel can be estimated. Further, since the traveling speed of the sound wave is proportional to the time and the distance, the difference between the transmission time and the reception time is the distance to the blood vessel. Although further (ii) ultrasonic pulse a is such outgoing view is reflected by the blood vessel wall while being reflected as a reflection waveform b 0 in the epidermis, because blood vessels have a cylindrical wall, ideally (C) As shown in the figure, two reflected waveforms b 1 and b 2 on the side closer to the epidermis (front wall of blood vessel) and on the opposite side farther (rear wall of blood vessel) can be confirmed. Therefore, the difference between the two received reflected waves b 1 and b 2 is the blood vessel diameter. Thus, the position, depth, and diameter of the blood vessel can be detected from the above. FIG. 3 shows the principle of measuring the blood flow based on the information obtained by the blood vessel position detection in FIG. 2 described above. An ultrasonic pulse c as shown in FIG. 3A is transmitted through the skin 5 from the ultrasonic element corresponding directly above. The transmitted ultrasonic pulse c is an ultrasonic wave transmitted via Doppler shift reflection reflecting both the movement speed of the cell tissue (movement of extravascular tissue) up to the blood vessel 4 and the movement speed of the blood flow flowing in the blood vessel. The element receives the reflected wave d. At this time, as shown in FIG. 3B, the two reflected waves b 1 and b 2 (corresponding to the blood vessel diameter), which are the received waveforms immediately above the blood vessel obtained in FIG. When I'll, waveform portions w 1 taken over the gate can be extracted only reflected in a blood vessel inside the time distance relationship of the sound wave. Incidentally, w 2 is an ultrasound echo from extravascular tissues. From the above, detection of the blood vessel position and automatic tracking of the blood vessel can be performed, and blood flow measurement that is less susceptible to acoustic noise due to exercise can be realized. Thus, according to the present invention, an ultrasonic element arranged on a line having two different control mechanisms is formed in one probe, and a group of ultrasonic elements arranged on the line is used in a living body. Measures the position, depth and diameter of the blood vessel and controls other groups of ultrasonic elements based on this to extract only the reflected sound from the area corresponding to the inside of the blood vessel, resulting in acoustic noise associated with motion And the measurement of vascular blood flow in the living body during exercise can be realized. According to the present invention, as described above, a plurality of vibrators are
An ultrasonic probe arranged in a two-dimensional array of at least two stages and at least two rows, wherein at least one of the transducers
One of the rows has a blood vessel position measuring means for measuring the position of a blood vessel to be measured , and at least one of the other rows in the transducer has an ultrasonic wave according to the blood vessel position measurement information from the transducer row. By variably controlling the beam irradiation position and the detection time, only the blood flow information in the blood vessel can be measured, and the sound wave transmitted from the transducer of the blood vessel position measuring means of the transducer row in one stage Reflected off the vessel wall,
A width corresponding to the vessel diameter, and from being received in the vibrator as a reflected wave from the skin-side vascular wall and the inner vessel wall, can detect the position and depth and diameter of the vessel, the other stage based on this
By controlling the corresponding transducers in the row, only reflected sound can be extracted from the area corresponding to the inside of the blood vessel, so that even if the user is exercising, the acoustic noise due to the movement is removed and the accurate in-vivo vascular blood It has a remarkable effect that can measure the flow, and in the medical field,
It can be used for exercise stress tests for the prevention and early detection of vascular diseases such as stenosis, and can be used for monitoring the blood flow condition of patients during surgery, and can also be applied to periodic medical examinations and rehabilitation. Various effects can be expected. Furthermore, the present invention relates to the field of basic medicine, for elucidation of changes in blood flow during exercise,
It can be used to elucidate the mechanism of occurrence of anemia, etc., and is also effective in the field of physical fitness medicine to evaluate the training effects of athletes, elucidate the dynamics of blood flow associated with effective training and exercise, and In life, there are merits that can be applied to ensuring the safety of exercise performed for health management and physical fitness enhancement, and confirming the survival of a solitary elderly person.

【図面の簡単な説明】 【図1】本発明に係る超音波プローブの概要を示す説明
図である。 【図2】血管位置の検出原理を示す概要図で、(イ)は
下段の超音波素子からのパルスの発信、受信の態様を示
し、(ロ)(ハ)は各波形の態様で、(ロ)は各素子か
らの送信波形、(ハ)は血管直上での受信波形である。 【図3】血流の計測原理を示す概要図で、(イ)は上段
の超音波素子からのパルスの発信、受信の態様を、
(ロ)はゲートをかけて取り出す受信波形の態様を示
す。 【符号の説明】 1 超音波プローブ 1a 上段超音波素子(血流計測用トランスデューサ
列) 1b 下段超音波素子(血管位置検出用トランスデュー
サ列) 2 血流計測用トランスデューサ制御回路 3 血管位置検出用トランスデューサ制御回路 4 動脈血管 5 表皮部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing an outline of an ultrasonic probe according to the present invention. FIGS. 2A and 2B are schematic diagrams showing a principle of detecting a blood vessel position, wherein FIG. 2A shows a mode of transmission and reception of a pulse from a lower ultrasonic element, and FIGS. (B) is a transmission waveform from each element, and (c) is a reception waveform just above a blood vessel. FIG. 3 is a schematic diagram showing a principle of measuring a blood flow, wherein (a) shows a mode of transmission and reception of a pulse from an upper ultrasonic element;
(B) shows the form of the reception waveform taken out through the gate. [Description of Signs] 1 Ultrasonic probe 1a Upper ultrasonic element (transducer array for blood flow measurement) 1b Lower ultrasonic element (transducer array for blood vessel position detection) 2 Transducer control circuit for blood flow measurement 3 Transducer control for blood vessel position detection Circuit 4 Arterial blood vessel 5 Epidermis

フロントページの続き (56)参考文献 特開2000−166926(JP,A) 特開 昭59−101143(JP,A) 特開 昭59−88137(JP,A) 特開 昭59−37940(JP,A) 特開 昭58−118741(JP,A) 特開 平10−277030(JP,A) 特開 平8−52137(JP,A) 特開 平4−54945(JP,A) 特開 昭56−119237(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61B 8/00 - 8/15 Continuation of the front page (56) References JP-A-2000-166926 (JP, A) JP-A-59-101143 (JP, A) JP-A-59-88137 (JP, A) JP-A-59-37940 (JP, A) A) JP-A-58-118741 (JP, A) JP-A-10-277030 (JP, A) JP-A-8-52137 (JP, A) JP-A-4-54945 (JP, A) JP-A-56 -119237 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) A61B 8/00-8/15

Claims (1)

(57)【特許請求の範囲】 【請求項1】被検体の血管内血流情報を計測する超音波
血流計において、振動子を縦方向に2段以上、かつ横方
向に複数個直線上に配列し、少なくとも1つの段の振動
子列を計測対象血管位置を測定する血管位置測定用とな
し、一方、他の段の振動子列を血流速度検出用となした
2次元アレイ型超音波プローブと、このプローブを制御
する制御手段とを備え、前記血管位置測定用振動子列
ら同時刻に超音波インパルスを発信することにより計測
対象血管位置を測定すると共に、血管位置測定用振動子
列の中で該測定によって得た血管からの反射波を受信し
振動子に対応する血流速度検出用振動子が超音波ビー
ム照射位置と検出時間を可変制御することにより血管内
の血流情報のみを計測するように構成されていることを
特徴とする位置自動追尾型超音波血流計測装置。
(57) [Claim 1] In an ultrasonic blood flow meter for measuring blood flow information in a blood vessel of a subject, two or more transducers are arranged in a longitudinal direction and a plurality of transducers are arranged in a straight line in a lateral direction. A two-dimensional array-type super array in which at least one of the transducer rows is used for measuring a blood vessel position for measuring the position of a blood vessel to be measured, while the other transducer row is used for detecting a blood flow velocity. and the ultrasonic probe, and a control means for controlling the probe, or the blood vessel position measuring transducer columns
With measuring the measurement target blood vessel position by transmitting ultrasonic waves impulse Luo same time, the blood vessel position measurement transducer
Receiving the reflected wave from the blood vessel obtained by the measurement in the column
A blood flow velocity detecting vibrator corresponding to the vibrator which is configured to measure only blood flow information in a blood vessel by variably controlling an ultrasonic beam irradiation position and a detection time. Automatic tracking ultrasonic blood flow measurement device.
JP2000195623A 2000-06-29 2000-06-29 Position automatic tracking type ultrasonic blood flow measurement device Expired - Fee Related JP3378941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195623A JP3378941B2 (en) 2000-06-29 2000-06-29 Position automatic tracking type ultrasonic blood flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195623A JP3378941B2 (en) 2000-06-29 2000-06-29 Position automatic tracking type ultrasonic blood flow measurement device

Publications (2)

Publication Number Publication Date
JP2002011008A JP2002011008A (en) 2002-01-15
JP3378941B2 true JP3378941B2 (en) 2003-02-17

Family

ID=18694263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195623A Expired - Fee Related JP3378941B2 (en) 2000-06-29 2000-06-29 Position automatic tracking type ultrasonic blood flow measurement device

Country Status (1)

Country Link
JP (1) JP3378941B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4441664B2 (en) * 2004-07-28 2010-03-31 株式会社ユネクス Blood vessel shape measuring device and blood flow measuring device
JP5499938B2 (en) 2010-06-25 2014-05-21 セイコーエプソン株式会社 Ultrasonic sensor, measuring device, probe, and measuring system

Also Published As

Publication number Publication date
JP2002011008A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
US6645147B1 (en) Diagnostic medical ultrasound image and system for contrast agent imaging
JP4602972B2 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
US6547731B1 (en) Method for assessing blood flow and apparatus thereof
Lewis et al. Measurement of volume flow in the human common femoral artery using a duplex ultrasound system
US7022077B2 (en) Systems and methods for making noninvasive assessments of cardiac tissue and parameters
US7404798B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus control method
WO2005055831A1 (en) Ultrasonograph and ultrasonography
JPWO2006043528A1 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
Dumont et al. Lower-limb vascular imaging with acoustic radiation force elastography: demonstration of in vivo feasibility
WO2005112774A1 (en) Ultrasonic diagnostic apparatus and method for controlling ultrasonic diagnostic apparatus
JP5609960B2 (en) Ultrasonic diagnostic equipment
Thrush et al. Vascular Ultrasound: How, why and when
Hartley et al. An ultrasonic method for measuring tissue displacement: technical details and validation for measuring myocardial thickening
JP4191980B2 (en) Ultrasonic diagnostic apparatus and ultrasonic measurement method
JP5014132B2 (en) Ultrasonic diagnostic equipment
JP2008161546A (en) Ultrasonic diagnostic apparatus
JP3378941B2 (en) Position automatic tracking type ultrasonic blood flow measurement device
JP3668687B2 (en) Pulse wave velocity measuring device and ultrasonic diagnostic device
Sikdar et al. Ultrasonic technique for imaging tissue vibrations: preliminary results
JP2009000444A (en) Ultrasonic diagnostic equipment
Murata et al. Measurement of local pulse wave velocity on aorta for noninvasive diagnosis of arteriosclerosis
Bonnefous Blood flow and tissue motion with ultrasound for vascular applications
Strandness Jr History of ultrasonic duplex scanning
O'Leary Vascular ultrasonography
JPH0767451B2 (en) Ultrasonic tissue displacement measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141213

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees