JP3377563B2 - Gas turbine air-cooled rotor blades - Google Patents

Gas turbine air-cooled rotor blades

Info

Publication number
JP3377563B2
JP3377563B2 JP22332493A JP22332493A JP3377563B2 JP 3377563 B2 JP3377563 B2 JP 3377563B2 JP 22332493 A JP22332493 A JP 22332493A JP 22332493 A JP22332493 A JP 22332493A JP 3377563 B2 JP3377563 B2 JP 3377563B2
Authority
JP
Japan
Prior art keywords
gas turbine
cooling
blade
turbulence promoter
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22332493A
Other languages
Japanese (ja)
Other versions
JPH0777006A (en
Inventor
正幸 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22332493A priority Critical patent/JP3377563B2/en
Publication of JPH0777006A publication Critical patent/JPH0777006A/en
Application granted granted Critical
Publication of JP3377563B2 publication Critical patent/JP3377563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ガスタービンの動翼の
冷却空気通路に設けられたタービュレンスプロモータを
改良したガスタービンの空気冷却動翼に関する。 【0002】 【従来の技術】図3(b)は、従来のガスタービン動翼
の一例の破断斜視図である。翼根1の底部からガスター
ビン動翼内へ流入した冷却空気は、矢印の方向に流れて
動翼を冷却する。すなわち前縁側の空気入口2Aから流
入した冷却空気は、タービュレンスプロモータを形成す
る冷却フィン3Aを有する冷却空気通路を流れて翼を冷
却し、図3(a)及び図3(b)に示すチップシニング
(tip thinnig)4が設けられた翼頂部の空
気出口穴5から流出して、主ガス流れに合流する。また
後縁側の空気入口2Bから流入した冷却空気は、タービ
ュレンスプロモータを形成する冷却フィン3Aが設けら
れた冷却空気通路を矢印の方向に流れ、ピンフィン6で
翼後縁を冷却したのち空気出口穴7から流出して、主ガ
ス流れに合流する。 【0003】図4は冷却フィン3Aの断面図である。冷
却フィン3Aは、断面矩形状の形状を有しており、伝熱
面積を増して熱通過量を増大させると共に流れに乱れを
与えて熱伝達率を向上させ、タービュレンスプロモータ
(turbulence promotor)として冷
却効果を促進する。 【0004】図5はタービュレンスプロモータの原理説
明図である。冷却フィン3Aの下流では、流れは強制的
にはく離し、流線は、図に示すように壁側に向かうと共
に、冷却フィン3Aの下流には、うずが誘導される。こ
のうずの端Aは、流線が下流につながるか、又は上流に
もどるかの境界となっており、この箇所で流れが再付着
するため一般に再付着点と呼ばれる。熱伝達率は、ター
ビュレンスプロモータ直後のうず域では低いが再付着点
以降で上昇する。すなわち、図のB域に比べて、C域で
の熱通過量は大きく、冷却効果に大きな差が発生する。 【0005】 【発明が解決しようとする課題】前記従来のガスタービ
ンの空気冷却動翼では、次の問題点がある。 (1)タービュレンスプロモータ後流で再付着点に達す
るまでの冷却面熱伝達率が低く、この域の面積が大きい
ため冷却効果が比較的低かった。 (2)このため動翼メタル温度が高く、また温度を下げ
るために大量の冷却空気を必要としていた。前者は翼の
寿命を短縮し、後者はガスタービン効率を低下させてい
た。 【0006】本発明は、以上の問題点を解決することが
できるガスタービンの空気冷却動翼を提供しようとする
ものである。 【0007】 【課題を解決するための手段】本発明のガスタービンの
空気冷却動翼は、冷却通路に設けられたタービュレンス
プロモータを円錐部と同円錐部に連設された半球部より
なる涙滴形状に形成し、かつ、前記円錐部を冷却空気通
路の上流側に位置させたことを特徴とする。 【0008】 【作用】本発明では、冷却空気通路に設けられたタービ
ュレンスプロモータを円錐部と同円錐部に連設された半
球部よりなる涙滴形状に形成し、かつ、前記円錐部を冷
却空気通路の上流側に位置させているために、タービュ
レンスプロモータによるうず域が減少し、うずの端すな
わち再付着点が上流側に移行する。従って、高熱伝達域
が増大して、低熱伝達域が減少する。 【0009】 【実施例】本発明の一実施例を、図1及び図2によって
説明する。図1は同実施例に係るガスタービンの空気冷
却翼のタービュレンスプロモータの断面図、図2は同実
施例における流線と熱伝達率の説明図である。 【0010】図1において、タービン空気冷却動翼内の
冷却空気通路に設けられたタービュレンスプロモータ3
は、後方の断面積が拡大する円錐部Dとその後部に半球
部Eが連設されるように冷却空気通路を削除して涙滴形
状に形成され、円錐部Dを冷却空気通路の上流側に位置
させている。このような涙滴形状のタービュレンスプロ
モータ3が冷却空気通路の上流側から下流側へわたって
複数個連設されている。 【0011】本実施例では、上流側の円錐部Dと下流側
の半球部Eで涙滴形状のタービュレンスプロモータ3を
設けているために、図2に示すように、タービュレンス
プロモータによって発生するうず域は従来に比べて著し
く減少し、うずの端すなわち再付着点Aは上流側に移行
している。これに伴って低熱伝達域Bが減少し、高熱伝
達域Cが増大する。従って、本実施例では、伝熱効果を
上げることができ、冷却空気量を少なくして動翼メタル
の温度上昇を防止することができる。 【0012】 【発明の効果】本発明は、ガスタービンの空気冷却動翼
の冷却空気通路に設けられたタービュレンスプロモータ
を、円錐部と同円錐部に連設された半球部で涙滴形状に
形成し、かつ、前記円錐部を冷却空気通路の上流側に位
置させているので、タービュレンスプロモータの伝熱効
果が向上し、少ない冷却空気で効果的な冷却を行うこと
ができる。従ってガスタービン効率が向上し、翼の寿命
の延長を図ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine air-cooling blade in which a turbulence promoter provided in a cooling air passage of a gas turbine blade is improved. 2. Description of the Related Art FIG. 3B is a cutaway perspective view of an example of a conventional gas turbine blade. The cooling air flowing into the gas turbine blade from the bottom of the blade root 1 flows in the direction of the arrow to cool the blade. That is, the cooling air flowing from the air inlet 2A on the leading edge side flows through the cooling air passage having the cooling fins 3A forming the turbulence promoter to cool the wings, and the chips shown in FIGS. 3A and 3B. It flows out from the air outlet hole 5 at the tip of the blade where the thinning 4 is provided, and joins the main gas flow. The cooling air flowing from the air inlet 2B on the trailing edge side flows in the direction of the arrow in the cooling air passage provided with the cooling fins 3A forming the turbulence promoter, and after cooling the trailing edge of the blade with the pin fins 6, the air outlet hole is formed. 7 and merges with the main gas stream. FIG. 4 is a sectional view of a cooling fin 3A. The cooling fin 3 </ b> A has a rectangular cross-sectional shape, increases a heat transfer area to increase the amount of heat passing, disturbs a flow to improve a heat transfer coefficient, and serves as a turbulence promoter. Promotes the cooling effect. FIG. 5 is a diagram for explaining the principle of a turbulence promoter. Downstream of the cooling fins 3A, the flow is forcibly released, and the streamlines are directed toward the wall as shown in the figure, and eddies are induced downstream of the cooling fins 3A. The end A of the vortex is a boundary where the streamline connects downstream or returns upstream, and is generally referred to as a reattachment point because the flow reattaches at this point. The heat transfer coefficient is low in the vortex region immediately after the turbulence promoter, but increases after the reattachment point. That is, the amount of heat passing through the area C is larger than that in the area B in the drawing, and a large difference occurs in the cooling effect. [0005] The conventional air-cooled moving blade of the gas turbine has the following problems. (1) The heat transfer coefficient of the cooling surface until reaching the reattachment point downstream of the turbulence promoter was low, and the cooling effect was relatively low because the area of this area was large. (2) Therefore, the blade metal temperature is high, and a large amount of cooling air is required to lower the temperature. The former shortened the life of the blade and the latter reduced the gas turbine efficiency. An object of the present invention is to provide an air-cooled moving blade of a gas turbine which can solve the above problems. [0007] An air-cooled moving blade of a gas turbine according to the present invention is characterized in that a turbulence promoter provided in a cooling passage is formed by a conical portion and a hemispherical portion connected to the conical portion. It is formed in a drop shape, and the conical portion is located on the upstream side of the cooling air passage. According to the present invention, the turbulence promoter provided in the cooling air passage is formed into a teardrop shape comprising a conical portion and a hemispherical portion connected to the conical portion, and the conical portion is cooled. Since the turbulence promoter is located on the upstream side of the air passage, the vortex area of the turbulence promoter is reduced, and the end of the vortex, that is, the reattachment point is shifted to the upstream side. Therefore, the high heat transfer area increases and the low heat transfer area decreases. An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view of a turbulence promoter of an air cooling blade of a gas turbine according to the embodiment, and FIG. 2 is an explanatory diagram of streamlines and heat transfer coefficients in the embodiment. In FIG. 1, a turbulence promoter 3 provided in a cooling air passage in a turbine air cooling blade is provided.
Is formed in a teardrop shape by removing a cooling air passage so that a conical portion D having an enlarged rear cross-sectional area and a hemispherical portion E at a rear portion thereof are formed, and the conical portion D is formed upstream of the cooling air passage. It is located in. A plurality of such teardrop-shaped turbulence promoters 3 are provided in series from the upstream side to the downstream side of the cooling air passage. In this embodiment, since the turbulence promoter 3 having a teardrop shape is provided in the conical portion D on the upstream side and the hemispherical portion E on the downstream side, the turbulence promoter is generated by the turbulence promoter as shown in FIG. The eddy area is significantly reduced as compared with the conventional case, and the end of the eddy, that is, the re-adhesion point A is shifted upstream. Accordingly, the low heat transfer region B decreases and the high heat transfer region C increases. Therefore, in this embodiment, the heat transfer effect can be improved, and the cooling air amount can be reduced to prevent the temperature of the moving blade metal from rising. According to the present invention, a turbulence promoter provided in a cooling air passage of an air-cooling moving blade of a gas turbine is formed into a teardrop shape by a conical portion and a hemispherical portion connected to the conical portion. Since it is formed and the conical portion is located on the upstream side of the cooling air passage, the heat transfer effect of the turbulence promoter is improved, and effective cooling can be performed with less cooling air. Therefore, the gas turbine efficiency is improved, and the life of the blade can be extended.

【図面の簡単な説明】 【図1】本発明の一実施例に係るガスタービンの空気冷
却動翼のタービュレンスプロモータの断面図である。 【図2】同実施例における流線と熱伝達率の説明図であ
る。 【図3】従来のガスタービンの空気冷却動翼を示し、図
3(a)はその端面図、図3(b)はその破断斜視図で
ある。 【図4】従来のガスタービンの空気冷却動翼のタービュ
レンスプロモータの断面図である。 【図5】同従来のタービュレンスプロモータにおける流
線と熱伝達率の説明図である。 【符号の説明】 1 翼根 2A,2B 冷却空気入口 3 タービュレンスプロモータ 3A 冷却フィン 4 チップシニング 5,7 空気出口穴 6 ピンフィン A 再付着点 B 低熱伝達域 C 高熱伝達域 D 円錐部 E 半球部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a turbulence promoter of an air-cooled moving blade of a gas turbine according to one embodiment of the present invention. FIG. 2 is an explanatory diagram of streamlines and heat transfer coefficients in the embodiment. FIG. 3 shows an air-cooled moving blade of a conventional gas turbine, FIG. 3 (a) is an end view thereof, and FIG. 3 (b) is a cutaway perspective view thereof. FIG. 4 is a cross-sectional view of a turbulence promoter of an air-cooled moving blade of a conventional gas turbine. FIG. 5 is an explanatory diagram of streamlines and heat transfer coefficients in the conventional turbulence promoter. [Description of Signs] 1 Blade roots 2A, 2B Cooling air inlet 3 Turbulence promoter 3A Cooling fin 4 Chip thinning 5, 7 Air outlet hole 6 Pin fin A Reattachment point B Low heat transfer area C High heat transfer area D Conical part E hemisphere Department

フロントページの続き (56)参考文献 特開 平4−103802(JP,A) 特開 平5−10101(JP,A) 特開 昭61−1805(JP,A) 特開 昭59−231102(JP,A) 特開 昭59−113204(JP,A) 特開 平5−312002(JP,A) 特開 平7−19003(JP,A) 特開 平2−168697(JP,A) 米国特許5070937(US,A) (58)調査した分野(Int.Cl.7,DB名) F01D 5/18 Continuation of front page (56) References JP-A-4-103802 (JP, A) JP-A-5-10101 (JP, A) JP-A-61-1805 (JP, A) JP-A-59-231102 (JP) JP-A-59-113204 (JP, A) JP-A-5-312002 (JP, A) JP-A-7-19003 (JP, A) JP-A-2-1668697 (JP, A) US Pat. (US, A) (58) Field surveyed (Int. Cl. 7 , DB name) F01D 5/18

Claims (1)

(57)【特許請求の範囲】 【請求項1】 冷却空気通路にタービュレンスプロモー
タを有するガスタービンの空気冷却動翼において、ター
ビュレンスプロモータを円錐部と同円錐部に連設された
半球部よりなる涙滴形状に形成し、かつ、前記円錐部を
冷却空気通路の上流側に位置させたことを特徴とするガ
スタービンの空気冷却動翼。
(57) [Claim 1] In an air cooling moving blade of a gas turbine having a turbulence promoter in a cooling air passage, a turbulence promoter is formed by a conical portion and a hemispherical portion connected to the conical portion. An air-cooled moving blade for a gas turbine, wherein the air-cooled blade is formed in a teardrop shape, and the conical portion is located upstream of a cooling air passage.
JP22332493A 1993-09-08 1993-09-08 Gas turbine air-cooled rotor blades Expired - Lifetime JP3377563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22332493A JP3377563B2 (en) 1993-09-08 1993-09-08 Gas turbine air-cooled rotor blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22332493A JP3377563B2 (en) 1993-09-08 1993-09-08 Gas turbine air-cooled rotor blades

Publications (2)

Publication Number Publication Date
JPH0777006A JPH0777006A (en) 1995-03-20
JP3377563B2 true JP3377563B2 (en) 2003-02-17

Family

ID=16796373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22332493A Expired - Lifetime JP3377563B2 (en) 1993-09-08 1993-09-08 Gas turbine air-cooled rotor blades

Country Status (1)

Country Link
JP (1) JP3377563B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098397A (en) * 1998-06-08 2000-08-08 Caterpillar Inc. Combustor for a low-emissions gas turbine engine
US20100247328A1 (en) * 2006-06-06 2010-09-30 United Technologies Corporation Microcircuit cooling for blades
US8128366B2 (en) 2008-06-06 2012-03-06 United Technologies Corporation Counter-vortex film cooling hole design

Also Published As

Publication number Publication date
JPH0777006A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
US20220170383A1 (en) Engine component assembly
US8690538B2 (en) Leading edge cooling using chevron trip strips
US6538887B2 (en) Fan blade providing enhanced performance in air movement
US8596966B1 (en) Turbine vane with dirt separator
JP3689114B2 (en) Combustor liner equipment
JP3486192B2 (en) Cooled turbine blades
US7637720B1 (en) Turbulator for a turbine airfoil cooling passage
JP4063938B2 (en) Turbulent structure of the cooling passage of the blade of a gas turbine engine
EP1961917B1 (en) Local indented trailing edge heat transfer devices
JP2006342804A (en) Turbine airfoil with variable compound fillet
US20070297916A1 (en) Leading edge cooling using wrapped staggered-chevron trip strips
JPS58126402A (en) Aerofoil which can be cooled
KR20060051507A (en) Impingement cooling of large fillet of an airfoil
JPH10274001A (en) Turbulence promotion structure of cooling passage of blade inside gas turbine engine
TW200532097A (en) Micro-circuit platform
TWI307742B (en) Fan and impeller thereof
JP3040590B2 (en) Gas turbine blades
CN112459852B (en) Be applied to two water conservancy diversion rib water conservancy diversion structures of turbine blade trailing edge half-splitting seam
JP2007327494A (en) Turbine engine component and cooling micro circuit
TWI268995B (en) Fan duct device
US8016563B1 (en) Turbine blade with tip turn cooling
JP3124109B2 (en) Gas turbine vane
JP3377563B2 (en) Gas turbine air-cooled rotor blades
CN112343667B (en) Continuous V-shaped rib flow guide structure applied to turbine blade trailing edge half-splitting seam
JP2818266B2 (en) Gas turbine cooling blade

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11