JP3375870B2 - Seismic isolation valve - Google Patents

Seismic isolation valve

Info

Publication number
JP3375870B2
JP3375870B2 JP34157497A JP34157497A JP3375870B2 JP 3375870 B2 JP3375870 B2 JP 3375870B2 JP 34157497 A JP34157497 A JP 34157497A JP 34157497 A JP34157497 A JP 34157497A JP 3375870 B2 JP3375870 B2 JP 3375870B2
Authority
JP
Japan
Prior art keywords
signal
value
shock
valve
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34157497A
Other languages
Japanese (ja)
Other versions
JPH11173447A (en
Inventor
一弘 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP34157497A priority Critical patent/JP3375870B2/en
Publication of JPH11173447A publication Critical patent/JPH11173447A/en
Application granted granted Critical
Publication of JP3375870B2 publication Critical patent/JP3375870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ガス管の管路の途
中に設けられる耐震遮断弁に関し、詳しくは、地震信号
や衝撃信号を検出して自動的に管路を遮断する耐震遮断
弁に関するものである。 【0002】 【従来の技術】図3に従来の感震器、図4にこの感震器
を取り付けた耐震遮断弁を示している。感震器1はポッ
ト13内に移動可能のボール14を設け、このボール1
4が鎖線の位置に移動すると可動接点15が押されて固
定接点16に接触しスイッチONとなり、これにより、
横方向(矢印17方向)の揺れを検知するようになって
いる。 【0003】このような感震器1を取り付けた耐震遮断
弁7を、図4のようにガス管5に取り付け、耐震遮断弁
7が揺れを受けるとその弁が閉じ、管路を遮断するよう
になっている。 【0004】図5に従来の耐震遮断弁の論理回路図を示
しており、耐震遮断弁7に地震の振動加速度が加わった
とき、感震器1はこの振動加速度をON−OFF信号と
してマイコン部4に出力する。マイコン部4に入力され
た信号は、マイコン部4で地震と判断したとき、耐震遮
断弁7に弁閉の信号を出力し、これによって弁を遮断し
てガスの流れを止めるようになっている。 【0005】 【発明が解決しようとする課題】上記のような感震器
(地震センサ)1は、水平方向の揺れは感知しやすい
が、縦揺れに対しては不適格であり、したがって、この
感震器1を取り付けた耐震遮断弁7は、図4のように水
平方向のガス管5の上部に(上向き)に取り付ける取付
け姿勢に限定され、例えば、垂直方向のガス管に横向き
(図2(a)参照)に、あるいは水平方向のガス管に天
地逆向き(図2(b)参照)に取り付けた場合は感震器
1が正常に作動しない。したがって、従来は耐震遮断弁
7の取付け姿勢が制約され、施工性が良くないという問
題がある。 【0006】さらに、また、従来の方式では、感震器1
により地震振動をON−OFF信号で認識しているだけ
で、振動の大きさについては検出できないし、記録もし
ない。したがって、地震以外の例えば輸送中や施工中の
落下等による衝撃も大きさは感知できないし、記録もし
ない。一般に耐震遮断弁は、輸送や施工中に衝撃にあっ
たものは、安全上使用不能にする必要があるが、従来は
衝撃値の大きさを検出できないため、必要以上に使用不
能と判定することが多かった。 【0007】本発明は上述の点に着目してなされたもの
で、取付け姿勢の制約がなく、しかも地震信号のみなら
ずそれ以外の衝撃信号も大きさまで正確に検出でき、検
出精度が高く、安全性に優れた耐震遮断弁を提供するこ
とを目的とする。 【0008】 【課題を解決するための手段】前記目的を達成するた
め、請求項1記載の発明は、振動を検出する感震器が内
蔵され、該感震器からの信号に基づいて弁を作動させて
ガスの流れを遮断するようにしたガス配管系内に設けら
れる耐震遮断弁であって、前記感震器としてX軸、Y
軸、Z軸より出力されている加速度信号の絶対値を電圧
値に変換して出力する3軸加速度センサを使用し、前記
電圧値を電圧判定回路に入力して地震信号か地震以外の
衝撃信号かを判断し、地震信号であればそのガル値を衝
撃判別回路で計算してその値をマイコン部に記憶すると
共に、前記ガル値が規定値以上のときは、前記マイコン
部からの信号に基づいて前記弁を閉じるようにし、衝撃
信号であればその衝撃値を前記衝撃判別回路で計算して
その値を前記マイコン部に記憶し、かつ前記衝撃値が規
定値以上のときは前記マイコン部からの信号に基づいて
衝撃を受けたことをディスプレイに警告表示すると共に
出荷時に閉じられている前記弁を復帰不能に構成したこ
とを特徴とするものである。 【0009】このため、請求項1記載の発明では、3軸
加速度センサが地震の揺れ、あるいは落下等による衝撃
を受けると、3軸加速度センサからその大きさに対応し
た電圧値が電圧判定回路に送られ、電圧判定回路では、
地震による揺れと衝撃とを判別し、地震による揺れと判
定したときは、衝撃判別回路に送られてガル値を計算
し、ガル値が規定値以上の場合マイコン部からの信号で
耐震遮断弁の弁を閉じる。 【0010】地震以外の衝撃信号が3軸加速度センサに
加わった場合は、電圧値の変化に基づいて電圧判定回路
が衝撃信号と判断し、衝撃判別回路で計算した衝撃値を
マイコン部に記憶すると共に、規定値以上の衝撃値の場
合にはディスプレイに警告表示する。 【0011】3軸加速度センサを使用したことにより、
横揺れ、縦揺れの関係なく地震の揺れを正確にとらえる
ことができ、また、揺れの大きさ、方向も検出でき、安
全性の高い耐震遮断弁が得られる。 【0012】また、3軸加速度センサは、立体角360
度を検出できるので、感知精度は耐震遮断弁の取付け姿
勢に影響されず、施工が容易になる。 【0013】 【0014】さらに、請求項記載の発明では、例えば
輸送や施工中に耐震遮断弁が衝撃を受け、その衝撃値が
規定値以上のときは閉じた弁が復帰不能となって使用不
能状態となる。 【0015】 【0016】 【0017】 【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。なお、図3ないし図5と同一部材
または同一機能のものは同一符号で示している。 【0018】図1において、ガスの配管系内に設けられ
た耐震遮断弁7の内部に、従来の感震器1に代えて3軸
加速度センサ10が設けられ、さらに、電圧判定回路
2、衝撃判別回路3、マイコン部4、ディスプレイ6が
内蔵されている。これらの電気回路装置10,2,3,
4,及び6は内蔵された乾電池等の電源で駆動するよう
になっている。 【0019】3軸加速度センサ10は、X軸、Y軸、Z
軸より出力されている加速度信号の絶対値Gを、 G= √(X2 +Y2 +Z2 ) の演算で計算するものである。 【0020】3軸加速度センサ10が地震の揺れ、ある
いは落下等による衝撃を受けると、3軸加速度センサ1
0からその大きさ(G)に対応した電圧値が出力され、
電圧判定回路2に送られる。 【0021】電圧判定回路2では、地震による揺れと衝
撃とを判別する機能を持っている。すなわち、地震の揺
れは衝撃よりもゆっくりした周期を持つので、その特性
を利用する。地震のゆっくりとした周期は3軸加速度セ
ンサ10から出力される電圧値の変化として現れるの
で、その電圧値の変化に基づいて電圧判定回路2で地震
信号と判断する。 【0022】電圧判定回路2で地震と判断された信号、
すなわち地震信号は衝撃判別回路3に送られ、衝撃判別
回路3で地震のガル値を計算する。ガル値が例えば80
〜250ガルの加速度範囲の場合、マイコン部4からの
信号で耐震遮断弁7の弁を閉じる。また、このガル値は
マイコン部4に記憶される。 【0023】地震以外の衝撃信号が3軸加速度センサ1
0に加わった場合、3軸加速度センサ10からの電圧値
の変化(周期が地震信号より速い)に基づいて電圧判定
回路2が衝撃信号と判断し、衝撃判別回路3で計算され
た衝撃値はマイコン部4に記憶されると共に、そのとき
の衝撃値が規定以上のときはマイコン部4からの信号に
基づいてディスプレイ6に警告表示する。例えば、輸送
中の落下、施工時の落下等により規定値以上の衝撃を受
けた場合は、マイコン部4からの信号に基づいて、ディ
スプレイ6に警告表示する。この表示により施工前に衝
撃を受けた耐震遮断弁7の使用不能を的確に判定するこ
とができる。 【0024】また、好ましくは規定値以上の衝撃を受け
たときに出荷時に閉じている弁はマイコン部4からの信
号に基づいて施工後復帰をかけても復帰しないように構
成する。この構成により輸送や施工中に衝撃を受けた使
用不能の耐震遮断弁の使用を未然に防止できる。この復
帰不能は、例えば異常衝撃によりスイッチがOFFとな
って電気的導通状態がカットされることにより弁の開動
作を不能とする方法や、異常衝撃があったという情報と
共にこの異常衝撃をマイコン部4が記憶し、その後の弁
の復帰操作に対してマイコン部4が復帰を拒絶するよう
にして弁の開動作を不能とする方法が採用される。 【0025】また、マイコン部4には、前記のガル値、
衝撃値のほか、地震または衝撃の方向、日時等もデータ
として記憶されている。マイコン部4に記憶されたデー
タは、マイコン部4から直接読み出すことができるが、
図1の破線で示すように、耐震遮断弁に付帯させた設定
器8、通信用コントローラ9から読み出し、ディスプレ
に表示することができるようになっている。したが
って、衝撃の大きさや方向、日時を画面で知ることで、
クレームの解析や機器管理を行うことが可能となる。 【0026】以上のように、本実施の形態では、感震器
(地震センサ)として3軸加速度センサ10を使用して
いるので、横揺れ、縦揺れの関係なく地震の揺れを正確
にとらえることができ、図2(a)のように壁面11に
沿う垂直方向のガス管5に横向きに、あるいは同図
(b)のように天井12に沿う水平方向のガス管5に逆
向き(下向き)に取り付けた場合でも感震器が正常に作
動するため施工が容易になる。 【0027】また、揺れ(加速度)の大きさ、方向も検
出できるため、輸送や施工中に生じた衝撃も判定でき、
衝撃による使用不能の耐震遮断弁7を的確に判定するこ
とができる。 【0028】また、3軸加速度センサ10は立体角36
0度を検出できるので、耐震遮断弁7の取付け姿勢に影
響されず、施工が容易になる。 【0029】 【発明の効果】以上、詳述したように、請求項1記載の
発明によれば、感震器に3軸加速度センサを使用したこ
とにより、横揺れ、縦揺れの関係なく地震の揺れの大き
さおよび方向を正確にとらえることができ、また、施工
前の衝撃をディスプレイで警告表示することができるの
で、安全性の高い耐震遮断弁が得られる。また、立体角
360度を検出できるので、感知精度は耐震遮断弁の取
付け姿勢に影響されず、施工が容易になる。 【0030】さらに、請求項記載の発明によれば、施
工前の衝撃値が規定値以上のとき出荷時に閉じられてい
る弁を復帰不能に構成したので、例えば輸送や施工中に
衝撃を受けた使用不能の耐震遮断弁を復帰させての使用
を未然に防止できる。 【0031】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-seismic shut-off valve provided in the middle of a gas pipe, and more particularly, to an anti-seismic shut-off valve for detecting a seismic signal or an impact signal. The present invention relates to a seismic isolation valve for shutting off a pipeline. 2. Description of the Related Art FIG. 3 shows a conventional seismic sensor, and FIG. 4 shows a seismic isolation valve to which the seismic sensor is attached. The seismic sensor 1 has a movable ball 14 provided in a pot 13.
When 4 moves to the position indicated by the dashed line, the movable contact 15 is pushed and comes into contact with the fixed contact 16 so that the switch is turned ON.
A horizontal (direction of arrow 17) swing is detected. A seismic isolation valve 7 equipped with such a seismic sensor 1 is attached to a gas pipe 5 as shown in FIG. 4. When the seismic isolation valve 7 is shaken, the valve closes and shuts off the pipeline. It has become. FIG. 5 shows a logical circuit diagram of a conventional seismic isolation valve. When an earthquake acceleration is applied to the seismic isolation valve 7, the seismic sensor 1 uses the vibration acceleration as an ON-OFF signal as a microcomputer unit. 4 is output. When the microcomputer unit 4 determines that an earthquake has occurred, the microcomputer unit 4 outputs a signal to the seismic isolation valve 7 to close the valve, thereby shutting off the valve and stopping the gas flow. . [0005] The seismic sensor (earthquake sensor) 1 as described above is easy to detect horizontal shaking, but is not suitable for vertical shaking. The seismic isolation valve 7 to which the seismic sensor 1 is attached is limited to an attachment posture in which the seismic isolation valve 7 is attached (upward) to the upper part of the horizontal gas pipe 5 as shown in FIG. (See FIG. 2A), or when mounted on a horizontal gas pipe in the upside down direction (see FIG. 2B), the seismic sensor 1 does not operate normally. Therefore, conventionally, the mounting posture of the seismic isolation valve 7 is restricted, and there is a problem that workability is not good. Further, in the conventional method, the seismic
, The magnitude of the vibration cannot be detected or recorded simply by recognizing the seismic vibration with the ON-OFF signal. Therefore, the magnitude of an impact other than an earthquake caused by a fall during transportation or construction, for example, cannot be sensed or recorded. Generally, seismic isolation valves that have been subjected to an impact during transportation or construction must be disabled for safety reasons.However, since the magnitude of the impact value cannot be detected in the past, it should be judged that the valve cannot be used more than necessary. There were many. The present invention has been made in view of the above points, has no restriction on the mounting posture, and can accurately detect not only the seismic signal but also other shock signals up to the magnitude, high detection accuracy, and safety. An object of the present invention is to provide an earthquake-resistant shut-off valve having excellent performance. [0008] In order to achieve the above object, the invention according to claim 1 is provided with a built-in vibration sensor for detecting vibration, and a valve is opened based on a signal from the vibration device. A seismic isolation valve provided in a gas piping system that is operated to shut off a gas flow, wherein the seismic sensor is an X-axis, a Y-axis.
Using a three-axis acceleration sensor that converts the absolute value of an acceleration signal output from the Z axis and the Z axis into a voltage value and outputs the voltage value, inputs the voltage value to a voltage determination circuit, and outputs an earthquake signal or a shock signal other than an earthquake. In the case of an earthquake signal, the galvanic value is calculated by an impact discriminating circuit and stored in the microcomputer unit, and when the galvanic value is equal to or greater than a specified value, the galvanic value is calculated based on the signal from the microcomputer unit. In the case of a shock signal, the shock value is calculated by the shock discriminating circuit, and the calculated value is stored in the microcomputer unit. with a warning on the display that shocked based on the signal
It is characterized in that the valve, which is closed at the time of shipment, cannot be returned . Therefore, according to the first aspect of the present invention, when the three-axis acceleration sensor receives an impact due to a shaking or a fall of an earthquake, a voltage value corresponding to the magnitude is sent from the three-axis acceleration sensor to the voltage determination circuit. Sent to the voltage judgment circuit.
It discriminates between shaking and shock due to an earthquake, and when it is determined to be shaking due to an earthquake, it is sent to an impact discriminating circuit to calculate the gull value. Close the valve. When a shock signal other than an earthquake is applied to the three-axis acceleration sensor, the voltage judgment circuit judges the shock signal based on a change in the voltage value, and stores the shock value calculated by the shock judgment circuit in the microcomputer. In addition, a warning is displayed on the display when the impact value is equal to or more than the specified value. [0011] By using a three-axis acceleration sensor,
An earthquake shake can be accurately detected regardless of the roll and the pitch, and the magnitude and direction of the shake can be detected, so that a highly safe seismic isolation valve can be obtained. The three-axis acceleration sensor has a solid angle of 360.
Since the degree can be detected, the sensing accuracy is not affected by the mounting posture of the seismic isolation valve, and the construction is facilitated. Further , according to the first aspect of the invention, for example, the seismic isolation valve is shocked during transportation or construction, and when the shock value is equal to or greater than a specified value, the closed valve cannot be returned and cannot be used. It becomes impossible state. Embodiments of the present invention will be described below with reference to the drawings. The same members or components having the same functions as those in FIGS. 3 to 5 are denoted by the same reference numerals. In FIG. 1, a three-axis acceleration sensor 10 is provided in place of a conventional seismic sensor 1 inside a seismic isolation valve 7 provided in a gas piping system. A decision circuit 3, a microcomputer unit 4, and a display 6 are built in. These electric circuit devices 10, 2, 3,
4, and 6 are driven by a power source such as a built-in dry battery. The three-axis acceleration sensor 10 has an X-axis, a Y-axis, and a Z-axis.
The absolute value G of the acceleration signal output from the axis is calculated by the following equation: G = √ (X 2 + Y 2 + Z 2 ). When the three-axis acceleration sensor 10 receives an impact due to a shaking of an earthquake, a fall, or the like, the three-axis acceleration sensor 1
From 0, a voltage value corresponding to the magnitude (G) is output,
It is sent to the voltage judgment circuit 2. The voltage judging circuit 2 has a function of discriminating between shaking and impact due to an earthquake. That is, since the shaking of the earthquake has a slower period than the shock, its characteristics are used. Since the slow cycle of the earthquake appears as a change in the voltage value output from the three-axis acceleration sensor 10, the voltage determination circuit 2 determines that the signal is an earthquake signal based on the change in the voltage value. A signal determined by the voltage determination circuit 2 to be an earthquake;
That is, the earthquake signal is sent to the shock discrimination circuit 3, and the shock discrimination circuit 3 calculates the gull value of the earthquake. Gull value is, for example, 80
In the case of an acceleration range of up to 250 gal, the valve of the seismic isolation valve 7 is closed by a signal from the microcomputer unit 4. This gal value is stored in the microcomputer unit 4. A shock signal other than an earthquake is a three-axis acceleration sensor 1
When it is added to 0, the voltage determination circuit 2 determines a shock signal based on a change in the voltage value from the three-axis acceleration sensor 10 (the cycle is faster than the earthquake signal), and the shock value calculated by the shock determination circuit 3 is The information is stored in the microcomputer unit 4, and when the impact value at that time is equal to or greater than a specified value, a warning is displayed on the display 6 based on a signal from the microcomputer unit 4. For example, when a shock exceeding a specified value is received due to a drop during transportation, a drop during construction, or the like, a warning is displayed on the display 6 based on a signal from the microcomputer unit 4. With this display, it is possible to accurately determine whether the seismic isolation valve 7 that has been subjected to an impact before construction can be used. Preferably, the valve which is closed at the time of shipment upon receiving an impact equal to or more than a specified value is not reset even when the valve is reset after construction based on a signal from the microcomputer section 4. With this configuration, it is possible to prevent the use of the unusable seismic isolation valve that has been shocked during transportation or construction. The unrecoverable state can be determined, for example, by turning off the switch due to an abnormal shock and cutting off the electrical conduction state, thereby disabling the opening operation of the valve. 4, the microcomputer 4 rejects the return operation of the valve in response to a subsequent operation of returning the valve to disable the valve opening operation. Further, the microcomputer unit 4 has the above-described gal value,
In addition to the shock value, the direction of the earthquake or shock, date and time, etc. are stored as data. The data stored in the microcomputer unit 4 can be read directly from the microcomputer unit 4,
As shown by the broken line in FIG. 1, it is possible to read out from the setting device 8 and the communication controller 9 attached to the seismic isolation valve and display them on the display 6 . Therefore, by knowing the magnitude, direction, and date and time of the impact on the screen,
It is possible to analyze claims and manage devices. As described above, in this embodiment, since the three-axis acceleration sensor 10 is used as a seismic sensor (earthquake sensor), it is possible to accurately detect the shaking of the earthquake regardless of the roll and pitch. As shown in FIG. 2 (a), the horizontal direction is directed to the vertical gas pipe 5 along the wall surface 11 or the horizontal direction is directed to the horizontal gas pipe 5 along the ceiling 12 (downward) as shown in FIG. 2 (b). Even if it is attached to the, the seismic sensor operates normally and the installation is easy. Also, since the magnitude and direction of the sway (acceleration) can be detected, it is possible to determine the impact generated during transportation and construction.
An unusable seismic isolation valve 7 that cannot be used due to an impact can be accurately determined. The three-axis acceleration sensor 10 has a solid angle of 36.
Since 0 degree can be detected, the installation is facilitated without being affected by the mounting posture of the seismic isolation valve 7. As described above in detail, according to the first aspect of the present invention, the use of the three-axis acceleration sensor for the seismic sensor allows the earthquake to be performed regardless of the roll and the pitch. Since the magnitude and direction of the shaking can be accurately grasped and the impact before the construction can be displayed on the display as a warning, a highly safe seismic isolation valve can be obtained. Further, since the solid angle of 360 degrees can be detected, the sensing accuracy is not affected by the mounting posture of the seismic isolation valve, and the construction is facilitated. Furthermore, according to the first aspect of the invention, since the impact value of the previous construction has no return constructed a valve is closed at the time of shipment when the specified value or more, the impact during transportation and construction if example embodiment The use of the received unusable seismic isolation valve can be prevented beforehand. [0031]

【図面の簡単な説明】 【図1】本発明の耐震遮断弁の実施の形態を示す論理回
路図である。 【図2】(a),(b)は各々本発明の耐震遮断弁の施
工例を示す側面図である。 【図3】従来の感振器の作動説明図である。 【図4】従来の耐震遮断弁の施行例を示す側面図であ
る。 【図5】従来の耐震遮断弁の論理回路図である。 【符号の説明】 2 電圧判定回路 3 衝撃判別回路 4 マイコン部 5 ガス管 6 ディスプレイ 7 耐震遮断弁 10 3軸加速度センサ(感震器)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a logic circuit diagram showing an embodiment of a seismic isolation valve of the present invention. FIGS. 2 (a) and 2 (b) are side views each showing a construction example of the seismic isolation valve of the present invention. FIG. 3 is an operation explanatory view of a conventional vibration sensor. FIG. 4 is a side view showing an example of implementation of a conventional seismic isolation valve. FIG. 5 is a logic circuit diagram of a conventional seismic isolation valve. [Description of Signs] 2 Voltage judgment circuit 3 Impact judgment circuit 4 Microcomputer unit 5 Gas pipe 6 Display 7 Seismic isolation valve 10 3-axis acceleration sensor (seismic sensor)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16K 17/36 G01F 3/22 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F16K 17/36 G01F 3/22

Claims (1)

(57)【特許請求の範囲】 【請求項1】 振動を検出する感震器が内蔵され、該感
震器からの信号に基づいて弁を作動させてガスの流れを
遮断するようにしたガス配管系内に設けられる耐震遮断
弁であって、 前記感震器としてX軸、Y軸、Z軸より出力されている
加速度信号の絶対値を電圧値に変換して出力する3軸加
速度センサを使用し、前記電圧値を電圧判定回路に入力
して地震信号か地震以外の衝撃信号かを判断し、地震信
号であればそのガル値を衝撃判別回路で計算してその値
をマイコン部に記憶すると共に、前記ガル値が規定値以
上のときは、前記マイコン部からの信号に基づいて前記
弁を閉じるようにし、衝撃信号であればその衝撃値を前
記衝撃判別回路で計算してその値を前記マイコン部に記
し、かつ前記衝撃値が規定値以上のときは前記マイコ
ン部からの信号に基づいて衝撃を受けたことをディスプ
レイに警告表示すると共に出荷時に閉じられている前記
弁を復帰不能に構成したことを特徴とする耐震遮断弁。
(57) [Claim 1] A gas having a built-in seismic sensor for detecting vibration, wherein a valve is operated based on a signal from the vibrator to shut off a gas flow. A seismic isolation valve provided in a piping system, wherein the seismic sensor is a three-axis acceleration sensor that converts an absolute value of an acceleration signal output from an X-axis, a Y-axis, and a Z-axis into a voltage value and outputs the voltage value. Use, the voltage value is input to the voltage determination circuit to determine whether the signal is an earthquake signal or a non-earthquake shock signal. If the signal is an earthquake signal, the galvanic value is calculated by the shock determination circuit, and the value is stored in the microcomputer unit. In addition, when the galling value is equal to or more than a specified value, the valve is closed based on a signal from the microcomputer unit. If the signal is a shock signal, the shock value is calculated by the shock discriminating circuit and the value is calculated. Stored in the microcomputer section , and the impact value is equal to or greater than a specified value. When a shock is received based on a signal from the microcomputer unit, a warning is displayed on a display and the product is closed at the time of shipment.
An anti-seismic shut-off valve characterized in that the valve is non- returnable.
JP34157497A 1997-12-11 1997-12-11 Seismic isolation valve Expired - Fee Related JP3375870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34157497A JP3375870B2 (en) 1997-12-11 1997-12-11 Seismic isolation valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34157497A JP3375870B2 (en) 1997-12-11 1997-12-11 Seismic isolation valve

Publications (2)

Publication Number Publication Date
JPH11173447A JPH11173447A (en) 1999-06-29
JP3375870B2 true JP3375870B2 (en) 2003-02-10

Family

ID=18347135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34157497A Expired - Fee Related JP3375870B2 (en) 1997-12-11 1997-12-11 Seismic isolation valve

Country Status (1)

Country Link
JP (1) JP3375870B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750910B1 (en) * 2011-03-03 2011-08-17 立山科学工業株式会社 Seismograph
JP5054837B1 (en) * 2011-07-22 2012-10-24 立山科学工業株式会社 Seismoscope

Also Published As

Publication number Publication date
JPH11173447A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
WO1999057469A1 (en) Vibration and flow actuated valve shutoff system
US7005993B2 (en) Sensor apparatus and method for detecting earthquake generated P-waves and generating a responsive control signal
US6661346B1 (en) Gas, fire and earthquake detector
US8862422B2 (en) Sensor for sensing accelerations
US10114034B2 (en) Door lock including sensor
US6470905B2 (en) Multifunctional urgent shutoff safety valves
JP5108287B2 (en) Gas flow seismic device and seismic method
JP3375870B2 (en) Seismic isolation valve
JP2003164056A (en) Earthquake-sensing cutoff outlet
JP3259830B2 (en) Gas meter
JP6942719B2 (en) Seismic module and seismic system
JP3159086B2 (en) Seismic gas shutoff system
JPH09273953A (en) Gasmeter having seismoscope
KR20100033894A (en) Security surveillance apparatus and its method for sensing oscillation with mems sensor like 3-axis accelerometer
JP2002367737A (en) Earthquake-sensing breaking outlet
KR20000037017A (en) Seismic monitoring system
JP2005037300A (en) Portable equipment having acceleration history recording function, and acceleration sensor device used for the same
JP2557072B2 (en) Earthquake detector
CN207624086U (en) A kind of intelligent displacement vibrations alarm detector
JPH09229757A (en) Acceleration seismograph apparatus
JPH0650535A (en) Gas shielding system
JP2006105759A (en) Seismic sensing unit
JPH11248846A (en) Quake-sensing apparatus
KR20000049529A (en) Receiving device of earthquake wave
JP3439594B2 (en) Gas meter having seismic sensor and output signal processing method for seismic sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees