JP3374724B2 - Vacuum switchgear - Google Patents

Vacuum switchgear

Info

Publication number
JP3374724B2
JP3374724B2 JP27082797A JP27082797A JP3374724B2 JP 3374724 B2 JP3374724 B2 JP 3374724B2 JP 27082797 A JP27082797 A JP 27082797A JP 27082797 A JP27082797 A JP 27082797A JP 3374724 B2 JP3374724 B2 JP 3374724B2
Authority
JP
Japan
Prior art keywords
electrode
ground
vacuum
movable
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27082797A
Other languages
Japanese (ja)
Other versions
JPH11113116A (en
Inventor
克典 児島
徹 谷水
誠 寺井
歩 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27082797A priority Critical patent/JP3374724B2/en
Priority to US09/114,944 priority patent/US6144005A/en
Priority to RU98114866/09A priority patent/RU2195734C2/en
Priority to CNB2004100859577A priority patent/CN100341088C/en
Priority to CNB981163572A priority patent/CN1178253C/en
Priority to EP98113825A priority patent/EP0893811B1/en
Priority to DE69836300T priority patent/DE69836300T2/en
Priority to KR10-1998-0029589A priority patent/KR100472170B1/en
Publication of JPH11113116A publication Critical patent/JPH11113116A/en
Priority to US09/562,756 priority patent/US6259051B1/en
Application granted granted Critical
Publication of JP3374724B2 publication Critical patent/JP3374724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/003Earthing switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は真空スイッチギヤに
関し、特に遮断器,断路器,負荷開閉器,接地装置のい
ずれか1つ又は2つ以上を集合した新規な真空スイッチ
ギヤに関する。 【0002】 【従来の技術】都市部の消費電力集中地域の増加する需
要に対して、6kV供給での配電用変電所の立地困難,
配電用配管の配置余裕無し及び6kV供給設備稼働率の
高まり等により、配電電圧の昇圧、即ち6kVより回線
当たりの容量が大きい22kV系統に積極的に負荷吸収
を図ることが、効率的な電力供給設備形成につながる。
このために22kV配電器材の6kV並みコンパクト
化を図る必要がある。コンパクト化を図る受変電機器と
しては例えば特開平3−273804 号公報に記載されたSF
6 ガス絶縁スイッチギヤが考えられる。このスイッチギ
ヤは配電函に絶縁ガスを充填したユニット室及び母線室
に遮断器、2個の断路器および接地開閉器を個別に製作
して収納している。遮断器として真空遮断器を使用する
場合、真空遮断器の操作器により可動電極が固定電極に
対して上下に移動して、投入,遮断したり、或いは特開
昭55−143727号公報に記載された真空遮断器は、主軸を
支点として可動電極が左右に回動して固定電極に対して
接離して、投入,遮断をしている。 【0003】ガス絶縁スイッチギヤは、例えば電力会社
からの電力を断路器とガス遮断器などで受電し、変圧器
で負荷に最適な電圧に変え、負荷例えばモータなどに電
力を供給している。受変電機器を保守・点検するには、
ガス遮断器を切後、ガス遮断器と別個に設けた断路器を
開放し、更に接地開閉器を接地することにより、電源側
の残留電荷,誘導電流を接地に流し、かつ、電源からの
再印加を防止して、作業者の安全を守っている。また、
母線が充電されたまま接地開閉器を接地すると、事故に
つながるので、断路器と接地開閉器との間にはインター
ロックを設けている。 【0004】 【発明が解決しようとする課題】例えば特開平3−27380
4 号公報に記載されたSF6 ガス絶縁開閉装置は、配電
函にSF6 ガスを充填したユニット室及び母線室にガス
遮断器,2個の断路器および接地開閉器を個別に製作し
て収納している。遮断器として真空遮断器を使用する場
合、操作器により真空容器内の可動電極が固定電極に対
して上下に移動して、投入,遮断したり、或いは特開昭
55−143727号公報に記載された真空遮断器は、主軸を支
点して可動ブレードに相当する可動リード線及び真空容
器内の可動電極が左右に回動して固定電極に対して接離
して、投入,遮断している。しかしながら、これらの公
報特に前者の公報ではケーブルヘット,接地装置,操作
機は配電盤の裏面に設けられており、配電盤の大型化は
避けることは出来ず、しかも遮断器の容量が増加すれ
ば、ますます配電盤の大型化は避けることは出来ない。
本発明の目的は、遮断器の容量が増加しても、同じ大き
さの配電盤を使用できる真空スイッチギヤを提供するこ
とにある。 【0005】 【課題を解決するための手段】本発明の一態様によれ
ば、遮断部コンパートメントと操作部コンパートメント
とを有するスイッチギヤであって、固定電極,接地電
極、該固定電極と接地電極間に配置された可動電極、該
可動電極に連結した支点を介して該可動電極を前記固定
電極と接地電極に接離する可動ブレード及び該可動電極
と電気的に接続され、真空接地容器に支持された負荷側
導体を前記真空接地容器内に3回路分収納して、定格電
圧24kV,定格電流600A,定格遮断容量25kA
の性能を有する3相スイッチギヤにより遮断部コンパー
トメントを構成し、導体コンパートメント,遮断部コン
パートメント及び操作部コンパートメントを含めて、
1100mm,高さ1500mm,奥行450mmの外形寸法を有
する真空スイッチギヤを提供する。 【0006】 【発明の実施の形態】以下、本発明の実施例を図1ない
し図5より説明する。図1の回路図は集合型スイッチ
ギヤの全体を示し、図1の1回路分の回路スイッチの構
造に合わせた電気回路を示すと図2となり、又図1の1
回路分の回路スイッの構造を示したのが図3,図4で
ある。図5は回路スイッ各相間を母線で接続する中継
端子板27である。 【0007】多相例えば3個の3回路分スイッ1,
2,3を接地Eされた真空接地容器4内に配置した。各
3回路スイッ1,2,3は構成が同じなので、第2の
回路スイッ2を説明し、他の回路スイッチの説明を省
略する。回路スイッ2は相スイッ2X,2Y,2Z
の3相を集合したものである。各相スイッ2X,2
Y,2Zは構成が同じなので、第1相の相スイッ2X
のみを説明し、他の相スイッ2Y,2Zの説明を省略
する。 【0008】相スイッ2Xは遮断機能,断路機能,接
地機能及び母線を一体に集合したものである。即ち、相
スイッ2Xは主として固定電極5と接地電極6との間
を移動する可動電極7とから構成している。固定電極5
は内部母線8に接続している。可動電極7は負荷側導体
9に接続し、負荷側導体9は真空接地容器外に伸びるケ
ーブルヘッド10に接続している。また可動電極7は後
述する可動ブレードと機械的に連結し、図示していない
操作機構部により駆動される可動ブレードの回動により
上下方向或いは左右方向に回動する。可動電極7が固定
電極5から接地電極6まで移動すると、図2の4位置に
停止する。また回路スイッ1は可動電極7と接続した
電源側ケ−ブル11により系統電源12に電気的に接続
している。 【0009】動電極7が回動するのに応じて、可動電
極7が固定電極5に接触する投入位置Y1で通電し、投
入位置Y1より下側に回動して遮断位置Y2で可動電極
7が固定電極5と離れ電流を遮断する。更に下側に回動
して断路位置Y3で可動電極7が固定電極5と離れ
などで絶縁破壊しないこと及び負荷導体側で作業員が感
電しない絶縁距離を取る。更に下側に可動電極7が回動
して接地位置Y4で可動電極7が接地電極6と接触す
る。尚、断路位置Y3を省略して遮断位置Y2から接地
位置Y4に移動しても本発明の効果を損なうものではな
い。 【0010】高絶縁体である真空中で、可動電極7が固
定電極5から接地電極6に回動する間に一回の操作で連
続的に4ポジションを行うことが出来るので、操作がし
やすく使い勝手が良いまた可動電極7,固定電極5,
接地電極6を一個所に集合化したので、上述の従来技術
に比べてより小型化することができる。更に断路位置Y
3を設けると、異電源突合せ例えば2つの系統電源を持
つ2回線受電において、いずれか1回線の相スイッ
Xが投入位置Y1で運転中にあり、他回線の相スイッ
2Yが断路位置Y3で待機中の時には、負荷側導体9に
作業員が接触しても安全であるばかりか、また待機中か
ら運転或いは運転中から待機に切り替える場合も連続し
て作業ができるので、作業スピードが速く、操作がしや
すい。更に通電電流を変流器13で検出して、保護リレ
ー14を動作させて、操作機構部(図示せず)をトリッ
プさせることにより、系統の事故にも対応する。 【0011】接地Eされた真空接地容器4は、ステンレ
ス部材を使用し、その一部が球面又は曲面形状に形成
し、真空接地容器4の機械的強度の増加を図ったり、真
空接地容器壁の厚みを薄くして軽量化を図っている。真
空接地容器4は配電盤16に収納されている。配電盤1
6は真空接地容器4の上側及び下側に操作部コンパート
メント17及び導体コンパートメント18を設けてい
る。操作部コンパートメント17は真空接地容器4の右
側つまり奥行側に凹んで配置され、正面側には開閉自在
な扉19を取り付けている。又導体コンパートメント1
8は真空接地容器4の左側つまり手前側に配置されてい
る。 【0012】真空接地容器4を介して操作部コンパート
メント17と導体コンパートメント18とは斜めに対称
に配置されている。操作部コンパートメント17は可動
ブレード及び可動電極7を回動する操作機構部を収納し
ている。導体コンパートメント18は負荷側導体9及び
ケーブルヘッド10を収納している。操作部コンパート
メント17の手前側真空容器上に操作部コンパートメン
ト内を保守点検する工具などを置くことができ、保守点
検が容易である。又導体コンパートメント18を操作部
コンパートメント17より手前の正面側に配置してケー
ブルヘッド10の取付け作業を安全に行うことが出来る
ようにしている。 【0013】真空接地容器正面側の壁は9個のブッシン
グ21を取り付けている。第1の回路スイッ1におい
て3相の電源側ケーブル11の一方側は、ブッシング2
1を貫通して外部の系統電源12に接続している。第2
及び第3の3回路スイッ2,3でも各3相の一方側負
荷側導体9はブッシング21を貫通してケーブルヘッド
10に接続している。接続する時にはケーブルヘッド1
0に設けたコネクターに負荷側導体9を挿入して行う。
ケーブルヘッド内の負荷側導体9はフレキシブル導体2
2を使用し、トランスTR,他回路,モータ等の負荷に
接続している。第2の回路スイッ2のケーブルヘッド
10の各相には、図4に示すように変流器13を設け、
貫通している。他の回路スイッ2にも接続した変流器
13を負荷条件など必要に応じて設けられる。 【0014】接地電極6は9個のケーブルヘッド10に
対応し、その上部に配置され、共通接地導体24を共通
接地導体24に接続している。共通接地導体24の両端
は接地ネジ25により配電盤16に固定している。これ
らのケーブルヘッド10,接地ケーブル38,変流器1
3は全て正面側から見ることができるようにして、取付
け忘れを防止していると共に、取付け取外し作業を作業
員がやりよくして、作業能率の向上を図っている。 【0015】各3回路スイッ間は図1では内部母線8
が直接回路スイッ間を接続しているが、これは実施例
を容易に理解するために回路スイッ間を直接接続した
のである。図1の中継端子板27の実際は、図5の9個
の固定電極5の一部で構成した中継端子26を有する中
継端子板27を真空容器内壁面に取付け、各中継端子2
6に上述した各内部母線8を接続している。各内部母線
8を中継端子板27に配置する場合には、中継端子板2
7の左側から右側に行くに従い順次、第1の回路スイッ
から第2,第3の回路スイッの内部母線8を配置す
る。配置に際しては、各回路スイッチギヤの内部母線8
は、1相1X,2X,3Xを一方側に2相及び3相2X
〜2Z,3X〜3Zを他方側にラップしながら配置し
て、配線を容易にし、且つ配線間違いの防止と内部母線
の分散配置により熱劣化の防止等の対策を施している。 【0016】第1ないし第3の回路スイッ1〜3は真
空接地容器内に配置され、次のような構成をしている
が、各相スイッ2X〜2Zは構成が同じなので、1相
分の相スイッ2Xの構成のみ説明し、他の相スイッ
2Y,2Zの説明は省略する。真空接地容器4の内部は
接地電極6と対応して配置された固定電極5との間を回
動する可動電極7を配置し、可動電極7にケーブルヘッ
ド10が対応配置されており、これらは全体として十字
形状に配置されている。真空接地容器4に形成した3個
の貫通穴(図示せず)を貫通した接地電極6と可動ブレ
ード30及び負荷側導体9を真空接地容器外に延ばして
いる。 【0017】接地電極6は一端側に接地側底金具31を
設け、他端側が開口しているセラミック材より成る接地
側ブッシング32を有し、接地側ブッシング32の外周
にフランジ33を設け、フランジ33に取付けた接地側
封止金具34を真空接地容器4に溶着している。接地側
ブッシング内に接地側ベローズ35及びバネ36と接地
側導体37を配置している。接地側導体37は接地側底
金具31を貫通して外部に伸びており、その端部がネジ
により接地導体38が前述した共通接地導体24に接続
している。接地側ケーブル38はフレキシブル導体で構
成され、接地側導体37が動いたときでも電気的に接続
できる。また、これと反対側の接地側導体37には接地
電極39を固定している。接地電極39を接地側底金具
側に押すと、接地側ベローズ35と共にバネ36も縮む
が、その時にバネ36は縮んだ力により、常に接地電極
39を可動電極方向に押圧している。尚、接地側導体3
7と接地電極39とを区別したが、両者を一体にして接
地電極と称しても良い。 【0018】接地電極6と対応配置された固定電極5は
3相の内部母線8と接続している。3相の内部母線8は
図5に示したように配置されている。固定電極5は固定
中継金具41を介してセラミック材より成る固定絶縁筒
42に支持されている。固定絶縁筒42の他端を支持し
ている固定支持金具43はロー材により真空接地容器に
固定されている。つまり固定絶縁筒42の両端に固定中
継金具41と固定支持金具43とを予め取付けてある。 【0019】可動電極7は接地電極6と固定電極5との
間に配置され、可動電極7を可動中継金具44を介して
セラミック材の可動絶縁筒45に支持されており、可動
支持部45の一端は前述と同様に可動支持金具46に支
持され、可動支持金具46は可動ブレード30に支持さ
れている。可動ブレード30は可動支持板47を貫通し
て外部に延びている。可動支持板47は真空接地容器4
に固定されている。可動ブレード30は伸縮自在な可動
ベローズ48に包囲され、可動ベローズ48に一端は可
動支持金具46に、他端は可動支持板47にそれぞれ取
付けられ、可動ブレード30が左右,上下へ回動する動
きをできるようにしている。可動ブレード30は主軸4
9を支点として矢印方向に回動し、接地電極39と固定
電極5とに接離する。上記電極5〜7にはCuを主成分
としてその他Cr−W−Pbを含有する合金,Cu−C
r合金,Cu−Ag合金,Cu−Ni合金等の高融点金
属材を使用する。 【0020】可動ブレード30の先端は連結した図示し
ていない操作機構部の駆動により、可動ブレード30は
主軸49を支点として回動する。動作軸50は可動ブレ
ード30と操作機構部とを連結している。尚、可動ブレ
ード30の先端に可動電極を設けただけの構造でもよ
い。この場合、可動ブレードと操作機構部とのいずれか
部に電流を遮断する絶縁手段が必要である。 【0021】可動電極7の先端と負荷側導体9とフレ
キシブル導体22により接続している。負荷側導体9
は、セラミック材より成る負荷側ブッシング21Aを貫
通してケーブルヘッド10に接続している。負荷側ブッ
シング21A端部に負荷側封止金具53を設け、負荷側
封止金具53を真空接地容器4に空けた開口の周囲にロ
ー材を溶着して支持すると共に、真空接地容器4の内部
に露出している負荷側ブッシング21Aのセラミック表
面は接地金属層54を設け、漏電流が真空接地容器4を
介して接地Eに流れるようにし、作業員がケーブルヘッ
ド10に接触しても危険が生じないように安全対策を施
している。 【0022】次に相スイッチギヤの動作を図6ないし図
8により説明する。可動電極7は図6のように接地電極
6と固定電極5との間に配置された図2の遮断位置Y2
及び断路位置Y3におり、この位置から図6のように可
動電極7を矢印方向X1に回動し、可動電極7が接地電
極39に接触した所謂接地位置Y4であり、常に接地電
極39は可動電極方向にバネ36により押圧している。
可動電極7は図8のように接地位置Y4から矢印方向X
2に回動し、可動電極7が固定電極5に接触していると
共に、負荷側導体9にも接続した所謂投入位置Y1であ
る。 【0023】投入位置Y1では可動電極7が固定電極5
に接触していると共に、負荷側導体9にも接続してい
る。この場合、従来技術と異なり可動ブレード30を経
由することなく、可動電極7より固定電極5とフレキシ
ブル導体22を介して負荷側導体9に電力を供給してい
るので、電流通路を従来技術のそれに比べて大幅に短縮
できるようになり、電気抵抗が少なくなり、この分電力
損失及び発生熱を少なくすることが出来るようになっ
た。 【0024】一方、投入位置Y1では常時電力を負荷に
供給しており、この運転時間は他の位置での使用時間よ
りも長く、フレキシブル導体22を使用しなければ、可
動電極7が直接負荷側導体9に摺動することが考えられ
る。これは、可動電極7が直接負荷側導体9に摺動し、
可動電極7及び負荷側導体9が接触した状態で電流を流
し続けることになり、この発生熱により可動電極7及び
負荷側導体9は溶着してしまう恐れがある。この結果、
溶着している可動電極7と負荷側導体9とを剥離するた
めに、操作機構部の回動力が大きくなり、操作機構部の
大型化は避けることは出来ず、真空遮断器は大型化及び
コスト高になる。又熱が発生中に摺動する電極の
耗が激しく、両電極の寿命が短い。更に可動電極7が負
荷側導体9に摺動する時には、可動電極7及び負荷側導
体9から発生した金属微粒子が真空容器内で拡散し、残
留するので、絶縁破壊を生じやすくなる。 【0025】上記実施例では可動電極7が直接負荷側導
体9に摺動しないフレキシブル導体22で負荷側導体9
と可動電極7との間を接続しており、可動電極7及び負
荷側導体9の溶着は生じることがなく、操作機構部の回
動力は前述より大きくならず、操作機構部も小型化する
ことが出来る可動電極7及び負荷側導体9の寿命も前
述より長くなり、経済的にも有利である。又フレキシブ
ル導体22で負荷側導体9と可動電極7との間を最短距
離で接続しており、前述のように可動電極7が負荷側導
体9に摺動する時の金属蒸気を発生することもなく、電
流遮断特性が前述よりは大幅に向上し、真空接地容器4
を小型化することができる。 【0026】このように本発明では、真空接地容器内に
配置された固定電極5と接地電極6と、両電極間に配置
された可動電極7と、可動電極7支点を介して可動電
に連結した可動ブレード30と、可動電極7と電気的
に接続し負荷側導体9とを備えた相スイッと、この
相スイッの3相分を真空接地容器内に収納した性能
は、定格電圧24kV,定格電流600A,定格遮断容
量25kAを有し、この真空接地容器を遮断部コンパー
トメントに収納した配電盤は、幅1100mm,高さ15
00mm,奥行き450mmのスイッチギヤとして使用でき
る。このことは従来、真空遮断器を3相独立して使用し
ていた定格電圧6kVの配電用変電所の野外配電盤と同
じ大きさである。つまり従来の定格電圧6kVの真空遮
断器に対して、本発明の3相スイッチギヤの定格電圧2
4kVが増加しても同じ配電盤に使用できるので、互換
性がある。更に、本発明は接地装置及び断路位置を除去
しても使用できるので更に真空接地容器,操作機構部
を小型化でき回路スイッも当然小型化できる 【0027】更に、接地電極6と固定電極5との中央に
位置する可動電極7の中心から固定電極側真空接地容器
の容積5Cを接地電極側真空接地容器の容積6Cより広
くする。容積5Cを容積6Cより大きくするには、接地
電極39と固定電極5との中央に位置する可動電極7の
中心0から固定電極側及び接地電極側の真空接地容器ま
での距離をL1及びL2とすれば、L1>L2になるよ
うに真空接地容器4を構成すればよい。 【0028】この結果、可動電極7が接地電極6又は固
定電極5に接離する場合は、接地電極6は電源側の残留
電荷,誘導電流を接地に流すだけだから、電流の入り切
りは固定電極5に比べて接地電極6の方がはるかに小さ
容積6Cは容積5Cより小さくてよいが、固定電極
5の方は接地電極6に比べて大きな電流の入り切りが頻
繁に行われ、入り切り時に両電極5,7からの金属微粒
子が接地電極6より多く発生する容積5Cは容積6C
より広くして、金属蒸気の多くは容積5C内を拡散する
ようになり、残留イオンを少なくし、電流遮断性能を向
上することが出来スイッチギヤも当然小型化すること
ができる。 【0029】次に他の実施例を図9,図10により説明
する。真空接地容器内に負荷側共通導体56を取付け、
負荷側共通導体56は負荷側導体9に接続していると共
に、その上に接地側接点57及び負荷側接点58を取り
付けている。負荷側導体9及び接地電極39に接続した
接地側導体37の一部は配電盤正面側に設けられてお
り、上述と同様の効果を達成できるようになっている。
可動電極7と負荷側接点57とが接触した投入状態で、
負荷側接点58から可動電極7を上方に移動すると同時
に、接地可動電極59が下方に移動して接地側接点58
に接触して接地状態になる。また前者では投入状態から
遮断状態になる。この実施例では可動電極7と負荷側接
点58との直角方向つまり横方向に複数相の母線8と接
続している固定電極5を配置し、固定電極5と可動電極
7との間及び接地可動電極59と接地側接点58との間
をフレキシブル導体22で接続した1回路スイッにも
使用できる。又固定電極5と可動電極7との間をフレキ
シブル導体22で接続して1回路スイッチギヤとしても
使用できる。 【0030】真空接地容器内の可動電極7と接地可動電
極59との間に中央部0を設け、中央部0と可動電極7
側と接地可動電極59側と真空接地容器内面との間の距
離をL1とL2とにする。また中央部0を介して右側及
び左側の真空接地容器内の容積をC5とC6とする。こ
れらのL1及びL2とC5及びC6との関係は、L1>
L2とC5>C6との関係にあり、上述と同等の効果を
達成することが出来る。 【0031】本発明の回路分スイッは、上述の他に可
動電極が固定電極と開閉する遮断器,真空遮断器等の開
閉器,固定電極と可動電極が接離する断路器,接地開閉
器,開閉器等の単独製品としても使用することが出来
【0032】 【発明の効果】以上説明したように、可動電極と電気的
に接続した負荷側導体とを備えた相スイッの3相分を
真空接地容器内に収納した本発明の真空スイッチは、
格電圧24kV,定格電流600A,定格遮断容量25
kAを有し、この真空接地容器を遮断部コンパートメン
トに収納した配電盤は、幅1100mm,高さ1500m
m,奥行き450mmのスイッチギヤとして使用できる
これは従来真空遮断器を3相独立して使用していた定
格電圧6kVの配電用変電所の野外配電盤と同じ大きさ
である。つまり従来の定格電圧6kVの真空遮断器に対
して、本発明の3相スイッチギヤの定格電圧24kVが
増加しても同じ配電盤に使用できる
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum switchgear, and more particularly, to one or more of a circuit breaker, a disconnector, a load switch, and a grounding device. It relates to a new vacuum switchgear. 2. Description of the Related Art In response to an increasing demand in an area where power consumption is concentrated in an urban area, it is difficult to locate a substation for distribution with 6 kV supply.
Due to lack of room for distribution pipes and an increase in the operation rate of the 6 kV supply facility, it is possible to increase the distribution voltage, that is, to actively absorb the load to a 22 kV system having a larger capacity per line than 6 kV. It leads to equipment formation.
For this purpose, it is necessary to reduce the size of the 22 kV distribution equipment to about 6 kV. For example, SF described in Japanese Patent Laid-Open Publication No. 3-273804
6 Gas insulated switchgear is conceivable. In this switchgear, a circuit breaker, two disconnectors, and a grounding switch are individually manufactured and housed in a unit room and a bus room in which a distribution box is filled with insulating gas. When a vacuum circuit breaker is used as the circuit breaker, the movable electrode is moved up and down with respect to the fixed electrode by the operation device of the vacuum circuit breaker, and the movable electrode is turned on and off, or described in JP-A-55-143727. In the vacuum circuit breaker, the movable electrode is turned left and right about the main shaft as a fulcrum, and comes into contact with and separates from the fixed electrode, thereby closing and closing. A gas insulated switchgear receives, for example, electric power from an electric power company by a disconnector and a gas circuit breaker, changes the voltage to a voltage optimal for a load by a transformer, and supplies electric power to a load, such as a motor. To maintain and inspect the substation equipment,
After the gas circuit breaker is turned off, the disconnecting switch provided separately from the gas circuit breaker is opened, and the grounding switch is grounded, so that the residual charge and the induced current on the power supply side flow to the ground, and the power supply from the power supply is restored. The application of voltage is prevented to protect the worker's safety. Also,
If the grounding switch is grounded while the bus is charged, an accident may occur. Therefore, an interlock is provided between the disconnecting switch and the grounding switch. [0004] For example, JP-A-3-27380
The SF 6 gas insulated switchgear described in Japanese Patent Publication No. 4 is separately manufactured and accommodated with a gas circuit breaker, two disconnectors and a grounding switch in a unit room and a bus room filled with SF 6 gas in a distribution box. are doing. When a vacuum circuit breaker is used as a circuit breaker, the movable electrode in the vacuum vessel moves up and down with respect to the fixed electrode by the operating device, and is turned on and off.
The vacuum circuit breaker described in 55-143727 publication has a movable lead wire corresponding to a movable blade and a movable electrode in a vacuum vessel pivoting left and right with a main shaft as a fulcrum, and comes into contact with and separates from a fixed electrode. It is turned on and off. However, in these gazettes, especially the former gazette, the cable head, the grounding device, and the operation device are provided on the back surface of the switchboard, and it is unavoidable to increase the size of the switchboard. This increase in the size of the switchboard it can be a have to avoid.
An object of the present invention is to provide a vacuum switchgear that can use a switchboard of the same size even when the capacity of a circuit breaker increases. [0005] According to one embodiment of the present invention.
For example, a switchgear having a cut-off section compartment and an operation section compartment , wherein a fixed electrode, a ground electrode,
A movable electrode disposed between the fixed electrode and the ground electrode;
The movable electrode is fixed via a fulcrum connected to the movable electrode.
Movable blade contacting and separating electrode and ground electrode, and said movable electrode
Load side electrically connected to and supported by a vacuum grounding vessel
The conductor is accommodated in the vacuum grounding container for three circuits, and the rated voltage is 24 kV, the rated current is 600 A, and the rated breaking capacity is 25 kA.
Shut-off section compass with three-phase switchgear
The conductor compartment and the cutoff compartment
Width , including compartments and controls
1100mm, height 1500mm, the external dimensions of depth 450mm Yes
To provide a vacuum switchgear. DETAILED DESCRIPTION OF THE INVENTION Hereinafter, more description of examples of the present invention in FIGS. 1-5. The circuit diagram of FIG. 1 shows the entirety of the collective switchgear, and FIG. 2 shows an electric circuit adapted to the structure of the circuit switch for one circuit of FIG.
Figure 3 of the showing the structure of a circuit switch of the circuit component, a FIG. Figure 5 is a relay terminal plate 27 connected by bus between circuit switches each phase. [0007] The multi-phase, for example, three of the third circuit minute switch 1,
2 and 3 were placed in a vacuum grounded container 4 which was grounded E. Since each third circuit switch 1, 2, and 3 configuration is the same, a second circuit switch 2 describes, will not be described other circuit switches. Circuit switch 2 phase switches 2X, 2Y, 2Z
Of the three phases. Each phase switch 2X, 2
Y, since 2Z are configuration is the same, the phase switch of the first phase switch 2X
Describes only, other phase switches 2Y, description thereof will be omitted 2Z. [0008] Phase switch 2X is blocking function, disconnecting function is obtained by set integrally grounding function and bus. That is, the phase <br/> switch 2X constitute a movable electrode 7 for moving between the stationary electrode 5 and the ground electrode 6 mainly. Fixed electrode 5
Is connected to the internal bus 8. The movable electrode 7 is connected to a load-side conductor 9, and the load-side conductor 9 is connected to a cable head 10 extending outside the vacuum grounding container. In addition, the movable electrode 7 is mechanically connected to a movable blade described later, and is rotated vertically or horizontally by rotation of a movable blade driven by an operation mechanism (not shown). When the movable electrode 7 moves from the fixed electrode 5 to the ground electrode 6, it stops at the four positions in FIG. The circuit switch 1 is the power supply side to case and connected to the movable electrode 7 - is electrically connected to a system power source 12 by Bull 11. [0009] variable dynamic electrode 7 in response to rotation, energized in the on position Y1 where the movable electrode 7 is in contact with the stationary electrode 5, movable electrode with a blocking position Y2 rotated below the loading position Y1 7 separates from the fixed electrode 5 and interrupts the current. Further, the movable electrode 7 is rotated downward and the movable electrode 7 is separated from the fixed electrode 5 at the disconnection position Y3. The movable electrode 7 further pivots downward, and the movable electrode 7 contacts the ground electrode 6 at the ground position Y4. It should be noted that omitting the disconnection position Y3 and moving from the interruption position Y2 to the ground contact position Y4 does not impair the effects of the present invention. In a vacuum, which is a high insulator, four positions can be continuously performed by one operation while the movable electrode 7 rotates from the fixed electrode 5 to the ground electrode 6, so that the operation is easy. Easy to use . Movable electrode 7, fixed electrode 5,
Since the ground electrodes 6 are integrated at one location, the size can be further reduced as compared with the above-described related art. Further disconnection position Y
When 3 provided in two-line power reception having different-source butt, for example, two of the system power source, any one line of the phase switch 2
X is in operation at the close position Y1, not only at the time of waiting phase switch 2Y is the disconnection position Y3 of the other line, it is safe to contact the operator on the load side conductor 9, and from standby Since the operation can be performed continuously even when driving or switching from the operation to the standby, the operation speed is high and the operation is easy. Further, by detecting the energizing current by the current transformer 13 and operating the protection relay 14 to trip the operation mechanism (not shown), it is possible to cope with a system failure. The grounded vacuum grounding container 4 is made of a stainless steel member, a part of which is formed in a spherical or curved shape so as to increase the mechanical strength of the vacuum grounding container 4 or to improve the vacuum grounding container wall. The thickness is reduced to reduce the weight. The vacuum grounding container 4 is housed in a switchboard 16. Switchboard 1
6 is provided with an operation section compartment 17 and a conductor compartment 18 on the upper and lower sides of the vacuum grounding container 4. The operation section compartment 17 is disposed so as to be recessed on the right side, that is, the depth side of the vacuum grounding container 4, and has a door 19 that can be opened and closed on the front side. Also conductor compartment 1
Reference numeral 8 is arranged on the left side of the vacuum grounding container 4, that is, on the near side. The operation section compartment 17 and the conductor compartment 18 are disposed obliquely symmetrically via the vacuum grounding container 4. The operation section compartment 17 houses an operation mechanism section for rotating the movable blade and the movable electrode 7. The conductor compartment 18 houses the load-side conductor 9 and the cable head 10. A tool or the like for maintaining and inspecting the inside of the operation section compartment can be placed on the vacuum container on the front side of the operation section compartment 17, and maintenance and inspection are easy. The conductor compartment 18 is disposed on the front side before the operation section compartment 17 so that the cable head 10 can be safely mounted. Nine bushings 21 are mounted on the front wall of the vacuum grounding container. One side of the first 3-phase in the circuit switch 1 of the power source side cable 11, the bushing 2
1 and connected to an external system power supply 12. Second
And the third third circuit switch 2,3 any one side load side conductor 9 of each of the three phases are connected to the cable head 10 through the bushing 21. Cable head 1 when connecting
This is performed by inserting the load-side conductor 9 into the connector provided at the position 0.
The load-side conductor 9 in the cable head is a flexible conductor 2
2 are connected to loads such as a transformer TR, other circuits, and a motor. The phases of the second circuit switch cable head 10 of the switch 2, a current transformer 13 provided as shown in FIG. 4,
Penetrates. In other circuits the switch 2 is provided with a current transformer 13 connected as needed such as load conditions. The ground electrodes 6 correspond to the nine cable heads 10 and are arranged above the cable heads 10, and connect the common ground conductor 24 to the common ground conductor 24. Both ends of the common ground conductor 24 are fixed to the switchboard 16 by ground screws 25. These cable head 10, ground cable 38, current transformer 1
3 can be seen from the front side to prevent forgetting to attach, and to improve the work efficiency by making the attachment and detachment work easier for the operator. [0015] Internal bus 8 In each of 3 between circuit switch Figure 1
Although There has been connecting the direct circuit switch, which is to that connection between the circuit switch directly in order to facilitate understanding of the embodiments. Actually, the relay terminal plate 27 of FIG. 1 is provided with a relay terminal plate 27 having a relay terminal 26 constituted by a part of the nine fixed electrodes 5 of FIG.
6 are connected to the internal buses 8 described above. When each internal bus 8 is arranged on the relay terminal plate 27, the relay terminal plate 2
7 sequentially from the left side to the right side of the first circuit switch.
Second, placing the internal bus 8 of the third circuit switch from switch. When arranging, the internal bus 8 of each circuit switchgear
Means 1 phase 1X, 2X, 3X on one side with 2 phase and 3 phase 2X
2Z and 3X to 3Z are arranged while being wrapped on the other side to facilitate wiring, and to take measures such as prevention of wiring mistakes and prevention of thermal deterioration by distributed arrangement of internal buses. The circuit switch 1-3 of the first, second, and third is disposed in a vacuum ground vessel, although the following configuration, since construction phase switch 2X~2Z is the same, 1 phase describes only the configuration of the frequency of the phase switches 2X, other phase switches 2Y, description of 2Z is omitted. A movable electrode 7 that rotates between a ground electrode 6 and a fixed electrode 5 corresponding to the ground electrode 6 is disposed inside the vacuum ground container 4, and a cable head 10 is arranged corresponding to the movable electrode 7. They are arranged in a cross shape as a whole. The ground electrode 6, the movable blade 30, and the load-side conductor 9 that pass through three through holes (not shown) formed in the vacuum grounding container 4 extend outside the vacuum grounding container. The ground electrode 6 has a ground-side bottom fitting 31 at one end, a ground-side bushing 32 made of a ceramic material having an open end at the other end, and a flange 33 provided on the outer periphery of the ground-side bushing 32. The ground-side sealing fitting 34 attached to 33 is welded to the vacuum grounding container 4. A grounding bellows 35, a spring 36, and a grounding conductor 37 are arranged in the grounding bushing. The ground-side conductor 37 extends to the outside through the ground-side bottom fitting 31, and the end of the ground-side conductor 37 is connected to the above-mentioned common ground conductor 24 by a screw. The grounding-side cable 38 is formed of a flexible conductor, and can be electrically connected even when the grounding-side conductor 37 moves. A ground electrode 39 is fixed to the ground conductor 37 on the opposite side. When the ground electrode 39 is pushed toward the ground-side bottom fitting, the spring 36 also contracts together with the ground-side bellows 35. At this time, the spring 36 always presses the ground electrode 39 in the direction of the movable electrode due to the contracted force. Note that the ground side conductor 3
7 and the ground electrode 39 are distinguished from each other, but they may be integrally referred to as a ground electrode. The fixed electrode 5 corresponding to the ground electrode 6 is connected to the three-phase internal bus 8. The three-phase internal buses 8 are arranged as shown in FIG. The fixed electrode 5 is supported by a fixed insulating cylinder 42 made of a ceramic material via a fixed relay fitting 41. A fixed support member 43 supporting the other end of the fixed insulating cylinder 42 is fixed to the vacuum grounding container by a brazing material. That is, the fixed relay fitting 41 and the fixed support fitting 43 are attached to both ends of the fixed insulating cylinder 42 in advance. The movable electrode 7 is disposed between the ground electrode 6 and the fixed electrode 5, and the movable electrode 7 is supported by a movable insulating cylinder 45 made of a ceramic material via a movable relay fitting 44. One end is supported by the movable support bracket 46 as described above, and the movable support bracket 46 is supported by the movable blade 30. The movable blade 30 extends outside through the movable support plate 47. The movable support plate 47 is provided for the vacuum grounding container 4.
Fixed to. The movable blade 30 is surrounded by an extendable movable bellows 48, one end of which is attached to the movable support bracket 46 and the other end of which is attached to the movable support plate 47. To be able to The movable blade 30 has a main shaft 4
It rotates in the direction of the arrow with 9 as a fulcrum, and comes into contact with and separates the ground electrode 39 and the fixed electrode 5. The above-mentioned electrodes 5 to 7 are made of an alloy containing Cu as a main component and other Cr-W-Pb, Cu-C
A high melting point metal material such as an r alloy, a Cu-Ag alloy, or a Cu-Ni alloy is used. The movable blade 30 rotates about the main shaft 49 as a fulcrum by driving an operating mechanism (not shown) connected to the tip of the movable blade 30. The operation shaft 50 connects the movable blade 30 and the operation mechanism. Note that a structure in which only the movable electrode is provided at the tip of the movable blade 30 may be used. In this case, it is necessary insulating means for interrupting the current to the part of either the movable blade and the operation mechanism unit. [0021] which connects the tip of the movable electrode 7 and load-side conductor 9 by deflection <br/> Kishiburu conductor 22. Load side conductor 9
Are connected to the cable head 10 through the load side bushing 21A made of a ceramic material. A load-side sealing member 53 is provided at the end of the load-side bushing 21A, and the load-side sealing member 53 is supported by welding a brazing material around an opening made in the vacuum grounding container 4 and the inside of the vacuum grounding container 4 The ground surface metal layer 54 is provided on the ceramic surface of the load side bushing 21A which is exposed to the outside, so that leakage current flows to the ground E via the vacuum grounding container 4, and there is a danger even if an operator comes into contact with the cable head 10. Safety measures are taken to prevent this from happening. Next, the operation of the phase switch gear will be described with reference to FIGS. The movable electrode 7 is disposed between the ground electrode 6 and the fixed electrode 5 as shown in FIG.
And the disconnection position Y3. From this position, the movable electrode 7 is rotated in the arrow direction X1 as shown in FIG. 6, and the movable electrode 7 is in contact with the ground electrode 39, that is, the so-called ground position Y4. It is pressed by a spring 36 in the electrode direction.
The movable electrode 7 is moved from the ground position Y4 in the arrow direction X as shown in FIG.
2, the movable electrode 7 is in contact with the fixed electrode 5 and is also connected to the load-side conductor 9, which is a so-called closing position Y1. At the input position Y1, the movable electrode 7 is
And is also connected to the load-side conductor 9. In this case, unlike the related art, power is supplied from the movable electrode 7 to the load-side conductor 9 via the fixed electrode 5 and the flexible conductor 22 without passing through the movable blade 30. Compared with this, the power consumption can be greatly reduced, the electric resistance is reduced, and the power loss and the generated heat can be reduced accordingly. On the other hand, power is always supplied to the load at the input position Y1, the operation time is longer than the operation time at other positions, and if the flexible conductor 22 is not used, the movable electrode 7 is directly connected to the load. Sliding on the conductor 9 is conceivable. This means that the movable electrode 7 slides directly on the load-side conductor 9,
The current continues to flow while the movable electrode 7 and the load-side conductor 9 are in contact with each other, and the generated heat may cause the movable electrode 7 and the load-side conductor 9 to be welded. As a result,
Since the welded movable electrode 7 and the load-side conductor 9 are separated from each other, the rotating force of the operating mechanism increases, and the operating mechanism cannot be increased in size, and the vacuum circuit breaker is increased in size and cost. Get high. Also, if the sliding occurs while heat is being generated, the electrodes are severely worn and the life of both electrodes is short. Further, when the movable electrode 7 slides on the load-side conductor 9, fine metal particles generated from the movable electrode 7 and the load-side conductor 9 diffuse and remain in the vacuum vessel, so that the dielectric breakdown easily occurs. In the above embodiment , the movable electrode 7 does not slide directly on the load-side conductor 9 and the flexible conductor 22 does not slide on the load-side conductor 9.
The movable electrode 7 and the load-side conductor 9 are not welded to each other, the rotating force of the operating mechanism is not increased, and the operating mechanism is downsized. Can be done . The lives of the movable electrode 7 and the load-side conductor 9 are also longer than those described above, which is economically advantageous. The flexible conductor 22 connects the load-side conductor 9 and the movable electrode 7 at the shortest distance, and as described above, the movable electrode 7 may generate metal vapor when sliding on the load-side conductor 9. And the current cutoff characteristics are greatly improved as compared with the above.
Can be reduced in size. [0026] Thus, in the present invention, the fixed electrode 5 disposed in the vacuum ground container and the ground electrode 6, the movable electrode 7 disposed between the electrodes, the movable electrode through the fulcrum to the movable electrode 7 a movable blade 30 coupled to a phase switch having a load-side conductor 9 which is electrically connected to the movable electrode 7, the three phases of the phase switch is accommodated in a vacuum ground vessel performance, rating The switchboard having a voltage of 24 kV, a rated current of 600 A, and a rated breaking capacity of 25 kA. The switchboard in which this vacuum grounding container is housed in the breaking section compartment has a width of 1100 mm and a height of 15 mm.
It can be used as a switch gear of 00 mm and depth of 450 mm. This is the same size as the field switchboard of a distribution substation with a rated voltage of 6 kV, which conventionally used three independent vacuum circuit breakers. That is, the rated voltage of the three-phase switchgear of the present invention is 2 with respect to the conventional vacuum circuit breaker with the rated voltage of 6 kV.
Even if 4 kV is increased, it can be used for the same switchboard, so there is compatibility. Furthermore, the present invention because it can be used also to remove grounding device and the disconnection position, further vacuum earthing containers, compact operating mechanism unit, the circuit switch can naturally also downsized. Further, the volume 5C of the fixed-electrode-side vacuum grounding container from the center of the movable electrode 7 located at the center between the grounding electrode 6 and the fixed electrode 5 is made larger than the volume 6C of the grounding-electrode-side vacuum grounding container. In order to make the volume 5C larger than the volume 6C, distances from the center 0 of the movable electrode 7 located at the center between the ground electrode 39 and the fixed electrode 5 to the vacuum ground containers on the fixed electrode side and the ground electrode side are L1 and L2. Then, the vacuum grounding container 4 may be configured so that L1> L2. As a result, when the movable electrode 7 comes into contact with or separates from the ground electrode 6 or the fixed electrode 5, the ground electrode 6 only flows the residual charge on the power supply side and the induced current to the ground. The ground electrode 6 is much smaller than . The volume 6C may be smaller than the volume 5C, but the fixed electrode 5 frequently switches on and off a larger current than the ground electrode 6, and more metal fine particles from both the electrodes 5 and 7 than the ground electrode 6 when turning on and off. Occurs . Volume 5C is volume 6C
By making it wider, most of the metal vapor diffuses in the volume 5C, the residual ions can be reduced, the current interruption performance can be improved , and the switchgear can of course be downsized. Next, another embodiment will be described with reference to FIGS. Attach the load-side common conductor 56 in the vacuum grounded container,
The load-side common conductor 56 is connected to the load-side conductor 9, and has a ground contact 57 and a load-side contact 58 mounted thereon. A part of the ground-side conductor 37 connected to the load-side conductor 9 and the ground electrode 39 is provided on the front side of the switchboard, so that the same effect as described above can be achieved.
With the movable electrode 7 and the load side contact 57 in contact with each other,
At the same time as the movable electrode 7 is moved upward from the load side contact 58, the ground movable electrode 59 is moved downward and the ground side contact 58 is moved.
To ground. In the former case, the state is changed from the closed state to the closed state. In this embodiment, the fixed electrode 5 connected to the buses 8 of a plurality of phases is arranged in a direction perpendicular to the movable electrode 7 and the load-side contact 58, that is, in the lateral direction. can also be used between the electrode 59 and the ground-side contact 58 to the first circuit switch connected flexible conductors 22. In addition, the fixed electrode 5 and the movable electrode 7 are connected by the flexible conductor 22 and can be used as a one-circuit switch gear. A central portion 0 is provided between the movable electrode 7 and the ground movable electrode 59 in the vacuum grounding vessel, and the central portion 0 and the movable electrode 7
The distance between the side, the ground movable electrode 59 side and the inner surface of the vacuum grounding container is L1 and L2. The volumes in the right and left vacuum grounded containers via the center portion 0 are denoted by C5 and C6. The relationship between these L1 and L2 and C5 and C6 is L1>
L2 and C5> C6, and the same effect as described above can be achieved. The circuit component switch of the present invention, the circuit breaker in which the movable electrode in addition to the above-described opening and closing the fixed electrode, switches such as vacuum circuit breaker, disconnecting switch fixed electrode and the movable electrode approaching and moving away from, the earth switch It can also be used as a stand-alone product such as a switch . [0032] As described above, according to the present invention, the vacuum of the present invention housing the three phases of the phase switch having a load-side conductors connected to the movable electrodes electrically in vacuum earthing vessel The switch has a rated voltage of 24 kV, a rated current of 600 A, and a rated breaking capacity of 25.
A switchboard having a kA and containing the vacuum grounding container in the shutoff compartment has a width of 1100 mm and a height of 1500 m.
It can be used as a switch gear with m and depth of 450mm.
This is the same size as the field switchboard of distribution substation rated voltage 6kV that used in 3-phase independent conventional vacuum interrupter. That is, even if the rated voltage of the three-phase switchgear of the present invention is increased by 24 kV with respect to the conventional vacuum circuit breaker with the rated voltage of 6 kV, the same circuit board can be used .

【図面の簡単な説明】 【図1】本発明の実施例であるハイブリットスイッチギ
ヤの回路図。 【図2】図1に使用した1回路分スイッの構成を示す
側断面図。 【図3】図2を左側から見た正面図。 【図4】図1及び図3に示した母線接続端子台の平面
図。 【図5】図1及び図2に示した回路スイッの構成を示
す側断面図。 【図6】図3に示した回路スイッの無負荷状態での側
断面図。 【図7】図3の回路スイッの接地状態を示す側断面
図。 【図8】図3の回路スイッの投入状態を示す側断面
図。 【図9】本発明の他の実施例である回路スイッの構成
を示す側断面図。 【図10】図9の回路スイッの接地状態を示す側断面
図。 【符号の説明】 1〜3…3回路分スイッ、2X〜2Z…相スイッ
4…真空接地容器、5…固定電極、6…接地電極、7…
可動電極、8…内部母線、9…負荷側導体、11…電源
側ケーブル、16A…遮断部コンパートメント、17…
操作部コンパートメント、18…導体コンパートメン
ト、22…フレキシブル導体、30…可動ブレード。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a hybrid switchgear according to an embodiment of the present invention. Figure 2 is a side sectional view showing a first circuit component switch configuration used in FIG. FIG. 3 is a front view of FIG. 2 as viewed from the left side. FIG. 4 is a plan view of the bus connection terminal block shown in FIGS. 1 and 3; Figure 5 is a side sectional view showing the configuration of a circuit switch shown in FIGS. Figure 6 is a side cross-sectional view of a no-load state of the circuit switch of FIG. 3. Figure 7 is a side sectional view showing the grounding state of the circuit switch of FIG. Figure 8 is a side cross-sectional view illustrating a closed state of the circuit switch of FIG. Sectional side view showing the structure of a circuit switch which is another embodiment of the present invention; FIG. Figure 10 is a side sectional view showing the grounding state of the circuit switch of FIG. [Reference Numerals] 1-3 ... 3 circuit component switches, 2X to 2Z ... phase switch,
4 ... vacuum earth container, 5 ... fixed electrode, 6 ... ground electrode, 7 ...
Movable electrode, 8: internal bus, 9: load side conductor, 11: power supply side cable, 16A: cutoff compartment, 17 ...
Operation section compartment, 18: conductor compartment, 22: flexible conductor, 30: movable blade.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 歩 茨城県日立市大みか町七丁目2番1号 株式会社 日立製作所 電力・電機開発 本部内 (56)参考文献 特開 平8−336214(JP,A) 特開 平9−153320(JP,A) 特開 昭49−121972(JP,A) 特公 昭49−41903(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H02B 13/02 H01H 33/66 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Ayumu Morita 7-2-1, Omika-cho, Hitachi City, Ibaraki Pref. A) JP-A-9-153320 (JP, A) JP-A-49-121972 (JP, A) JP-B-49-41903 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) ) H02B 13/02 H01H 33/66

Claims (1)

(57)【特許請求の範囲】 【請求項1】遮断部コンパートメントと操作部コンパー
トメントとを有するスイッチギヤであって、固定電極
接地電極、該固定電極と接地電極間に配置された可動電
、該可動電極に連結した支点を介して可動電極を
記固定電極と接地電極に接離する可動ブレード及び該
動電極と電気的に接続され、真空接地容器に支持された
負荷側導体を前記真空接地容器内に3回路分収納して、
定格電圧24kV,定格電流600A,定格遮断容量2
5kAの性能を有する3相スイッチギヤにより遮断部コ
ンパートメントを構成し、導体コンパートメント,遮断
部コンパートメント及び操作部コンパートメントを含め
て、幅1100mm,高さ1500mm,奥行450mmの
形寸法を有することを特徴とする真空スイッチギヤ。
(57) Claims 1. A switchgear having a cut-off section compartment and an operation section compartment, wherein the switchgear includes a fixed electrode ,
A ground electrode, the fixed electrode and the movable electrode disposed between the ground electrode, before the movable electrode through a fulcrum coupled to said movable electrode
Serial movable blade and the friendly toward or away the fixed electrode and the ground electrode <br/> moving electrode and is electrically connected, and third storage circuit component on the load side conductor that is supported by the vacuum earthing vessel the vacuum earthing container hand,
Rated voltage 24kV, rated current 600A, rated breaking capacity 2
The three-phase switchgear with the performance of 5kA cuts off
Compartment, conductor compartment, shut off
Including compartment and operation compartment
Te, outside of width 1100mm, height 1500mm, depth 450mm
A vacuum switchgear having a shape and dimensions .
JP27082797A 1997-07-23 1997-10-03 Vacuum switchgear Expired - Fee Related JP3374724B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP27082797A JP3374724B2 (en) 1997-10-03 1997-10-03 Vacuum switchgear
US09/114,944 US6144005A (en) 1997-07-23 1998-07-14 Vacuum switch and a vacuum switchgear using the same
CNB2004100859577A CN100341088C (en) 1997-07-23 1998-07-22 Vacuum switch and a vacuum switchgear using the same
CNB981163572A CN1178253C (en) 1997-07-23 1998-07-22 Vacuum switch and vacuum switch apparatus using the same
RU98114866/09A RU2195734C2 (en) 1997-07-23 1998-07-22 Vacuum switch and vacuum switchgear
EP98113825A EP0893811B1 (en) 1997-07-23 1998-07-23 A vacuum switch and a vacuum switchgear using the same
DE69836300T DE69836300T2 (en) 1997-07-23 1998-07-23 Vacuum switch and this using vacuum switchgear
KR10-1998-0029589A KR100472170B1 (en) 1997-07-23 1998-07-23 Vacuum switch and vacuum switch gear using it
US09/562,756 US6259051B1 (en) 1997-07-23 2000-05-02 Vacuum switch and a vacuum switchgear using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27082797A JP3374724B2 (en) 1997-10-03 1997-10-03 Vacuum switchgear

Publications (2)

Publication Number Publication Date
JPH11113116A JPH11113116A (en) 1999-04-23
JP3374724B2 true JP3374724B2 (en) 2003-02-10

Family

ID=17491574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27082797A Expired - Fee Related JP3374724B2 (en) 1997-07-23 1997-10-03 Vacuum switchgear

Country Status (1)

Country Link
JP (1) JP3374724B2 (en)

Also Published As

Publication number Publication date
JPH11113116A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
US6144005A (en) Vacuum switch and a vacuum switchgear using the same
JP3164033B2 (en) Busbar connection structure and insulating cover
JP4162664B2 (en) Vacuum switchgear
EP2017866B1 (en) Vacuum insulated switchgear
JPH06335125A (en) Switching device
JP5123894B2 (en) Vacuum insulated switchgear
JPH11113118A (en) Switchgear
JP3374724B2 (en) Vacuum switchgear
JPH1189027A (en) Switch gear
JP3374723B2 (en) Vacuum switchgear
JP3402135B2 (en) Vacuum switch and vacuum switchgear
JP3402134B2 (en) Vacuum switch and vacuum switchgear
JPH1189026A (en) Switch gear
JP3775010B2 (en) Switchgear
JPH11113117A (en) Switchgear
KR100472170B1 (en) Vacuum switch and vacuum switch gear using it
JP2000082367A (en) Switch and switch gear
JPH1189024A (en) Switch gear
JP2002165319A (en) Vacuum switchgear
JP3402136B2 (en) Vacuum switch and vacuum switchgear
WO2000021105A1 (en) Vacuum switch gear
JP3695214B2 (en) Insulated switchgear
JP2005005277A (en) Vacuum switch
JPH11113119A (en) Bus connecting construction
JP2000040449A (en) Vacuum switch and vacuum switch gear using it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees