JP3374521B2 - Detour design method - Google Patents

Detour design method

Info

Publication number
JP3374521B2
JP3374521B2 JP10991094A JP10991094A JP3374521B2 JP 3374521 B2 JP3374521 B2 JP 3374521B2 JP 10991094 A JP10991094 A JP 10991094A JP 10991094 A JP10991094 A JP 10991094A JP 3374521 B2 JP3374521 B2 JP 3374521B2
Authority
JP
Japan
Prior art keywords
working
lines
line
detour
protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10991094A
Other languages
Japanese (ja)
Other versions
JPH07321779A (en
Inventor
祐一 遠藤
運夫 山岸
博通 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10991094A priority Critical patent/JP3374521B2/en
Publication of JPH07321779A publication Critical patent/JPH07321779A/en
Application granted granted Critical
Publication of JP3374521B2 publication Critical patent/JP3374521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大束伝送路の故障の際
に行うネットワーク(網)切替において、対地の異なる
複数の現用回線を予備回線に切り替える迂回路の設計方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of designing a detour for switching a plurality of working lines having different grounds to protection lines when switching networks when a large bundle transmission line fails.

【0002】[0002]

【従来の技術】従来のディジタル伝送路網切替方式(D
SW)における迂回経路の探索方法については、最短経
路法を繰り返し用いて救済回線数を増やしていく逐次改
善法を取っており、予め故障を想定し迂回経路の探索を
行っている。想定できない故障の場合は、迂回経路の探
索を故障状況に応じて即時に最短経路法により回線単位
で行っている。
2. Description of the Related Art A conventional digital transmission line network switching system (D
As for the detour route search method in SW, the shortest route method is repeatedly used to increase the number of rescue lines, and a detour route is searched for in advance assuming a failure. In the case of an unexpected failure, the detour route is searched immediately by the shortest route method on a line-by-line basis according to the failure situation.

【0003】図2はネットワーク構成と予備回線の設定
量の一例を示す説明図で、切替ノード局(以下ノードと
いう)A〜Hは相互に伝送路で接続されている。すなわ
ち、網は、多重化した信号を伝送する伝送路と、この伝
送路の接続点であるノードA〜Hで構成している。ノー
ドA〜Hには、ディジタルの領域で多重化した信号を振
り分けるクロスコネクト機能を有するモジュール(切替
モジュール)を備えている。この網は、制御装置から切
替モジュールに伝送路切替コマンドを送出することによ
り所定の伝送路に切り替えることができる。
FIG. 2 is an explanatory diagram showing an example of a network configuration and an amount of setting of a protection line. Switching node stations (hereinafter referred to as nodes) A to H are mutually connected by a transmission line. That is, the network is composed of a transmission line that transmits multiplexed signals and nodes A to H that are connection points of this transmission line. Each of the nodes A to H is provided with a module (switching module) having a cross-connect function for distributing signals multiplexed in the digital area. This network can be switched to a predetermined transmission path by sending a transmission path switching command from the control device to the switching module.

【0004】図2において、ノードA〜Hは伝送路で接
続し、各ノードと制御装置は情報転送網で情報を送受信
している。図2で「ノードA」から「ノードD」に至る
経路で延びる現用回線を「現用パス」と呼び、通常は始
点ノード(ノードA)と終点ノード(ノードD)を最短
に結ぶ経路(以下、「最短リンク」と呼ぶ。)で現用パ
スを設定している。
In FIG. 2, nodes A to H are connected by a transmission line, and each node and the control device transmit and receive information through an information transfer network. In FIG. 2, the working line that extends along the path from "node A" to "node D" is called the "working path", and usually the shortest path connecting the start node (node A) and the end node (node D) This is called the "shortest link".) And the working path is set.

【0005】一方、伝送路の故障、支障移転等により現
用パスを迂回するためのパスを予備パスと呼び、隣設す
るノード間(例えばノードAとノードB)に所定回線数
を設けている。
On the other hand, a path for bypassing the working path due to a failure or transfer of a transmission line is called a backup path, and a predetermined number of lines are provided between adjacent nodes (for example, node A and node B).

【0006】従来このような伝送路ネットワークの迂回
路設計は、事前に故障区間を想定し、最短リンクで迂回
可能な最適迂回経路を算出し、データベースに登録して
いた。
[0006] Conventionally, in the detour design of such a transmission line network, a failure section is assumed in advance, an optimum detour route that can be detoured by the shortest link is calculated and registered in a database.

【0007】[0007]

【発明が解決しようとする課題】従来のディジタル伝送
路網切替方式(DSW)における迂回経路の探索方法で
ある逐次改善法は迂回経路の探索に時間を要すること、
想定できない故障の場合も即時に最短経路法を用いた簡
易な方法により行うため時間を要すること、及び対地残
存率を考慮していないため対地間途絶の危険性が大きい
という欠点があり、また、必ずしも予備回線の効率的な
利用を図ることができない。このため、想定できない故
障に要する時間を短縮し、予備を効率的に利用すること
ができる迂回路の設計方法が待望されていた。
SUMMARY OF THE INVENTION The successive improvement method, which is a method of searching for a detour route in a conventional digital transmission network switching system (DSW), requires a long time for searching a detour route,
Even in the case of an unexpected failure, there is a drawback that it takes time because it is performed immediately by a simple method using the shortest path method, and there is a high risk of interruption to the ground because the survival rate to ground is not taken into consideration. It is not always possible to efficiently use the protection line. Therefore, there has been a long-felt demand for a detour design method that can shorten the time required for an unexpected failure and can efficiently use a spare.

【0008】又、従来の迂回経路算出方法は、まず現用
パス「あ」について迂回経路を求め、予備パスを配分
し、次に現用パス「い」について迂回経路を求めて予備
パスを配分するという具合に設計していくので、予備パ
スの設定できない現用パスが出たり、最短リンクを設定
できないことがあった。
In the conventional detour route calculation method, first, the detour route is found for the working path "a", the backup path is allocated, and then the detour route is found for the working path "i" and the backup path is distributed. Since it is designed in a proper manner, there are cases where a working path for which a backup path cannot be set or a shortest link cannot be set.

【0009】また、現用パスをどの順序で演算するかに
よって配分される回線数が異なるため、現用回線の順序
を入れ替え、全ての組み合わせについて設計した中から
最適な迂回経路を決定するので、最適迂回経路設計に時
間がかかるという問題があった。
Further, since the number of allocated lines differs depending on the order in which the working paths are calculated, the order of the working lines is exchanged, and the optimum detour route is selected from the designs for all combinations. There was a problem that it took time to design the route.

【0010】また、想定した故障区間毎に最適迂回経路
情報をデータベースとして登録しておく必要があるた
め、データベースが膨大になるという問題があった。ま
た、伝送路は支障移転などにより日々変化するので、変
化した時点で上記最適迂回経路設計を再度やり直す必要
がある。
Further, since it is necessary to register the optimal detour route information as a database for each assumed failure section, there is a problem that the database becomes huge. Further, the transmission line changes every day due to trouble transfer or the like, and therefore, the optimum detour route design needs to be redone at the time of the change.

【0011】本発明は上記の事情に鑑みてなされたもの
で、予備パスの設定できない現用パスがないように迂回
経路を設計すると共に、高速な設計処理によって実時間
で最適迂回経路を設計する迂回路の設計方法を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and a detour route is designed so that there is no working path for which a backup path cannot be set, and an optimal detour route is designed in real time by high-speed design processing. The purpose is to provide a method for designing a road.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明は、対地の異なる複数の現用回線を予備回線に
切り替える迂回路の設計方法であって、予備回線におい
て現用回線の接続経路と異なる迂回経路を探索する探索
ステップと、前記探索ステップで求めた迂回経路の予備
回線を狙う切替予定の現用回線の数を算出する算出ステ
ップと、切替予定の現用回線の数が前記予備回線の数を
越えた場合には、前記現用回線の数に基づいて前記予備
回線を配分する配分ステップと、切替予定の現用回線を
前記配分ステップで配分した予備回線に割り当てる割当
ステップからなることを特徴とするものである。
In order to achieve the above object, the present invention is a method for designing a detour for switching a plurality of working lines having different grounds to a protection line, and a method for connecting a working line to a protection line. A search step for searching a different detour route, a calculation step for calculating the number of working lines scheduled for switching aiming at the protection line of the detour route obtained in the searching step, and the number of working lines scheduled for switching is the number of the protection lines. If the number exceeds the above-mentioned working line, it comprises a allocating step for allocating the protection line based on the number of the working lines, and a allocating step for allocating the working line to be switched to the protection line allocated in the allocating step. It is a thing.

【0013】又、前記配分ステップは、切替予定の現用
回線の数が前記予備回線の数を越えた場合には、前記現
用回線の数で前記予備回線を比例配分し、切替予定の現
用回線の数が前記予備回線の数を下回る場合には、前記
現用回線の数で前記予備回線を配分することを特徴とす
るものである。
Further, in the allocating step, when the number of working lines to be switched exceeds the number of protection lines, the protection lines are proportionally distributed by the number of working lines, and the working lines to be switched are When the number is smaller than the number of the protection lines, the protection lines are distributed by the number of the working lines.

【0014】[0014]

【作用】上記手段により本発明は、予備パスを狙う現用
パスに競合が生じた場合には、その現用パスの回線数に
応じて比例配分するので、より多くの現用パスに予備パ
スを割り当てることができる。
According to the present invention, when the working paths aiming at the protection paths are contended, the invention is proportionally distributed according to the number of lines of the working paths, so that the protection paths are allocated to more working paths. You can

【0015】また、1回目の迂回経路設計で全ての現用
パスを配分できなくても、未救済の現用パスだけを対象
に再度迂回経路を設計すればよく、従来の設計方法に比
べて短時間に処理でき、故障などの即時性を求められる
場合でも実時間で最適迂回経路を設計することができ
る。
Even if all the working paths cannot be allocated in the first detour route design, it is sufficient to redesign the detour route only for the unrepaired working path, which is shorter than the conventional design method. The optimum detour route can be designed in real time even if immediate processing such as a failure is required.

【0016】また、切替えが必要な時点で迂回経路の設
計をするので、現状のネットワークに適合した迂回経路
を提供できる。また、膨大な最適迂回経路データを事前
にメモリに登録する必要がないので、メモリに記憶する
情報量を小さくすることができ、ハードディスクのよう
な大容量の記憶装置に代えて高速で小容量のメモリを使
用することができる。
Further, since the detour route is designed at the time when switching is required, it is possible to provide the detour route suitable for the current network. In addition, since it is not necessary to register a huge amount of optimum detour route data in the memory in advance, the amount of information stored in the memory can be reduced, and a high-speed, small-capacity storage device can be used instead of a large-capacity storage device such as a hard disk. Memory can be used.

【0017】[0017]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。図2は本発明の方法を説明するための例示的
なネットワーク構成と予備回線の設定量を示す説明図で
あり、図3は故障伝送路に収容される現用回線の一例を
示す説明図である。なお、本発明では、より複雑なネッ
トワークにおける切替を行うことができる。図2に示す
ネットワーク構成において、ノードB〜ノードC間の伝
送路が故障となった場合を考える。ノードB〜ノードC
間の伝送路に、図3に示す現用回線「あ」(ノードA〜
C間)の現用回線が10本、「い」(ノードB〜D間)
の現用回線が5本、「う」(ノードA〜D間)の現用回
線が1本それぞれ収容されていたとすると、「あ」,
「い」,「う」の各回線群に対して1回目の迂回路設計
を行う。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 2 is an explanatory diagram showing an exemplary network configuration and a setting amount of a protection line for explaining the method of the present invention, and FIG. 3 is an explanatory diagram showing an example of a working line accommodated in a failure transmission line. . In addition, according to the present invention, it is possible to perform switching in a more complicated network. Consider a case where the transmission path between the node B and the node C fails in the network configuration shown in FIG. Node B to node C
The working line “A” (node A to
10 working lines (between C), “I” (between nodes B and D)
5 working lines and one working line of "U" (between nodes A to D) are accommodated, "a",
The first detour design is performed for each of the "i" and "u" line groups.

【0018】この場合、1回線単位に行う(図3の例で
は16回)わけではなく、回線群単位(図3の例では3
回)で行う。図4は回線端切替、迂回路設計(1回目)
後の状態の一例を示す説明図であるが、本発明では、迂
回路設計方法を限定するものではない。結果として、
「あ」の迂回経路はA〜E〜F〜C間(以下「あ′」と
いう)となり、8本の救済が可能、「い」の迂回経路は
B〜E〜F〜D間(以下「い′」という)となり4本の
救済が可能、「う」の迂回経路はA〜E〜F〜D間(以
下「う′」という)となり1本の救済が可能と設計され
る。
In this case, the processing is not performed for each line (16 times in the example of FIG. 3), but for each line group (3 times in the example of FIG. 3).
Times). Figure 4 shows line end switching and detour design (first time)
It is an explanatory view showing an example of the latter state, but the present invention does not limit the detour design method. as a result,
The "A" detour route is between A to E to F to C (hereinafter referred to as "A '"), and eight reliefs are possible. The "I" detour route is between B to E to F to D (hereinafter "A"). It is designed such that four lines can be repaired, and the detour route of "U" is between A to E to F to D (hereinafter referred to as "U"), and one can be repaired.

【0019】これらの現用回線と予備量とに着目し、予
備を狙う現用回線数が予備量より多い場合には、予備を
狙う現用回線数に比例して配分する。予備を狙う現用回
線数が予備量より少ない場合には、配分は不要である。
配分後の現用回線を迂回経路沿いにトレースし、割り当
てられない予備量から減じて、新しい切替ネットワーク
を想定する。この過程を示したものが図5の配分過程、
救済可能現用回線数および未使用予備数の一例を示す説
明図である。
Paying attention to these working lines and the amount of spares, when the number of working lines aiming for the spare is larger than the amount of spares, it is distributed in proportion to the number of the working lines aiming for the spare. If the number of working lines aiming for a spare is less than the spare amount, allocation is unnecessary.
A new switching network is assumed by tracing the working line after allocation along the detour route and subtracting from the unallocated reserve amount. This process is shown in the distribution process in Figure 5,
It is explanatory drawing which shows an example of the number of working lines which can be repaired, and an unused spare number.

【0020】一方、図6に示すように、故障伝送路に収
容される現用回線数も1回目の設計によって救済されて
いるため、未救済となった現用回線のみを現用として、
新しい切替ネットワークを想定する。
On the other hand, as shown in FIG. 6, since the number of working lines accommodated in the faulty transmission line is also relieved by the first design, only the unrestored working lines are taken as the working ones.
Assume a new switching network.

【0021】ここで想定された切替ネットワークは、こ
れまでの切替経過を意識すること無く、新しい切替ネッ
トワークとして、迂回路設計に入ることができる。2回
目の迂回路設計を行った結果、未救済であった現用回線
は全て救済されたため、迂回路設計作業を終了する。
The switching network assumed here can enter a detour design as a new switching network without being aware of the switching history up to now. As a result of performing the second detour design, all the unrelieved working lines have been relieved, and thus the detour design work is completed.

【0022】図7はネットワーク構成と予備回線の設定
量及び回線端切替、迂回路設計(2回目)後の状態の一
例を示す説明図である。図6の「あ」,「い」は故障し
た現用パス(1回目の設計で救済できなかったパス)、
図7の「あ′」,「い′」は図6の「あ」,「い」の迂
回経路(2回目の設計)である。
FIG. 7 is an explanatory view showing an example of the state after the network configuration, the set amount of the protection line, the line end switching, and the detour design (second time). “A” and “I” in FIG. 6 are the failed working paths (paths that could not be relieved in the first design),
“A ′” and “I ′” in FIG. 7 are bypass routes (second design) of “A” and “I” in FIG. 6.

【0023】図2よりさらに複雑な切替ネットワークに
おいては、3回目、4回目と設計を繰り返し、未救済現
用回線が無くなるか、迂回路の設計ができなくなった時
点で迂回路設計作業を終了することになる。予備量の多
い切替ネットワークでは、1回目の迂回路設計によっ
て、全ての現用回線が救済できることになるため、迂回
路設計時間が短くできる。
In a switching network more complicated than that of FIG. 2, the design is repeated for the third time and the fourth time, and the detour design work is finished when the unrepaired working line is lost or the detour cannot be designed. become. In a switching network with a large amount of spares, all working lines can be repaired by the first detour design, so the detour design time can be shortened.

【0024】各ノードA〜Hと情報転送網で情報を送受
信している制御装置のメモリには、図8(a)に示す伝
送路情報と現用パス情報を記憶している。図8(a)の
伝送路情報は、ノードA〜H間の伝送路に対し回線単位
で作成しており、現用/予備データ、始点ノード/終点
ノードの番号等を書き込んでいる。
The memory of the control device which transmits and receives information to and from the nodes A to H through the information transfer network stores the transmission path information and the working path information shown in FIG. 8A. The transmission path information of FIG. 8A is created for each transmission path between the nodes A to H, and the working / spare data, the start point node / end point node numbers, and the like are written therein.

【0025】図8(b)の現用パス情報は、パス単位に
パス名と現用パスの経路、現用回線数を書き込んでい
る。まず、現用パスの故障が発生すると、該当するノー
ドから制御装置に警報が送出される。制御装置は警報に
含まれるノード番号を基に、伝送路情報から該当する伝
送路を特定する。図2では警報に含まれる始点ノード
B、終点ノードCから区間BCに故障が発生したことを
把握する。
In the working path information of FIG. 8B, the path name, the path of the working path, and the number of working lines are written for each path. First, when a failure occurs in the working path, an alarm is sent from the corresponding node to the control device. The control device identifies the corresponding transmission line from the transmission line information based on the node number included in the alarm. In FIG. 2, it is understood that a failure has occurred in the section BC from the start point node B and the end point node C included in the alarm.

【0026】図1は本発明の設計処理を示すフローチャ
ートである。以下フローチャートに基づいて本発明の迂
回路の設計方法を説明する。ステップ[1]では伝送路
情報から「予備」と登録されている情報を抽出して、予
備パス情報を作成する。(対地毎に使用可能な予備パス
数を算出する。)ステップ[2]ではパス対地毎に故障
区間BCを含む現用パスを、現用パス情報から取得し切
替対象パス情報を作成する。(対地毎に切替対象パス数
を算出する。)ステップ[3]では切替対象パス情報の
先頭レコード(現用パス「あ」)について最短リンクと
なる経路を最短経路法により求め、迂回経路A−E−F
−Cを選択する。(1対地につき1経路探索する。)ス
テップ[4]では「迂回経路A−E−F−C」の各区間
(AE,EF,FC)が有する予備回線数(AEは8
本、EFは10本、FCは8本)から迂回経路で確保で
きる予備回線数(即ち8本)を算出し、図9のワークデ
ータの「迂回する現用回線数」(図5参照)に書き込
む。次に、現用パス「い」と「う」についても同様にス
テップ[3]とステップ[4]を実行し、迂回経路「B
−E−F−D」および「A−E−F−D」で確保できる
予備回線数(4本および1本)を、図9のワークデータ
の「迂回する現用回線数」に書き込む。(取得した経路
で救済可能なパス数を確認する。)ステップ[5]では
全ての迂回探索が終了するまでステップ[3],[4]
を繰り返す。
FIG. 1 is a flow chart showing the design process of the present invention. The detour route designing method of the present invention will be described below with reference to the flowchart. In step [1], information registered as "spare" is extracted from the transmission path information to create spare path information. (The number of usable backup paths is calculated for each ground.) In step [2], the working path including the failure section BC is acquired from the working path information for each path ground and the switching target path information is created. (The number of paths to be switched is calculated for each ground.) In step [3], the shortest link route is obtained by the shortest route method for the first record (current path “A”) of the switching target path information, and the detour routes AE -F
-C is selected. (One route is searched for one ground.) In step [4], the number of backup lines (AE is 8) in each section (AE, EF, FC) of the "detour route AEFFC"
The number of spare lines (ie, 8) that can be secured in the detour route is calculated from the number of lines, EF of 10 lines, and FC of 8 lines, and is written in the “number of detouring working lines” (see FIG. 5) of the work data in FIG. . Next, the steps [3] and [4] are similarly executed for the working paths "i" and "u", and the detour route "B" is executed.
-E-F-D "and" A-E-F-D ", the number of protection lines (4 and 1) that can be secured is written in the" number of detouring working lines "of the work data of FIG. (Check the number of relievable paths in the acquired route.) In step [5], steps [3] and [4] are performed until all detour searches are completed.
repeat.

【0027】ステップ[6]からステップ[8]ではワ
ークデータの先頭レコードから順に競合度を計算する。
詳しく説明すると、各区間において各現用パスが狙って
いる回線数(区間AEでは、現用パス「あ′」が8本、
「う′」が1本で、合計9本)と予備回線の数8本との
比(予備回線の数/狙っている現用パス合計)が競合度
であり、この競合度が1未満の場合には、現用パス数で
予備回線の数を比例配分する。また、競合度が1以上な
らば現用パス数を書き込む。
In steps [6] to [8], the degree of competition is calculated in order from the first record of the work data.
More specifically, the number of lines targeted by each working path in each section (in the section AE, there are eight working paths “a ′”,
If there is one "U '" (9 in total) and the number of backup lines is 8 (number of backup lines / total working paths targeted), the contention level is less than 1. , The number of protection lines is proportionally distributed by the number of working paths. If the competition is 1 or more, the number of active paths is written.

【0028】ステップ[9]では予備パスの競合度の確
認が全対地終了するまでステップ[6]からステップ
[8]を繰り返す。ステップ[10]では配分後の現用
回線の数は、現用パス「あ′」の場合、区間AEが7
本、区間EFが6本、区間CFが8本となっており、最
小値6本をもって救済可能な現用回線とする。
In step [9], steps [6] to [8] are repeated until the confirmation of the competitiveness of the backup path is completed for all the ground points. In step [10], the number of working lines after allocation is 7 for the section AE when the working path is "a '".
There are 6 lines, 6 sections EF, and 8 sections CF, and a minimum value of 6 sets a repairable working line.

【0029】ステップ[11]では、ステップ[10]
で算出した救済パス数を、予備パスから差し引いてワー
クデータの予備パス数を更新する。ステップ[12]で
は切替対象パスが全て0か否かを判断し、0でなければ
ステップ[3]まで戻り、上述した設計を行う。
In step [11], step [10]
The number of recovery paths calculated in step S1 is subtracted from the number of backup paths to update the number of backup paths in the work data. In step [12], it is determined whether or not all the switching target paths are 0, and if not 0, the process returns to step [3] and the above-described design is performed.

【0030】図10のワークデータは2回目の設計であ
り、図9のワークデータの1回目の設計と同様にして図
1に示すフローチャートの設計処理により得られる。以
上のように、ノード間に1回線しかない現用回線も救済
可能であるため、通信途絶を引き起こさずにすむこと、
および迂回路設計が回線群単位であるため、迂回路設計
を高速に処理できるという利点がある。
The work data of FIG. 10 is the second design, and is obtained by the design process of the flowchart shown in FIG. 1 in the same manner as the first design of the work data of FIG. As described above, since the working line having only one line between the nodes can be repaired, it is possible to avoid the communication interruption.
Since the detour design is performed on a line group basis, there is an advantage that the detour design can be processed at high speed.

【0031】[0031]

【発明の効果】以上述べたように本発明によれば、より
多くの現用パスに予備パスを割り当てるように迂回経路
を設計すると共に、高速な設計処理によって実時間で最
適迂回経路を設計する迂回路の設計方法を提供すること
ができる。
As described above, according to the present invention, a detour route is designed so as to allocate a backup path to a larger number of working paths, and a detour route for designing an optimum detour route in real time by high-speed design processing. A method of designing a road can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すフローチャートであ
る。
FIG. 1 is a flowchart showing an embodiment of the present invention.

【図2】ネットワーク構成と予備回線の設定量の一例を
示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a network configuration and a setting amount of a protection line.

【図3】故障伝送路に収容される現用回線の一例を示す
説明図である。
FIG. 3 is an explanatory diagram showing an example of a working line accommodated in a faulty transmission line.

【図4】回線端切替、迂回路設計(1回目)の一例を示
す説明図である。
FIG. 4 is an explanatory diagram showing an example of line end switching and detour design (first time).

【図5】配分過程、救済可能現用回線数および未使用予
備数の一例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of a distribution process, a repairable working line number, and an unused spare number.

【図6】故障伝送路に収容される未救済現用回線数の一
例を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of the number of unrepaired working lines accommodated in the faulty transmission line.

【図7】ネットワーク構成と予備回線の設定量および回
線端切替、迂回路設計(2回目)の一例を示す説明図で
ある。
FIG. 7 is an explanatory diagram showing an example of a network configuration, a setting amount of a protection line, line end switching, and detour design (second time).

【図8】本発明に係る伝送路情報および現用パス情報の
一例を示す説明図である。
FIG. 8 is an explanatory diagram showing an example of transmission path information and working path information according to the present invention.

【図9】本発明に係るワークデータ(1回目の設計)の
一例を示す説明図である。
FIG. 9 is an explanatory diagram showing an example of work data (first design) according to the present invention.

【図10】本発明に係るワークデータ(2回目の設計)
の一例を示す説明図である。
FIG. 10: Work data according to the present invention (second design)
It is explanatory drawing which shows an example.

【符号の説明】[Explanation of symbols]

A〜H…ノード、あ,い,う…故障した現用パス、
あ′,い′,う′…あ,い,うの迂回経路。
A to H ... nodes, ah, u ... faulty working path,
A ', I', U '... A, I, U detour route.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岸 運夫 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (72)発明者 伊藤 博通 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 平5−48604(JP,A) 特開 平4−263540(JP,A) 特開 平2−43850(JP,A) 特開 昭60−218956(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04L 12/56 100 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yukio Yamagishi 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (72) Inventor Hiromichi Ito 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Within Nippon Telegraph and Telephone Corporation (56) Reference JP-A-5-48604 (JP, A) JP-A-4-263540 (JP, A) JP-A-2-43850 (JP, A) JP-A-60-218956 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H04L 12/56 100

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 対地の異なる複数の現用回線を予備回線
に切り替える迂回路の設計方法であって、 予備回線において現用回線の接続経路と異なる迂回経路
を探索する探索ステップと、 前記探索ステップで求めた迂回経路の予備回線を狙う切
替予定の現用回線の数を算出する算出ステップと、 切替予定の現用回線の数が前記予備回線の数を越えた場
合には、前記現用回線の数に基づいて前記予備回線を配
分する配分ステップと、 切替予定の現用回線を前記配分ステップで配分した予備
回線に割り当てる割当ステップからなることを特徴とす
る迂回路の設計方法。
1. A method for designing a detour for switching a plurality of working lines with different grounds to a protection line, the method comprising: a search step for searching a detour route different from the connection path of the working line in the protection line; A step of calculating the number of working lines planned for switching aiming at the protection line of the bypass route, and if the number of working lines planned for switching exceeds the number of protection lines, based on the number of working lines A detour route designing method comprising: an allocation step of allocating the protection line; and an allocation step of allocating a working line to be switched to the protection line allocated in the allocation step.
【請求項2】 前記配分ステップは、 切替予定の現用回線の数が前記予備回線の数を越えた場
合には、前記現用回線の数で前記予備回線を比例配分
し、 切替予定の現用回線の数が前記予備回線の数を下回る場
合には、前記現用回線の数で前記予備回線を配分するこ
とを特徴とする請求項1記載の迂回路の設計方法。
2. The allocating step, when the number of working lines to be switched exceeds the number of the protection lines, proportionally distributes the protection lines by the number of the working lines to change the working lines to be switched. 2. The detour route designing method according to claim 1, wherein when the number is less than the number of the protection lines, the protection lines are distributed by the number of the working lines.
JP10991094A 1994-05-24 1994-05-24 Detour design method Expired - Lifetime JP3374521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10991094A JP3374521B2 (en) 1994-05-24 1994-05-24 Detour design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10991094A JP3374521B2 (en) 1994-05-24 1994-05-24 Detour design method

Publications (2)

Publication Number Publication Date
JPH07321779A JPH07321779A (en) 1995-12-08
JP3374521B2 true JP3374521B2 (en) 2003-02-04

Family

ID=14522254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10991094A Expired - Lifetime JP3374521B2 (en) 1994-05-24 1994-05-24 Detour design method

Country Status (1)

Country Link
JP (1) JP3374521B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215977A (en) * 2005-02-07 2006-08-17 Sumitomo Electric Ind Ltd Traffic control system
JP4545658B2 (en) * 2005-08-11 2010-09-15 富士通株式会社 Connection type network node

Also Published As

Publication number Publication date
JPH07321779A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
US7233983B2 (en) Reliability for interconnect fabrics
CN101778003B (en) The system and method preventing equipment fault impact communication
US6061735A (en) Network restoration plan regeneration responsive to network topology changes
CA2416752C (en) Routing engine for telecommunications network
US6324162B1 (en) Path-based restoration mesh networks
US5463615A (en) Node failure restoration tool
CN102204188A (en) Routing computation method and host node device in virtual network element
JP5174235B2 (en) Method of protection sharing in a WDM mesh network
US5734640A (en) Protection network design
JP2002247038A (en) Method for forming ring in network, method for restoring fault and method for adding node address at the time of forming ring
EP0822678A2 (en) Alternate ring restoration technique
EP1721400B1 (en) Systems and methods for multi-layer protection switching within a sub-networking connection
JP3374521B2 (en) Detour design method
US20010021049A1 (en) Method for traffic protection in WDM fiber optic transport networks
US7542414B1 (en) Computing a diverse path while providing optimal usage of line protected links
US6052360A (en) Network restoration plan regeneration responsive to transitory conditions likely to affect network traffic
JP3844982B2 (en) Transmission equipment
JP3754416B2 (en) Traffic self-relief method and Liestablish method
JPH053475A (en) Path retrieval system
JP3811147B2 (en) Wavelength allocation method for ring communication networks using wavelength division multiplexing
JP3537017B2 (en) Communication network and logical path route selection method
JPH0591103A (en) Integrated self-healing network and design system
JP2978648B2 (en) Optimal route determination method for network system
JPH11252104A (en) Network system and network configuration management method
Chng et al. Multi-layer real-time restoration for survivable networks

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term