JP3374196B2 - Rotating electric machine stator - Google Patents

Rotating electric machine stator

Info

Publication number
JP3374196B2
JP3374196B2 JP02409193A JP2409193A JP3374196B2 JP 3374196 B2 JP3374196 B2 JP 3374196B2 JP 02409193 A JP02409193 A JP 02409193A JP 2409193 A JP2409193 A JP 2409193A JP 3374196 B2 JP3374196 B2 JP 3374196B2
Authority
JP
Japan
Prior art keywords
slot
stator
magnetic
electric machine
rotating electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02409193A
Other languages
Japanese (ja)
Other versions
JPH06245424A (en
Inventor
浩幸 三上
啓治 新井
身佳 高橋
春雄 小原木
一正 井出
憲三 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02409193A priority Critical patent/JP3374196B2/en
Publication of JPH06245424A publication Critical patent/JPH06245424A/en
Application granted granted Critical
Publication of JP3374196B2 publication Critical patent/JP3374196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三相誘導電動機などの
ような回転電機の固定子に係り、特に固定子鉄心に設け
られたスロット内に収納される巻線を支持固定するため
の支持材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stator of a rotary electric machine such as a three-phase induction motor, and more particularly to a support for supporting and fixing a winding housed in a slot provided in a stator core. It concerns materials.

【0002】[0002]

【従来の技術】従来の回転電機(以下従来機という。)
における固定子鉄心は、同鉄心に設けられたスロット内
に絶縁が施されている巻線が収納されて、同スロットの
開口部に巻線が脱落することを防ぐため多くは非磁性体
の支持材、いわゆる楔が挿入される。この場合、スロッ
ト開口部の磁気抵抗は鉄心の磁気抵抗より大きいため、
磁束はその殆んどが鉄心歯部に集中して分布する。そし
て、各鉄心歯部における最大磁束密度の大きさは鉄心歯
部の空隙部周上配置位置によって異なり、それらの大小
関係は空隙部周上に沿って規則性を持つことが知られて
いる。
2. Description of the Related Art Conventional rotary electric machines (hereinafter referred to as conventional machines)
In the stator core in, the winding with insulation is housed in the slot provided in the core, and in many cases the non-magnetic support is used to prevent the winding from falling into the opening of the slot. A material, a so-called wedge, is inserted. In this case, the magnetic resistance of the slot opening is larger than that of the iron core.
Most of the magnetic flux is concentrated and distributed in the teeth of the iron core. It is known that the magnitude of the maximum magnetic flux density in each tooth of the iron core differs depending on the position of the tooth of the iron core on the circumference of the void, and the magnitude relation between them has regularity along the circumference of the void.

【0003】図1に固定子の各鉄心歯部における最大磁
束密度(従来機)の1例を示す。図1に示すように、固
定子鉄心周方向位置を示す歯部番号#4と#6における
鉄心歯部7の磁束密度は、歯部番号#6の方が歯部番号
#4に比べて最大磁束密度において高くなり鉄損が大き
くなる。これは、巻線電流により生成される起磁力分布
が階段状になること及び歯部番号#4の両側に位置する
各スロット4に挿入された巻線5の電流位相が相等しい
のに対して、歯部番号#6の両側に位置する各スロット
4内の巻線5の電流位相が相異なることに起因する。さ
らにこの現象は、例えば三相巻線が施された回転電機に
おいて、6m±1次(ここで、6m+1の場合、m=
0,1,2,…であり、6m−1の場合、m=1,2,
…である)として表される空間高調波磁束の発生原因と
なり、回転子鉄心部における高調波損失を大きくすると
いう不具合を有していた。
FIG. 1 shows an example of the maximum magnetic flux density (conventional machine) in each tooth of the iron core of the stator. As shown in FIG. 1, the magnetic flux density of the iron core tooth portion 7 in the tooth portion numbers # 4 and # 6 indicating the circumferential position of the stator iron core is the largest in the tooth portion number # 6 as compared with the tooth portion number # 4. The magnetic flux density becomes high and the iron loss becomes large. This is because the magnetomotive force distribution generated by the winding current is stepwise and the current phases of the windings 5 inserted in the slots 4 located on both sides of the tooth number # 4 are equal. This is because the current phases of the windings 5 in the slots 4 located on both sides of the tooth number # 6 are different. Further, this phenomenon is caused by, for example, in a rotary electric machine provided with a three-phase winding, 6m ± first order (here, in the case of 6m + 1, m =
0, 1, 2, ..., In the case of 6m-1, m = 1, 2,
, Which is a cause of the generation of the spatial harmonic magnetic flux, and has a problem of increasing the harmonic loss in the rotor core.

【0004】ところで、前記支持材を全て比透磁率が1
より大きい材料、すなわち磁性支持材とした場合、支持
材部分にも磁束を通すことができるため、各鉄心歯部に
磁束が集中するのを緩和できる。しかし、この場合も上
記の非磁性支持材を使用した場合と同様に、固定子巻線
の相隣合うスロット内の巻線に流れる電流の位相が互い
に異なるような位置の鉄心歯部においては、他の鉄心歯
部よりも最大磁束密度が高くなる。
By the way, all the support materials have a relative magnetic permeability of 1
When a larger material, that is, a magnetic support material is used, the magnetic flux can pass through the support material portion as well, so that it is possible to reduce the concentration of the magnetic flux on each core tooth portion. However, also in this case, as in the case of using the above-mentioned non-magnetic support material, in the iron core tooth portions at the positions where the phases of the currents flowing in the windings in the adjacent slots of the stator winding are different from each other, The maximum magnetic flux density is higher than that of other teeth of the iron core.

【0005】上記不具合を解決する手法として、例え
ば、各鉄心歯部の最大磁束密度がほぼ等しくなるよう
に、各鉄心歯部の断面積を設定する方法は特開昭53−
129805公報に、また同様な効果を得るために各鉄
心歯部における空隙長を設定する方法は特開昭54−2
3915公報で開示されている。前者は同相電流間歯部
8における最大磁束密度と、固定子巻線の相隣合うスロ
ット内の巻線に流れる電流の位相が互いに異なるような
位置の異相電流間歯部9における最大磁束密度とがほぼ
等しくなるように各鉄心歯部の幅寸法を変えたことを特
徴とする。一方後者は、各鉄心歯部7における最大磁束
密度がほぼ等しくなるように鉄心歯部における空隙寸法
を異ったものにしたことを特徴とする。
As a method for solving the above-mentioned problems, for example, a method of setting the cross-sectional area of each iron core tooth portion so that the maximum magnetic flux densities of each iron core tooth portion are substantially equal is disclosed in Japanese Patent Laid-Open No. 53-53.
No. 129805, and a method for setting the void length in each iron core tooth portion in order to obtain the same effect is disclosed in JP-A-54-2.
It is disclosed in Japanese Patent No. 3915. The former is the maximum magnetic flux density in the in-phase current inter-tooth portion 9 and the maximum magnetic flux density in the different-phase inter-current tooth portion 9 at a position where the phases of the currents flowing through the windings in the adjacent slots of the stator windings are different from each other. The width dimension of each tooth portion of the iron core is changed so that On the other hand, the latter is characterized in that the air gap size in the core teeth is different so that the maximum magnetic flux densities in the core teeth 7 are almost equal.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術におい
て、前者は各固定子鉄心歯部7の幅寸法が場所によって
異なるために、固定子鉄心の2個のスロットに跨がる巻
線の跨がりピッチが一様でなくなる。このため、巻線5
による起磁力分布が不均一になり新たな高調波磁束が発
生することから、高調波損失を低減するには不十分と考
えられる。一方、後者はスロット4内の巻線5に流れる
電流の位相関係によって鉄心歯部の空隙寸法を変えるた
めに、例えば誘導電動機に代表される空隙長の短い回転
電機においては、極めて高い工作精度が要求され、製造
が困難になると考えられる。
In the above prior art, in the former case, since the width dimension of each stator core tooth portion 7 is different depending on the location, the straddling of the winding over the two slots of the stator core is performed. The pitch becomes uneven. Therefore, winding 5
Since the magnetomotive force distribution due to becomes uneven and a new harmonic magnetic flux is generated, it is considered insufficient to reduce the harmonic loss. On the other hand, the latter changes the air gap size of the iron core tooth portion depending on the phase relationship of the currents flowing through the windings 5 in the slots 4, so that, for example, in a rotary electric machine having a short air gap length represented by an induction motor, extremely high working accuracy is required. It will be required and will be difficult to manufacture.

【0007】以上の点に鑑み、本発明の目的は、特別な
工作精度に頼よらず、固定子鉄心歯部端における各空隙
最大磁束密度がほぼ等しくなるよう磁束通路の調整を行
うことにより、回転電機の固定子の鉄損及び回転子鉄心
の表面部における高調波損失を低減させ、回転電機にお
ける高効率化等の特性向上に寄与できる回転電機の固定
子を提供することにある。
In view of the above points, the object of the present invention is to adjust the magnetic flux passages so that the maximum magnetic flux densities of the air gaps at the stator core tooth end are substantially equal, without depending on the special working precision. An object of the present invention is to provide a stator of a rotating electric machine, which can reduce iron loss of a stator of the rotating electric machine and harmonic loss in a surface portion of a rotor core, and contribute to improvement of characteristics such as high efficiency in the rotating electric machine.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、空隙を介して固定子と回転子が対向してなる回転電
機の固定子鉄心に設けられた複数のスロットの中に巻線
を収納し、この巻線をスロットの開口部において支持固
定する支持材を有し、この支持材に比透磁率が1より大
きい材料を用い、隣接するスロット内電流位相に差があ
る位置のスロットの支持材の断面積を、隣接するスロッ
ト内電流位相が等しい位置のスロットの支持材の断面積
よりも大きくした構成とする。
In order to achieve this object, a rotary electric machine in which a stator and a rotor are opposed to each other via a gap.
Winding in multiple slots in the machine stator core
The winding and support the winding at the slot opening.
Has a supporting material that determines the relative magnetic permeability of the supporting material is greater than 1.
Using a threshold material, there is a difference in the current phase in adjacent slots.
The cross-sectional area of the support material of the slot at
Cross-sectional area of the support material of the slot where the current phase in the slot is the same
The configuration is larger than that.

【0009】これにより、スロット開口部に配する支持As a result, the support placed in the slot opening is provided.
材は、スロット内に収納される巻線を支持固定すると同The material is the same as supporting and fixing the windings housed in the slots.
時に、鉄心歯部間を繋ぐ方向の磁気抵抗を調節することSometimes, adjusting the magnetic resistance in the direction that connects the core teeth
によって空間高調波磁束を変化させる働きを担うことがPlay a role of changing the spatial harmonic magnetic flux
可能となる。そして、鉄心歯部間を繋ぐ方向の磁気抵抗It will be possible. And the magnetic resistance in the direction that connects the core teeth
を相と相の境目で小さく相の中央部で大きく採ることがCan be small at the boundary between the phases and large at the center of the phase
でき、相と相の境目に位置する鉄心歯部で大きくなり易Yes, it is easy to grow in the teeth of the iron core located at the boundary between phases
い最大磁束密度を抑えて固定子鉄心歯部端における各空The maximum magnetic flux density is suppressed and each space at the end of the stator core tooth is reduced.
隙磁束密度をほぼ等しくできる。したがって、鉄心歯部The gap magnetic flux density can be made almost equal. Therefore, the core teeth
の空隙寸法を変える必要がなく、特別な工作精度に頼らThere is no need to change the void size of the
ず、回転電機の固定子の鉄損及び回転子鉄心の表面部にThe iron loss of the stator of the rotating electric machine and the surface of the rotor core.
おける高調波損失を低減させ、回転電機における高効率Higher efficiency in rotating electrical machines by reducing harmonic loss in
化等の特性を向上できる。It is possible to improve characteristics such as conversion.

【0010】さらに、支持材は、巻線に接する側に切れ
込みを入れて断面積を調整した構成とすれば、支持材の
鉄心歯部への取り付け形状を一様化することができる。
また、支持材は、空隙側へ厚みを増大させて断面積を大
きくした構成とすれば、支持材の鉄心歯部への取り付け
形状を一様化することができるのに加えて、さらに断面
積変化の割合を大きくできる。
Further, the support material is cut on the side in contact with the winding.
If the cross-sectional area is adjusted by incorporating the
The shape of attachment to the iron core tooth portion can be made uniform.
In addition, the support material has a large cross-sectional area by increasing the thickness toward the void side.
With a finer structure, the support material can be attached to the teeth of the iron core.
In addition to being able to make the shape uniform, further cross section
The rate of product change can be increased.

【0011】また、この目的を達成するために、空隙を
介して固定子と回転子が対向してなる回転電機の固定子
鉄心に設けられた複数のスロットの中に巻線を収納し、
この巻線をスロットの開口部において支持固定する支持
材を有し、支持材を磁気異方 性を有する材料により構成
し、スロットを囲む固定子鉄心歯部間を繋ぐ方向の磁気
抵抗を最大にする位置のスロットの支持材は、前記方向
が比透磁率最小であり、スロットを囲む固定子鉄心歯部
間を繋ぐ方向の磁気抵抗を最小にする位置のスロットの
支持材は、前記方向が比透磁率最大である構成とする。
Further , in order to achieve this purpose, a void is formed.
The stator of the rotating electric machine in which the stator and the rotor face each other via the
We store winding in plural slots provided in iron core,
Support for fixing and fixing this winding at the slot opening
It has a wood, composed of a material having a magnetic anisotropy of the support member
The magnetic force in the direction that connects the stator core teeth surrounding the slots.
The support material of the slot at the position of maximum resistance is
Is the minimum relative permeability and the stator core teeth surrounding the slot
Of the slot at the position that minimizes the magnetic resistance in the direction connecting
The support material is configured to have the maximum relative magnetic permeability in the above direction.

【0012】このような構成とすることによっても、ス
ロット開口部に配する支持材は、スロット内に収納され
る巻線を支持固定すると同時に、鉄心歯部間を繋ぐ方向
の磁気抵抗を調節することによって空間高調波磁束を変
化させる働きを担うことが可能となる。そして、鉄心歯
部間を繋ぐ方向の磁気抵抗を相と相の境目で小さく相の
中央部で大きく採ることができ、相と相の境目に位置す
る鉄心歯部で大きくなり易い最大磁束密度を抑えて固定
子鉄心歯部端における各空隙磁束密度をほぼ等しくでき
る。したがって、鉄心歯部の空隙寸法を変える必要がな
く、特別な工作精度に頼らず、回転電機の固定子の鉄損
及び回転子鉄心の表面部における高調波損失を低減さ
せ、回転電機における高効率化等の特性を向上できる。
With such a configuration, the screen
The support material for the lot opening is stored in the slot.
The direction to connect and fix the core core teeth while supporting and fixing the winding
The spatial harmonic flux is changed by adjusting the magnetic resistance of
It becomes possible to carry out the function of making it. And iron core teeth
The magnetic resistance in the direction that connects the parts is small at the boundary between the phases.
It can be taken large in the central part and is located at the boundary between phases
It is fixed by suppressing the maximum magnetic flux density, which tends to become large at the teeth of the iron core
The air gap magnetic flux densities at the teeth of the child core can be made almost equal.
It Therefore, it is not necessary to change the void size of the iron core teeth.
In addition, the iron loss of the rotating electric machine stator does not depend on special work precision.
And harmonic loss on the surface of the rotor core are reduced.
Therefore, it is possible to improve characteristics such as high efficiency in the rotating electric machine.

【0013】さらに、磁気抵抗を最小にする位置のスロ
ットの支持材は、磁気異方性を有しかつ他の支持材より
も比透磁率の大きな材料により構成すれば、この支持材
を比透磁率がより大きな値を有する支持材とすることが
できる。
Further, the slot at the position where the magnetic resistance is minimized
The support material for the magnetic field has magnetic anisotropy and is better than other support materials.
If it is made of a material with a high relative permeability,
Can be used as a support material having a larger relative magnetic permeability.
it can.

【0014】[0014]

【実施例】本発明による第1の実施例を図1乃至図5に
よって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment according to the present invention will be described with reference to FIGS.

【0015】図1は本発明による第1の実施例を示す2
層巻の三相誘導電動機の固定子の断面展開図である。空
隙を介して固定子1と回転子2が対向して配される回転
電機の固定子鉄心3に設けられた複数のスロット4の中
に巻線5が2層に積層されて収納される。この巻線5を
スロット4内に支持固定する支持材、いわゆる楔6がス
ロット4の開口部に挿入され、固定子鉄心歯部7の間を
繋ぐ。
FIG. 1 shows a first embodiment according to the present invention 2
It is a sectional development view of the stator of the three-phase induction motor of layer winding. Windings 5 are stacked in two layers and housed in a plurality of slots 4 provided in a stator core 3 of a rotating electric machine in which a stator 1 and a rotor 2 are arranged so as to face each other via a gap. A support member for supporting and fixing the winding 5 in the slot 4, a so-called wedge 6, is inserted into the opening of the slot 4 and connects the stator core tooth portions 7.

【0016】巻線5の中を流れる電流は3相であり、通
常U相、V相、W相で表示する。各スロット内の上下の
巻線に流れる電流の相の関係は、固定子のスロット数と
相数(この場合は3)と巻線の跨がりピッチの組合せで
定まり、通常スロット番号で表わす円周上の位置毎の上
下層の巻線の電流相の組合せは、隣接スロット毎に異な
る場合や、同じ組合せが数個連続する場合等種々存在す
るが、全節巻を採用すれば図2に示す単層全節巻と電流
条件は同様になる。全節巻の場合でも相の境目(図2の
場合は歯部番号#1,#4,#7が相当)は隣接スロッ
トの中に流れる電流の相が必ず異なるものとなる。図1
に示すように、従来機に採用された全スロット同一支持
材同一歯部形状の場合の歯部先端の空隙最大磁束密度
は、隣接スロット内の2層合成電流の相が等しい歯部8
(図1の場合は歯部番号#1,#4,#5,#8が相
当)の空隙最大磁束密度の方が電流相の異なるスロット
に挟まれた歯部9(図1の場合は歯部番号#2,#3,
#6,#7が相当)の空隙最大磁束密度よりも小さくな
る。このことは空間高調波磁束が発生していることを意
味し、回転子鉄心の表面部における高調波損失が増大す
る原因となる。また、空間高調波磁束の周波数と鉄心歯
部の固有振動の周波数の接近は磁気騒音の原因となる。
The current flowing through the winding 5 has three phases, which are usually represented by U phase, V phase and W phase. The relationship between the phases of the currents flowing in the upper and lower windings in each slot is determined by the combination of the number of slots in the stator, the number of phases (3 in this case), and the winding spanning pitch. There are various combinations of the current phases of the upper and lower windings for each upper position, such as different adjacent slots or several consecutive same combinations. The single layer full-pitch winding and the current conditions are similar. Even in the case of full-pitch winding, the phase boundaries (the tooth numbers # 1, # 4, and # 7 in FIG. 2 correspond to each other) always cause different phases of currents flowing in the adjacent slots. Figure 1
As shown in Fig. 7, the maximum magnetic flux density of the air gap at the tip of the tooth in the case of the same support material of all slots and the same tooth shape adopted in the conventional machine is as follows.
(Tooth number # 1, # 4, # 5, # 8 in FIG. 1 corresponds) The maximum magnetic flux density of the air gap is the tooth portion 9 sandwiched between slots having different current phases (in the case of FIG. Part number # 2, # 3
# 6 and # 7 are equivalent). This means that spatial harmonic magnetic flux is generated, which causes an increase in harmonic loss at the surface of the rotor core. Further, the proximity of the frequency of the spatial harmonic magnetic flux to the frequency of the natural vibration of the iron core tooth portion causes magnetic noise.

【0017】図1に示すように、隣接するスロット4内
の巻線5に流れる電流の位相に差がある位置のスロット
(図1の場合はスロット番号#2,#3,#4,#6,
#7,#8が相当)の支持材を、他の位置のスロット、
即ち隣接するスロット4内の巻線5に流れる電流の位相
が等しい位置のスロット(図1の場合はスロット番号#
1,#5,#9が相当)の支持材、即ち、高磁気抵抗支
持材10よりも歯部間を繋ぐ方向の磁気抵抗を小さい支
持材にする。本実施例の場合は支持材6に比透磁率が1
より大きい材料を用い、隣接するスロット内電流位相に
差がある位置のスロット(#2,#3,#4,#6,#
7,#8)の支持材の断面積を大きく採って磁気抵抗を
小さくする。そして図1に示す巻線の場合は、上下の層
巻線に同相電流が流れるスロット(#3,#7)の支持
材、即ち低磁気抵抗支持材11を他のスロット(#2,
#4,#6,#8)の支持材、即ち中磁気抵抗支持材1
2より更に断面積の大きなものとすることが望ましい。
1つの実施例における測定結果は、図1の本発明による
最大磁束密度に示されるように空隙部の周方向位置に対
して平準化され、鉄損分布にも好影響を及ぼし、鉄損及
び高調波損失を従来機に比べて格段に低減することを示
している。図2の実施例はスロット番号#1,#2,#
4,#5,#7,#8の支持材、即ち低磁気抵抗支持材
11をスロット番号#3,#6,#9の支持材、即ち高
磁気抵抗支持材10よりも断面積が大きい、比透磁率が
1より大きい成形材とした場合を示す。
As shown in FIG. 1, slots at positions where there is a difference in phase of the currents flowing through the windings 5 in the adjacent slots 4 (in the case of FIG. 1, slot numbers # 2, # 3, # 4, # 6). ,
# 7 and # 8 are equivalent to the support material, slots at other positions,
That is, the slots in which the phases of the currents flowing through the windings 5 in the adjacent slots 4 are equal (in the case of FIG. 1, the slot number #
1, # 5, # 9), that is, a support material having a smaller magnetic resistance in the direction connecting the tooth portions than the high magnetic resistance support material 10. In the case of this embodiment, the support member 6 has a relative magnetic permeability of 1
Slots (# 2, # 3, # 4, # 6, # where there is a difference in current phase in adjacent slots using a larger material)
The magnetic resistance is reduced by increasing the cross-sectional area of the support material of No. 7, # 8). In the case of the winding shown in FIG. 1, the supporting material for the slots (# 3, # 7) in which the in-phase currents flow in the upper and lower layer windings, that is, the low magnetic resistance supporting material 11 is used for the other slots (# 2, # 2).
# 4, # 6, # 8) support material, that is, medium magnetoresistive support material 1
It is desirable to make the cross-sectional area larger than 2.
The measurement result in one example is leveled with respect to the circumferential position of the void portion as shown in the maximum magnetic flux density according to the present invention in FIG. 1, and also has a positive effect on the iron loss distribution. It shows that the wave loss is significantly reduced compared to the conventional model. In the embodiment of FIG. 2, slot numbers # 1, # 2, #
4, the support materials of # 5, # 7, and # 8, that is, the low magnetic resistance support material 11 has a larger cross-sectional area than the support materials of the slot numbers # 3, # 6, and # 9, that is, the high magnetic resistance support material 10. The case where a molded material having a relative magnetic permeability greater than 1 is shown.

【0018】図3により本発明の効果を具体的に説明す
る。説明を解かり易くするため、スロット番号#3(図
1参照)の低磁気抵抗支持材11のみを磁性支持材と
し、#1,#2,#4,#5の高磁気抵抗支持材10を
非磁性支持材として示す。歯部番号#2,#3(図1参
照)の鉄心歯部は異相電流間歯部9であり、歯部番号#
1,#4(図1参照)は同相電流間歯部8である。図3
に示す矢印は磁束φの方向を示しており、φtは鉄心歯
部を通る磁束を、φwは支持材6を経由する磁束を、φ
eはスロットの廻りを磁気的に短絡して通る漏れ磁束を
表わす。例えばスロット番号#1,#2の高磁気抵抗支
持材10は非磁性支持材を使用しているので、スロット
4の部分の磁気抵抗の値は鉄心部分に比べ大きく歯部番
号#1の鉄心歯部には磁束φtが集中して通る。これに
対し、スロット番号#3の低磁気抵抗支持材11は比透
磁率が1より大きい磁性材料を用いているので、磁束φ
wで示すようにスロット開口部にも低磁気抵抗支持材1
1を経由して磁束が通ることになる。これによって、従
来問題とされていた異相電流間歯部9の磁束集中が緩和
され、異相電流間歯部9における最大磁束密度を他の鉄
心歯部、即ち同相電流間歯部8と同程度にまで下げるこ
とができる。しかし、スロット周辺における磁束はφt
とφwで示される(或いはその逆向きの)磁束ばかりと
は限らない。例えばスロット番号#3で固定子巻線5に
よって生成される磁束の中には、回転磁界の極性反転時
に影響力が大きくなるφeで示されるような漏れ磁束が
存在する。したがって、磁束φwを増加させるために低
磁気抵抗支持材11の磁気抵抗を過度に小さくすること
は、回転子側へ到達する磁束量を減少させ、スロットの
廻りを磁気的に短絡する漏れ磁束φeを過剰に増大させ
ることとなり、電動機の特性を悪化させてしまうことに
もなる。
The effect of the present invention will be specifically described with reference to FIG. In order to make the explanation easy to understand, only the low magnetic resistance support material 11 of slot number # 3 (see FIG. 1) is used as the magnetic support material, and the high magnetic resistance support materials 10 of # 1, # 2, # 4, and # 5 are used. Shown as a non-magnetic support. The tooth portions of the iron cores having the tooth numbers # 2 and # 3 (see FIG. 1) are the tooth portions 9 between the out-of-phase currents, and the tooth number #
Reference numerals 1 and 4 (see FIG. 1) are common-mode current tooth portions 8. Figure 3
Indicates the direction of the magnetic flux φ, where φt is the magnetic flux passing through the iron core tooth portion, φw is the magnetic flux passing through the support member 6, and φ
e represents a leakage magnetic flux that magnetically shorts around the slot. For example, since the high magnetic resistance support material 10 of the slot numbers # 1 and # 2 uses a non-magnetic support material, the magnetic resistance value of the slot 4 portion is larger than that of the iron core portion and the iron core tooth of the tooth number # 1. The magnetic flux φt concentrates on the part. On the other hand, since the low magnetic resistance support material 11 of slot number # 3 uses a magnetic material having a relative magnetic permeability greater than 1, the magnetic flux φ
As shown by w, the low magnetic resistance support material 1 is also provided in the slot opening.
The magnetic flux will pass through 1. As a result, the magnetic flux concentration in the interphase current tooth portion 9, which has been a problem in the related art, is relaxed, and the maximum magnetic flux density in the interphase current tooth portion 9 becomes approximately the same as that of another iron core tooth portion, that is, the in-phase current tooth portion 8. Can be lowered to. However, the magnetic flux around the slot is φt
And not only the magnetic flux indicated by φw (or the opposite direction). For example, in the magnetic flux generated by the stator winding 5 in the slot number # 3, there is a leakage magnetic flux indicated by φe, which has a large influence when the polarity of the rotating magnetic field is reversed. Therefore, if the magnetic reluctance of the low magnetic reluctance support member 11 is excessively reduced in order to increase the magnetic flux φw, the amount of magnetic flux reaching the rotor side is reduced, and the leakage magnetic flux φe that magnetically short-circuits around the slot is generated. Will be excessively increased, and the characteristics of the electric motor will be deteriorated.

【0019】図4は支持材6の断面形状に工夫を凝ら
し、支持材6の鉄心歯部7への取付け形状を一様化する
ことを可能にしようとするものである。巻線に接する側
に切り込みを入れ、その大きさを調節することにより、
鉄心歯部7の間を繋ぐ方向の磁気抵抗を任意に選ぶこと
が可能になる。切り込みは機械的な強度を配慮する必要
がある場合には、鋭角を有する形状に代えて円弧状等丸
味を帯びたものにして差支えない。またこの製法を適用
する支持材6の材料は比透磁率を厳密に選定する必要が
なく、しかも磁気的効果が最適な支持材6を得ることが
可能になる。また切込み形状の差異によってそれぞれの
スロットに指定された磁気抵抗の値の支持材6を判別で
きるので、スロット4の開口部に支持材6を装着する際
の組立てミスを防ぐことができる効果を有する。
FIG. 4 shows that the cross-sectional shape of the supporting member 6 is devised so that the mounting shape of the supporting member 6 on the iron core tooth portion 7 can be made uniform. By making a cut on the side in contact with the winding and adjusting the size,
It is possible to arbitrarily select the magnetic resistance in the direction connecting the iron core tooth portions 7. If it is necessary to consider the mechanical strength, the cut may be rounded such as an arc instead of the shape having an acute angle. Further, it is not necessary to strictly select the relative magnetic permeability of the support material 6 to which this manufacturing method is applied, and the support material 6 having the optimum magnetic effect can be obtained. Further, since the support member 6 having the magnetic resistance value designated for each slot can be discriminated by the difference in the cut shape, it is possible to prevent an assembly error when the support member 6 is mounted in the opening of the slot 4. .

【0020】図5は支持材6の断面形状に工夫を凝ら
し、支持材6の鉄心部7への取付け形状を一様にし、図
4の実施例よりも更に断面積変化の割合を大きくできる
ようにしたものである。即ち、断面積を大きく採る場合
は空隙側へ厚みを増大させるものである。図5はスロッ
ト番号#3と#7に断面積の大きな低磁気抵抗支持材1
1を、その他のスロット番号には断面積の小さな高磁気
抵抗支持材10を適用した場合で示してあるが、図1の
場合同様、スロット番号#2,#4,#6,#8を中間
的な断面積の中磁気抵抗支持材12に代えることは勿論
可能である。この形状の支持材6に対しても図4で説明
した切込みを設けて磁気抵抗の調整をすることは可能で
ある。
In FIG. 5, the cross-sectional shape of the support member 6 is devised so that the support member 6 can be attached to the iron core portion 7 in a uniform shape so that the rate of change in cross-sectional area can be made larger than in the embodiment of FIG. It is the one. That is, when a large cross-sectional area is taken, the thickness is increased toward the void side. FIG. 5 shows a low magnetic resistance support material 1 having a large cross-sectional area in slot numbers # 3 and # 7.
1 shows the case where the high magnetoresistive support material 10 having a small cross-sectional area is applied to the other slot numbers, but the slot numbers # 2, # 4, # 6, and # 8 are the same as in the case of FIG. Of course, it is possible to substitute the medium magnetoresistive support material 12 having a specific cross-sectional area. It is also possible to adjust the magnetic resistance by providing the notch described in FIG. 4 with respect to the support member 6 having this shape.

【0021】図6及び図7により第2の実施例を説明す
る。支持材6以外は図1の構成と同一であり、そして隣
接するスロット4内の巻線を流れる電流の位相の差に応
じて歯部間を繋ぐ方向の磁気抵抗を変化させる考え方も
同様である。本実施例においては支持材6を磁気異方性
を有する材料により構成する。同一の磁気異方性材料を
用い、歯部間を繋ぐ方向に対する磁気抵抗を最大にする
高磁気抵抗支持材10(スロット番号#1,#5,#
9)は前記方向が比透磁率最小になるように成形加工す
る。また前記方向に対する磁気抵抗を最小にする低磁気
抵抗支持材11(スロット番号#3,#7)は前記方向
が比透磁率最大になるように成形加工する。そして前記
方向に対する磁気抵抗を中間の値にする中磁気抵抗支持
材12(スロット番号#2,#4,#6,#8)は、前
記方向が比透磁率最大と最小の中間の方向になるように
成形加工する。図7に示すように磁気抵抗の値の選択を
2種類にしてもよい場合は、比透磁率が最大と最小の方
向だけを選択して、材料歩留の向上を計る。なお、三
相、単層、全節巻の固定子に対しても第1の実施例同様
に同一構成を適用可能である。磁気異方性の材料は、一
例として、鉄粉を樹脂に含有させかつ鉄線等を最大比透
磁率の方向に平行に積層して一体成形することにより得
られる。
A second embodiment will be described with reference to FIGS. 6 and 7. The structure other than the support member 6 is the same as that of FIG. 1, and the concept of changing the magnetic resistance in the direction connecting the tooth portions in accordance with the phase difference of the current flowing through the windings in the adjacent slots 4 is also the same. . In this embodiment, the support material 6 is made of a material having magnetic anisotropy. The same magnetic anisotropic material is used, and the high magnetic resistance support material 10 (slot numbers # 1, # 5, # that maximizes the magnetic resistance in the direction connecting the teeth) is used.
In 9), the molding is performed so that the relative magnetic permeability becomes the minimum in the direction. Further, the low magnetic resistance support material 11 (slot numbers # 3, # 7) that minimizes the magnetic resistance in the above direction is molded so that the relative magnetic permeability becomes maximum in the above direction. The medium magnetic resistance support member 12 (slot numbers # 2, # 4, # 6, # 8) for setting the magnetic resistance in the above direction to an intermediate value has an intermediate direction between the maximum and minimum relative permeability in the above direction. To process. As shown in FIG. 7, when the selection of the value of the magnetic resistance may be two types, only the direction in which the relative permeability is maximum and minimum is selected to improve the material yield. The same structure can be applied to the three-phase, single-layer, full-pitch winding stator as in the first embodiment. The material having magnetic anisotropy is obtained, for example, by incorporating iron powder into a resin, laminating iron wires and the like in parallel with the direction of maximum relative magnetic permeability, and integrally molding.

【0022】第3の実施例を図6により説明する。歯部
間を繋ぐ方向の磁気抵抗の値を2種類に変化させる方法
として高磁気抵抗支持材10(スロット番号#1,#
5,#9)に非磁性の従来形の支持材を、磁気抵抗の小
さな支持材6、即ち、この場合は低中磁気抵抗支持材1
1,12(スロット番号#2,#3,#4,#6,#
7,#8)に比透磁率が大きくかつ磁気異方性を有する
材料で構成された支持材を使用する。更には高磁気抵抗
支持材10を非磁性材料に代えて比透磁率が1より大き
な材料により構成される支持材を用い、磁気異方性材料
による低磁気抵抗支持材11の比透磁率がより大きな値
を有する支持材とすることができる。この構成は、第1
の実施例同様、三相、単相、全節巻に対しても適用可能
である。
A third embodiment will be described with reference to FIG. As a method of changing the value of the magnetic resistance in the direction connecting the tooth portions into two types, the high magnetic resistance support member 10 (slot numbers # 1, #
5, # 9) a conventional non-magnetic support material, and a support material 6 having a small magnetic resistance, that is, a low and medium magnetic resistance support material 1 in this case.
1, 12 (slot numbers # 2, # 3, # 4, # 6, #
7 and # 8), a support material composed of a material having a large relative magnetic permeability and magnetic anisotropy is used. Further, instead of the high magnetic resistance support material 10 made of a non-magnetic material, a support material made of a material having a relative magnetic permeability larger than 1 is used, and the low magnetic resistance support material 11 made of a magnetic anisotropic material has a higher relative magnetic permeability. It can be a support having a large value. This configuration is the first
Similar to the above embodiment, it can be applied to three-phase, single-phase and full-pitch winding.

【0023】以上述べたように、本発明による回転電機
の固定子は、各固定子鉄心歯部の空隙最大磁束密度を均
等化するように磁束分布を調整する。高磁気抵抗支持材
10に対する従来形の非磁性支持材と低磁気抵抗支持材
11に対する好適な磁気異方性支持材との組合せによ
り、漏れ磁束φeを従来形の非磁性支持材に対して減少
させ、しかも磁気異方性支持材を通って回転子側へ通過
する有効磁束φwを増加させ、結果として異相電流間歯
部9で発生する鉄損を著しく低減させることができる。
また、従来固定子において発生した前述の空間高調波磁
束が減少するので、効率のよい回転電機を得ることが可
能になる。更に、有限要素法等による磁界解析を実施し
てスロット開口部周辺の磁束分布を詳細に検討し、磁気
異方性支持材の磁気特性を最適に選ぶことができれば、
異相電流間歯部9の間のスロット(#3,#7)以外の
支持材、即ち、この場合は高中磁気抵抗支持材10,1
2は従来形の非磁性支持材を使用することが可能にな
る。
As described above, the stator of the rotary electric machine according to the present invention adjusts the magnetic flux distribution so as to equalize the maximum air gap magnetic flux density of the stator core tooth portions. The combination of a conventional non-magnetic support material for the high reluctance support material 10 and a suitable magnetic anisotropic support material for the low reluctance support material 11 reduces the leakage flux φe over the conventional non-magnetic support material. In addition, the effective magnetic flux φw passing through the magnetically anisotropic support material to the rotor side can be increased, and as a result, the iron loss generated at the interphase current tooth portion 9 can be significantly reduced.
Further, since the above-mentioned spatial harmonic magnetic flux generated in the conventional stator is reduced, it is possible to obtain an efficient rotating electric machine. Furthermore, if a magnetic field analysis such as the finite element method is carried out and the magnetic flux distribution around the slot opening is examined in detail and the magnetic characteristics of the magnetic anisotropic support material can be optimally selected,
Support materials other than the slots (# 3, # 7) between the different phase current tooth portions 9, that is, in this case, the high-medium magnetic resistance support materials 10, 1
2 makes it possible to use conventional non-magnetic support materials.

【0024】全スロットの支持材6を比透磁率が1より
大きい支持材とした場合には、前記の高磁気抵抗支持材
10に非磁性支持材を使用した場合よりも更に各鉄心歯
部における磁束の集中を緩和することができる。このた
め、機械をより小形高出力化することが可能になる。開
放形スロット構造の回転電機において、固定子鉄心及び
回転子鉄心間の磁気抵抗値の空隙部周方向分布が不連続
であるため、支持材6と空隙を介して固定子鉄心に対向
する回転子鉄心の表面部における空隙部周方向の磁束分
布は可成りの脈動を生ずることになる。この脈動成分は
即ち高周波磁束成分であり、開放形スロット構造の回転
電機における騒音及び回転子鉄心の表面部における高調
波損失が増大する一因となっている。全スロットの支持
材6の比透磁率を1より大きくし、かつ固定子鉄心歯部
7の先端の空隙最大磁束密度分布を均一化した回転電機
の固定子は、スロット4の開口部における磁気抵抗値が
格段に下がり当該開口部にも有効磁束が通るようになる
ため、対向する回転子鉄心の表面部の空隙部周方向にお
ける磁束分布の脈動成分即ち高調波磁束成分が減少し、
騒音及び高調波損失を低減することができる。
When the support members 6 of all the slots are made of a support member having a relative magnetic permeability of more than 1, the core magnetic tooth portions are more prominent than the case where a non-magnetic support member is used as the high magnetic resistance support member 10. It is possible to reduce the concentration of magnetic flux. For this reason, it becomes possible to make the machine more compact and higher in output. In the rotary electric machine having the open slot structure, the rotor core facing the stator core via the support member 6 and the gap is discontinuous because the magnetic distribution of the magnetic resistance between the stator core and the rotor core is discontinuous. The magnetic flux distribution in the circumferential direction of the air gap on the surface of the iron core causes considerable pulsation. This pulsating component is a high-frequency magnetic flux component, which is one of the causes of increasing noise in the rotating electric machine having an open slot structure and increasing harmonic loss on the surface of the rotor core. The stator of the rotating electric machine in which the relative permeability of the support members 6 of all the slots is made larger than 1 and the maximum air gap magnetic flux density distribution at the tips of the stator core teeth 7 is made uniform is the magnetic resistance at the opening of the slot 4. Since the value significantly decreases and the effective magnetic flux also passes through the opening, the pulsating component of the magnetic flux distribution in the circumferential direction of the air gap in the surface portion of the rotor core facing, that is, the harmonic magnetic flux component decreases,
Noise and harmonic loss can be reduced.

【0025】これまでの実施例の説明は、開放形スロッ
ト構造を有する三相誘導電動機を例に採って行ったが、
本発明は、スロット開口部及び巻線の支持材6をスロッ
ト開口部に有する全ての回転電機に対して適用できるこ
とはいうまでもない。また、本実施例では回転電機固定
子の断面に沿って本発明の効果を説明したが、相異なる
磁気抵抗を有する支持材6を固定子の軸方向に複数組み
合わせてスロット開口部に配置することにより、本発明
による磁気的効果を最大限に発揮させることも可能であ
る。
The above description of the embodiments has been made by taking a three-phase induction motor having an open slot structure as an example.
It goes without saying that the present invention can be applied to all rotary electric machines having the slot opening and the support member 6 for the winding in the slot opening. Although the effect of the present invention has been described along the cross section of the rotating electric machine stator in the present embodiment, a plurality of support materials 6 having different magnetic resistances are combined in the axial direction of the stator and arranged in the slot opening. Thus, it is possible to maximize the magnetic effect according to the present invention.

【0026】[0026]

【発明の効果】本発明によれば、支持材の固定子鉄心歯
部間を繋ぐ方向の磁気抵抗を隣接するスロット内の巻線
に流れる電流の相の差に対応して変化させるだけで固定
子鉄心歯部端における各空隙最大磁束密度をほぼ等しく
することができるので、特別な工作精度に頼らないで鉄
損及び回転子鉄心の表面部における高調波損失を低減さ
せ、回転電機における高効率化等の特性向上に寄与でき
る回転電機の固定子を提供することが可能となる。
According to the present invention, the magnetic resistance in the direction connecting the stator core teeth of the support member is fixed by simply changing the magnetic resistance corresponding to the phase difference between the currents flowing through the windings in the adjacent slots. Since the maximum magnetic flux densities of the air gaps at the teeth of the child core can be made almost equal, iron loss and harmonic loss on the surface of the rotor core can be reduced without relying on special machining accuracy, and high efficiency in rotating electrical machines can be achieved. It is possible to provide a stator of a rotary electric machine that can contribute to improvement in characteristics such as improvement in performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1の実施例を示す2層巻の三相
誘導電動機の固定子の断面展開図である。
FIG. 1 is a sectional development view of a stator of a two-layer winding three-phase induction motor showing a first embodiment according to the present invention.

【図2】本発明による第1の実施例を示す単層全節巻の
三相誘導電動機の固定子の断面展開図である。
FIG. 2 is a sectional development view of a stator of a single-layer full-pitch three-phase induction motor showing a first embodiment according to the present invention.

【図3】本発明の具体的効果を示す説明図である。FIG. 3 is an explanatory diagram showing a specific effect of the present invention.

【図4】本発明による一実施例を示す支持材の断面形状
図である。
FIG. 4 is a sectional shape view of a support material showing an embodiment according to the present invention.

【図5】本発明による一実施例を示す支持材の断面形状
をも示す三相誘導電動機の固定子の断面展開図である。
FIG. 5 is a cross-sectional development view of a stator of a three-phase induction motor, which also shows a cross-sectional shape of a support material showing an embodiment according to the present invention.

【図6】磁気異方性材料による支持材の実施例を示す三
相誘導電動機の固定子の断面展開図である。
FIG. 6 is a sectional development view of a stator of a three-phase induction motor showing an example of a support material made of a magnetic anisotropic material.

【図7】磁気異方性材料による支持材の他の実施例を示
す三相誘導電動機の固定子の断面展開図である。
FIG. 7 is a sectional development view of a stator of a three-phase induction motor showing another embodiment of a support material made of a magnetic anisotropic material.

【符号の説明】[Explanation of symbols]

1 固定子 2 回転子 3 固定子鉄心 4 スロット 5 巻線 6 支持材 7 鉄心歯部 8 同相電流間歯部 9 異相電流間歯部 10 高磁気抵抗支持材 11 低磁気抵抗支持材 12 中磁気抵抗支持材 1 stator 2 rotor 3 Stator core 4 slots 5 windings 6 Support material 7 Iron core teeth 8 In-phase current between teeth 9 Interphase current tooth 10 High magnetic resistance support material 11 Low magnetic resistance support material 12 Medium magnetic resistance support material

フロントページの続き (72)発明者 小原木 春雄 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 井出 一正 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 梶原 憲三 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (56)参考文献 特開 昭63−87146(JP,A) 実開 昭60−138384(JP,U) 実開 昭57−98153(JP,U) 実開 昭59−122741(JP,U) 実開 昭59−126556(JP,U) 実開 昭62−88432(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02K 3/487 - 3/493 H02K 1/02 H02K 1/16 Front page continued (72) Inventor Haruo Obaraki 1-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Kazumasa Ide 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi, Ltd., Hitachi Research Laboratory (72) Inventor Kenzo Kajiwara, 1-1 1-1, Saiwaicho, Hitachi City, Ibaraki Hitachi Ltd., Hitachi, Ltd. (56) References JP-A-63-87146 (JP, A) Actually open 60-138384 (JP, U) Actually open 57-98153 (JP, U) Actually open 59-122741 (JP, U) Actually open 59-126556 (JP, U) Actually open 62-88432 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H02K 3/487-3/493 H02K 1/02 H02K 1/16

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 空隙を介して固定子と回転子が対向して
なる回転電機の固定子鉄心に設けられた複数のスロット
の中に巻線を収納し、該巻線を前記スロットの開口部に
おいて支持固定する支持材を有し、該支持材に比透磁率
が1より大きい材料を用い、隣接するスロット内電流位
相に差がある位置のスロットの支持材の断面積を、隣接
するスロット内電流位相が等しい位置のスロットの支持
材の断面積よりも大きくしたことを特徴とする回転電機
の固定子。
1. A winding is accommodated in a plurality of slots provided in a stator core of a rotating electric machine in which a stator and a rotor are opposed to each other with a gap therebetween, and the winding is provided in the opening of the slot. Has a supporting material for supporting and fixing in, and the relative magnetic permeability to the supporting material.
Using a material with a value greater than 1 and the current level in adjacent slots
The cross-sectional area of the support material of the slot at the position where the phase difference is
Supporting slots at positions where the current phases in the slots are the same
A stator for a rotating electric machine, characterized in that it is made larger than the cross-sectional area of the material .
【請求項2】 請求項1において、前記支持材は、前記
巻線に接する側に切れ込みを入れて断面積を調整してな
ることを特徴とする回転電機の固定子。
2. The support member according to claim 1,
Make a cut on the side that contacts the winding to adjust the cross-sectional area.
A stator for a rotating electric machine, characterized by
【請求項3】 請求項1において、前記支持材は、前記
空隙側へ厚みを増大させて断面積を大きくしてなること
を特徴とする回転電機の固定子。
3. The support member according to claim 1,
Increase the thickness toward the void side to increase the cross-sectional area
A stator of a rotating electric machine characterized by.
【請求項4】 空隙を介して固定子と回転子が対向して
なる回転電機の固定子鉄心に設けられた複数のスロット
の中に巻線を収納し、該巻線を前記スロットの開口部に
おいて支持固定する支持材を有し、前記支持材を磁気異
方性を有する材料により構成し、前記スロットを囲む固
定子鉄心歯部間を繋ぐ方向の磁気抵抗を最大にする位置
のスロットの支持材は、前記方向が比透磁率最小であ
り、前記スロットを囲む固定子鉄心歯部間を繋ぐ方向の
磁気抵抗を最小にする位置のスロットの支持材は、前記
方向が比透磁率最大であることを特徴とする回転電機の
固定子。
4. The stator and the rotor are opposed to each other through a gap.
Slots provided on the stator core of a rotating electric machine
Housing the winding in the slot and place the winding in the slot opening.
A supporting member for supporting and fixing the slot , the supporting member is made of a material having magnetic anisotropy, and the supporting member surrounding the slot is fixed.
Position where the magnetic reluctance in the direction that connects the dentator core teeth is maximized
The support material of the slot of the above has the minimum relative permeability in the above-mentioned direction.
The direction of connecting the stator core teeth surrounding the slot.
The support material of the slot at the position where the magnetic resistance is minimized is
A stator of a rotating electric machine, which has a maximum relative magnetic permeability in a direction .
【請求項5】 請求項において、前記磁気抵抗を最小
にする位置のスロットの支持材、磁気異方性を有しか
つ他の支持材よりも比透磁率の大きな材料により構成す
ることを特徴とする回転電機の固定子。
5. The magnetic resistance according to claim 4 ,
The stator of the rotating electric machine, wherein the support member of the slot at the position of is made of a material having magnetic anisotropy and having a larger relative magnetic permeability than other support members.
JP02409193A 1993-02-12 1993-02-12 Rotating electric machine stator Expired - Fee Related JP3374196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02409193A JP3374196B2 (en) 1993-02-12 1993-02-12 Rotating electric machine stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02409193A JP3374196B2 (en) 1993-02-12 1993-02-12 Rotating electric machine stator

Publications (2)

Publication Number Publication Date
JPH06245424A JPH06245424A (en) 1994-09-02
JP3374196B2 true JP3374196B2 (en) 2003-02-04

Family

ID=12128715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02409193A Expired - Fee Related JP3374196B2 (en) 1993-02-12 1993-02-12 Rotating electric machine stator

Country Status (1)

Country Link
JP (1) JP3374196B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102092B2 (en) * 2015-10-05 2022-07-19 ゼネラル・エレクトリック・カンパニイ Generator stator stacking with two-phase magnetic material
CN105305668A (en) * 2015-10-13 2016-02-03 泰信电机(苏州)有限公司 Stator for variable frequency motor
WO2023223561A1 (en) * 2022-05-20 2023-11-23 三菱電機株式会社 Permanent magnet synchronous motor

Also Published As

Publication number Publication date
JPH06245424A (en) 1994-09-02

Similar Documents

Publication Publication Date Title
JP3431991B2 (en) Synchronous motor
JP4092128B2 (en) Electric machine having at least one magnetic field detector
JP3282427B2 (en) Permanent magnet motor
JP4499764B2 (en) Electric motor
KR100847879B1 (en) Electric motor with minimized cogging and related method of determining stator pole geometry
JPS61280744A (en) Rotor with permanent magnet
US6531797B2 (en) Rotary electric machine stator having individual removable coils
JP2006246571A (en) Reluctance motor
US8072115B2 (en) Foil coil structures and methods for winding the same for axial-based electrodynamic machines
MXPA03001989A (en) Brush dc motors and ac commutator motor structures with concentrated windings.
JPH06209535A (en) Coil structure of motor
WO2004070915A2 (en) Trapezoidal shaped magnet flux intensifier motor pole arrangement for improved motor torque density
JP4291517B2 (en) Improved permanent magnet / reluctance variable rotating electrical equipment
JPH04244773A (en) Flat yoke type dc machine
JP3672919B1 (en) Permanent magnet type rotary motor
JP4024480B2 (en) Rotating electrical machine rotor
JP3703907B2 (en) Brushless DC motor
JPH08265996A (en) Rectifiable polyphase multipolar machine,its stator and rotor,and manufacture of rotor
JP3374196B2 (en) Rotating electric machine stator
JP2006523078A (en) External magnetic circuit Permanent bias reluctance motor
JP2960128B2 (en) Reluctance rotating machine
JP2002369430A (en) Coil for dynamo-electric machine
US3353046A (en) Quiet-running electric motor
US3513342A (en) Rotor for alternating-current machines
JP4491211B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees