JP3372147B2 - Vehicle charging device - Google Patents

Vehicle charging device

Info

Publication number
JP3372147B2
JP3372147B2 JP25158095A JP25158095A JP3372147B2 JP 3372147 B2 JP3372147 B2 JP 3372147B2 JP 25158095 A JP25158095 A JP 25158095A JP 25158095 A JP25158095 A JP 25158095A JP 3372147 B2 JP3372147 B2 JP 3372147B2
Authority
JP
Japan
Prior art keywords
layer capacitor
electric double
switch
power supply
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25158095A
Other languages
Japanese (ja)
Other versions
JPH0993808A (en
Inventor
冨士夫 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP25158095A priority Critical patent/JP3372147B2/en
Publication of JPH0993808A publication Critical patent/JPH0993808A/en
Application granted granted Critical
Publication of JP3372147B2 publication Critical patent/JP3372147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable rapid charging of an electric double-layer capacitor from a battery power supply without adding any special resistance for current limitation. SOLUTION: An electric double-layer capacitor 16 is connected with the normally closed side fixed contact 15b of a relay switch 15, and the traveling contact 15a of the relay switch 15 is connected with a battery power supply 12 through a hot-wire printed wiring resistance 14 and an ignition switch 13. If the ignition switch is on and a defrosting switch 19 is off, therefore, the electric double-layer capacitor 16 is charged from the battery power supply 12 through the hot-wire printed wiring resistance 14. The hot-wire printed wiring resistance 14 has a relatively low resistance value and a sufficient heat radiating area is ensured; therefore, it is possible to rapidly charge the electric double- layer capacitor 16 without burdening the battery power supply 12.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、車輛に装備されて
いる既存の霜取り用熱線抵抗を電気制限抵抗として用い
ることで電気二重層コンデンサに対する短時間充電を可
能にした車輛用充電装置に関する。 【0002】 【従来の技術】近年、電気二重層コンデンサを車輛の補
助電源或いは非常用電源として採用する技術が種々提案
されている。この電気二重層コンデンサは、急速の充電
・放電が可能であるため、例えば特開平5−52215
号公報に開示されているように、この電気二重層コンデ
ンサの放電電流により、エンジンの排気系に介装した触
媒の冷態始動時の急速加熱、或いは電気自動車の加速時
の出力増強を行ったり、又は急速充電をブレーキング時
のエネルギー回生等に利用することで、従来のバッテリ
電源では十分に対応すること出来ない弱点をカバーし、
触媒の早期活性化、電気自動車の走行性能の向上等を図
ることが出来る。 【0003】図3に、充電された状態のバッテリ電源1
と放電された状態の電気二重層コンデンサ2とを並列に
接続したときの等価モデルを示す。この図において、R
1は上記バッテリ電源1の内部抵抗、R2は上記電気二
重層コンデンサ2の内部抵抗で、上記バッテリ電源1の
起電圧をEo[V]、このバッテリ電源1の内部抵抗R1の
抵抗値をro[Ω]、上記電気二重層コンデンサ2の内部
抵抗R2の抵抗値をrcbo[Ω]とすると、上記電気二重
層コンデンサ2に流れる電流iは、i=Eo/(ro+r
cbo)となる。 【0004】 【発明が解決しようとする課題】ところで、上記電気二
重層コンデンサ2の容量が大きくなると、その内部抵抗
rcboは小さくなる傾向にあり、一時的に数百A〜数千
Aに近い短絡的な電流が流れる場合もある。上記バッテ
リ電源1から上記電気二重層コンデンサ2への大電流放
電は深い放電を伴うため、このバッテリ電源1の短命化
をもたらす結果となる。そこで、図4に示すように、電
流制限抵抗である外装抵抗R3を直列に接続して、上記
バッテリ電源1からの短絡的な電流を制限する技術が考
えられた。 【0005】しかし、外装抵抗R3の抵抗値を大きく設
定すると、上記電気二重層コンデンサ2に対する充電時
間が長くなり、逆に、抵抗値を小さくすると電流値が大
きくなってしまい、外装抵抗R3での熱損失が大きくな
るので、放熱面積を拡大する等の大がかりな放熱設計が
必要になり、重量増、コストアップの要因になる。 【0006】本発明は、上記事情に鑑みてなされたもの
で、大がかりな放熱設計を必要とせず、重量増、コスト
増を回避しつつ、バッテリ電源と電気二重層コンデンサ
とを並列接続する際の電流制限抵抗値を最適化すること
のできる車輛用充電装置を提供することを目的としてい
る。 【0007】 【課題を解決するための手段】上記目的を達成するため
本発明による車輛用充電装置は、電気的負荷手段に対し
て短時間に大電流を出力可能な電気二重層コンデンサに
対する給電を車載電源から行う車輛用充電装置におい
て、上記車載電源に車輛のウインドウガラス表面に配設
した霜取り用熱線抵抗の一端をイグニッションスイッチ
を介して接続し、この霜取り用熱線抵抗の他端に2メー
ク接点を有するリレースイッチの可動接点を接続し、こ
のリレースイッチの常開側固定接点を接地する一方で、
常閉側固定接点に上記電気二重層コンデンサを接続し、
さらに上記リレースイッチの励磁コイルを霜取り用スイ
ッチを介して上記車載電源に接続したことを特徴とす
る。 【0008】本発明では、霜取り用スイッチがOFFの
状態にあるとき、霜取り用熱線抵抗が上記リレースイッ
チの常閉側固定接点を介して電気二重層コンデンサに接
続されているため、この状態でイグニッションスイッチ
をONすると、車載電源の出力が上記霜取り用熱線抵
抗、リレースイッチを介して上記電気二重層コンデンサ
に給電される。電流制限抵抗として上記霜取り用熱線抵
抗を利用したので、比較的小さい抵抗で、大きな充電電
流を給電することができ、上記電気二重層コンデンサに
対する急速充電が可能になる。そして、上記霜取り用ス
イッチをONすると、上記リレースイッチの接点が常開
側固定接点に切り替わり、上記電気二重層コンデンサへ
の充電が停止されると共に、上記霜取り用熱線抵抗へ通
常電流が流される。 【0009】 【実施の形態】以下、図面に基づいて本発明の実施の形
態を説明する。図1には本発明の第1実施の形態による
車輛用充電装置の回路図が示されている。 【0010】図中の符号11は車輛に搭載されている発
電機、12は同じく車輛に搭載されているバッテリ電
源、13はイグニッションスイッチ、14は車輛のリヤ
ガラス表面に配設した霜取り用熱線プリント配線抵抗
で、上記バッテリ電源12と上記イグニッションスイッ
チ13とが上記発電機11に並列接続され、またこのイ
グニッションスイッチ13に上記霜取り用熱線プリント
配線抵抗14の一端が接続されている。尚、上記バッテ
リ電源12は、エンジン稼働時の上記発電機11からの
出力電圧にて充電されてる。 【0011】また、この霜取り用熱線プリント配線抵抗
14の他端が2メーク接点を有するリレースイッチ15
の可動接点15aに接続され、このリレースイッチ15
の常閉側固定接点15bに、電気二重層コンデンサ16
の正極が接続されていると共に、電気負荷17が負荷ス
イッチ18を介して並列接続され、一方、常開側固定接
点15cが接地されている。尚、上記電気負荷17は、
例えば排気系に介装された排気ガスを浄化する触媒(図
示せず)を加熱する触媒加熱用ヒータで、また上記負荷
スイッチ18は、図示しない車載コンピュータの指令に
よりON/OFF動作されるもので、この車載コンピュ
ータでは、上記負荷スイッチ18のON/OFFを、例
えば触媒温度を検出する温度センサの出力信号に基づ
き、或いはエンジン始動から所定時間計時するタイマに
より制御する。 【0012】また、上記リレースイッチ15の励磁コイ
ル15dが、図示しないインストルメントパネルに配設
された霜取り用スイッチ19を介して上記イグニッショ
ンスイッチ13に接続されている。 【0013】上記構成において、イグニッションスイッ
チ13がONの状態で、しかも霜取り用スイッチ19が
OFF状態にあるとき、リレースイッチ15の可動接点
15aは常閉側固定接点15bに接続されているため、
この常閉側固定接点15bに接続されている電気二重層
コンデンサ16が放電状態にある場合、この電気二重層
コンデンサ16に、上記バッテリ電源12から霜取り用
熱線プリント配線抵抗14を介して充電される。この霜
取り用熱線プリント配線抵抗14は、広い放熱面積が予
め確保されてるため、充電のための外装抵抗を新たに設
ける必要がなく、しかも放熱設計も不要になり、また上
記霜取り用熱線プリント配線抵抗14の抵抗値が比較的
小さいため、大きい充電電流を確保することができ、上
記バッテリ電源12を性能劣化させることなく、上記電
気二重層コンデンサ16に対して短時間で充電すること
ができる。 【0014】ところで、電気負荷17が排気系に介装さ
れた触媒を加熱する触媒加熱用ヒータであり、さらに上
記負荷スイッチ18が図示しない車載コンピュータから
の指令によりON動作されるとすると、上記電気二重層
コンデンサ16に蓄積された電荷が上記電気負荷17で
ある触媒加熱用ヒータへ放電され、この触媒加熱用ヒー
タが短時間に加熱暖機される。その結果、触媒が早期活
性化され、低温時の排気ガス浄化性能が向上する。な
お、上記電気負荷17として触媒加熱用ヒータを採用し
た場合、上記電気二重層コンデンサ16の放電は、ほぼ
数十秒以下で完了する。 【0015】そして、上記触媒の温度が活性化温度に達
したとき、或いはエンジン始動から所定時間経過したと
き、図示しない車載コンピュータが上記負荷スイッチ1
8に対してOFF信号を出力し、この負荷スイッチ18
がOFFすると、上記電気二重層コンデンサ16は、次
回の放電に備えて再充電される。電流制限抵抗として上
記霜取り用熱線プリント配線抵抗14を採用すること
で、再充電を可能な限り短時間で完了させることができ
る。従って、上記電気二重層コンデンサ16の放電が完
了した後の短い時間にエンジンを停止させた場合でも、
再始動時にはバッテリ電源12に負担を強いることな
く、触媒を急加熱させることが可能になり、ドライバの
どのような運転モードに対しても上記電気二重層コンデ
ンサ16への充電は確保しておくことができる。 【0016】また、霜取り用スイッチ19をONする
と、上記リレースイッチ15の励磁コイル15dが励磁
されて、可動接点15aが常開側固定接点15cに接続
される。その結果、上記霜取り用熱線プリント配線抵抗
14には、定常の電流が流れ、この霜取り用熱線プリン
ト配線抵抗14は本来の機能が発揮される。 【0017】図2には本発明の第2実施の形態による車
輛用充電装置の回路図が示されている。 【0018】この実施の形態では、電気二重層コンデン
サ16の自己放電損失と、この電気二重層コンデンサ1
6に対する充電が未完状態で給電が停止されたときの補
充電のために、バッテリ電源12と上記電気二重層コン
デンサ16とを、特別な放熱設計を必要としない高抵抗
値の直列抵抗R4で接続したものである。すなわち、走
行中は、霜取り用スイッチ19がOFF状態にあれば、
上記電気二重層コンデンサ16に対する充電は、熱線プ
リント配線抵抗14を介して行われるが、例えば、電気
二重層コンデンサ16に対して不十分な充電状態のまま
イグニッションスイッチ13がOFFされたり、或いは
霜取り用スイッチ19をONにしたまま戻すのを忘れて
いると、上記電気二重層コンデンサ16から不十分な充
電状態のまま放電が開始されてしまうことがある。 【0019】そこで、本実施の形態のように、上記バッ
テリ電源12と上記電気二重層コンデンサ16とを高抵
抗値の直列抵抗R4で接続することで、上記電気二重層
コンデンサ16に対し、上記熱線プリント配線抵抗14
を介して充電する場合に比し、少なくとも10倍以上の
時間で充電させるようにすることで、上記電気二重層コ
ンデンサ16に対し、どのような状況下でも次回の放電
に備えて必ず充電させておくことができる。 【0020】 【発明の効果】以上、説明したように本発明によれば、
電気二重層コンデンサに対する制限抵抗として、抵抗値
が比較的小さく、しかも放熱面積が十分に確保されてい
る既存の霜取り用熱線抵抗を採用することで、特別な外
装抵抗が不要になり、しかもこの外装抵抗の放熱設計を
新たに行う必要がないため、重量増、コスト増を回避す
ることができ、しかも、最適な電流制限抵抗値を得るこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging an electric double-layer capacitor in a short time by using an existing defrosting hot-wire resistance provided in a vehicle as an electric limiting resistance. The present invention relates to an enabled vehicle charging device. 2. Description of the Related Art In recent years, various techniques have been proposed in which an electric double layer capacitor is employed as an auxiliary power supply or an emergency power supply for a vehicle. This electric double layer capacitor is capable of rapid charging and discharging.
As disclosed in Japanese Unexamined Patent Application Publication No. H11-163, the discharge current of the electric double layer capacitor causes rapid heating of the catalyst interposed in the exhaust system of the engine at the time of cold start, or enhancement of the output at the time of acceleration of the electric vehicle. Or by using quick charging for energy regeneration during braking, etc., to cover weak points that conventional battery power cannot adequately handle,
Early activation of the catalyst and improvement of the running performance of the electric vehicle can be achieved. FIG. 3 shows a battery power supply 1 in a charged state.
And an equivalent model when the electric double layer capacitor 2 in a discharged state is connected in parallel. In this figure, R
1 is the internal resistance of the battery power supply 1, R2 is the internal resistance of the electric double layer capacitor 2, the electromotive voltage of the battery power supply 1 is Eo [V], and the resistance value of the internal resistance R1 of the battery power supply 1 is ro [ Ω], and assuming that the resistance value of the internal resistance R2 of the electric double layer capacitor 2 is rcbo [Ω], the current i flowing through the electric double layer capacitor 2 is i = Eo / (ro + r
cbo). [0004] By the way, when the capacity of the electric double layer capacitor 2 increases, the internal resistance rcbo tends to decrease. Current may flow. Since a large current discharge from the battery power supply 1 to the electric double layer capacitor 2 involves a deep discharge, the life of the battery power supply 1 is shortened. Therefore, as shown in FIG. 4, a technique has been considered in which an external resistor R3, which is a current limiting resistor, is connected in series to limit a short-circuit current from the battery power supply 1. However, if the resistance value of the exterior resistor R3 is set to be large, the charging time for the electric double layer capacitor 2 is prolonged. Conversely, if the resistance value is made small, the current value becomes large, and the resistance of the exterior resistor R3 becomes large. Since the heat loss increases, a large-scale heat radiation design such as enlarging the heat radiation area is required, which causes an increase in weight and cost. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and does not require a large heat dissipation design, avoids an increase in weight and cost, and provides a method for connecting a battery power supply and an electric double layer capacitor in parallel. It is an object of the present invention to provide a vehicle charging device capable of optimizing a current limiting resistance value. [0007] To achieve the above object, a vehicle charging apparatus according to the present invention supplies power to an electric double layer capacitor capable of outputting a large current to an electric load means in a short time. In a vehicle charging system using an on-vehicle power supply, one end of a defrosting hot-wire resistor disposed on the surface of a vehicle window glass is connected to the on-vehicle power source via an ignition switch, and a 2-make contact is connected to the other end of the defrosting hot-wire resistance. While connecting the movable contact of the relay switch having the and grounding the normally open fixed contact of the relay switch,
Connect the electric double layer capacitor to the normally closed fixed contact,
Further, the excitation coil of the relay switch is connected to the on-vehicle power supply via a defrosting switch. In the present invention, when the defrosting switch is in the OFF state, the hot wire resistance for defrosting is connected to the electric double layer capacitor through the normally closed fixed contact of the relay switch. When the switch is turned on, the output of the vehicle-mounted power supply is supplied to the electric double layer capacitor via the defrosting hot wire resistor and the relay switch. Since the hot wire resistance for defrosting is used as the current limiting resistor, a large charging current can be supplied with a relatively small resistance, and rapid charging of the electric double layer capacitor becomes possible. Then, when the defrost switch is turned on, the contact of the relay switch is switched to a normally-open-side fixed contact, charging of the electric double layer capacitor is stopped, and a normal current flows to the defrost hot wire resistance. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of a vehicle charging apparatus according to a first embodiment of the present invention. In the drawing, reference numeral 11 denotes a generator mounted on a vehicle, 12 denotes a battery power supply also mounted on the vehicle, 13 denotes an ignition switch, and 14 denotes a hot-wire printed wiring for defrosting disposed on a rear glass surface of the vehicle. The battery power supply 12 and the ignition switch 13 are connected in parallel to the generator 11 by a resistor. One end of the defrosting hot wire printed wiring resistor 14 is connected to the ignition switch 13. The battery power supply 12 is charged with an output voltage from the generator 11 when the engine is operating. The other end of the defrosting hot wire printed wiring resistor 14 has a relay switch 15 having two make contacts.
Of the relay switch 15a.
The electric double layer capacitor 16 is connected to the normally closed fixed contact 15b.
And the electrical load 17 is connected in parallel via a load switch 18, while the normally open fixed contact 15c is grounded. The electric load 17 is
For example, a catalyst heating heater for heating a catalyst (not shown) for purifying exhaust gas provided in an exhaust system, and the load switch 18 is turned on / off by a command from a vehicle-mounted computer (not shown). In this in-vehicle computer, ON / OFF of the load switch 18 is controlled based on, for example, an output signal of a temperature sensor for detecting a catalyst temperature, or by a timer for measuring a predetermined time from engine start. An exciting coil 15d of the relay switch 15 is connected to the ignition switch 13 via a defrosting switch 19 provided on an instrument panel (not shown). In the above configuration, when the ignition switch 13 is ON and the defrosting switch 19 is OFF, the movable contact 15a of the relay switch 15 is connected to the normally closed fixed contact 15b.
When the electric double layer capacitor 16 connected to the normally closed fixed contact 15b is in a discharging state, the electric double layer capacitor 16 is charged from the battery power supply 12 via the defrosting hot wire printed wiring resistor 14. . The hot wire printed wiring resistor 14 for defrosting has a large heat radiation area secured in advance, so that it is not necessary to newly provide an exterior resistor for charging, and the heat radiation design is not required. Since the resistance value of the capacitor 14 is relatively small, a large charging current can be secured, and the electric double layer capacitor 16 can be charged in a short time without deteriorating the performance of the battery power supply 12. By the way, if the electric load 17 is a catalyst heating heater for heating the catalyst interposed in the exhaust system, and if the load switch 18 is turned ON by a command from a vehicle-mounted computer (not shown), The electric charge accumulated in the double-layer capacitor 16 is discharged to the catalyst heating heater which is the electric load 17, and the catalyst heating heater is heated and warmed up in a short time. As a result, the catalyst is activated early, and the exhaust gas purification performance at low temperatures is improved. When a catalyst heater is used as the electric load 17, the discharge of the electric double layer capacitor 16 is completed in about several tens of seconds or less. When the temperature of the catalyst reaches the activation temperature, or when a predetermined time has elapsed since the start of the engine, the on-board computer (not shown) loads the load switch 1
8 outputs an OFF signal to the load switch 18.
Is turned off, the electric double layer capacitor 16 is recharged in preparation for the next discharge. By employing the defrosting hot-wire printed wiring resistor 14 as the current limiting resistor, recharging can be completed in as short a time as possible. Therefore, even when the engine is stopped for a short time after the discharge of the electric double layer capacitor 16 is completed,
At the time of restart, the catalyst can be rapidly heated without imposing a burden on the battery power supply 12, and the charging of the electric double layer capacitor 16 should be ensured for any operation mode of the driver. Can be. When the defrosting switch 19 is turned on, the exciting coil 15d of the relay switch 15 is excited, and the movable contact 15a is connected to the normally open fixed contact 15c. As a result, a steady current flows through the hot wire printed wiring resistor 14 for defrost, and the hot wire printed wire resistor 14 for defrost exhibits its original function. FIG. 2 is a circuit diagram of a vehicle charging apparatus according to a second embodiment of the present invention. In this embodiment, the self-discharge loss of the electric double layer capacitor 16 and the electric double layer capacitor 1
The battery power supply 12 and the electric double layer capacitor 16 are connected by a high-resistance series resistor R4 which does not require a special heat radiation design, for supplementary charging when the power supply is stopped while the charging of the battery 6 is incomplete. It was done. That is, if the defrost switch 19 is in the OFF state during traveling,
The electric double layer capacitor 16 is charged via the hot-wire printed wiring resistor 14. For example, the ignition switch 13 is turned off while the electric double layer capacitor 16 is in an insufficiently charged state. If the user forgets to return the switch 19 to the ON state, the electric double layer capacitor 16 may start discharging in an insufficiently charged state. Therefore, by connecting the battery power source 12 and the electric double layer capacitor 16 with a series resistor R4 having a high resistance value as in the present embodiment, the heating wire is connected to the electric double layer capacitor 16. Printed wiring resistance 14
By charging the electric double layer capacitor 16 at least ten times or more as compared with the case of charging via the I can put it. As described above, according to the present invention,
By adopting the existing defrosting hot wire resistance, which has a relatively small resistance value and a sufficient heat dissipation area, as the limiting resistance for the electric double layer capacitor, no special exterior resistance is required, and this exterior Since it is not necessary to newly design the heat dissipation of the resistor, an increase in weight and cost can be avoided, and an optimum current limiting resistance value can be obtained.

【図面の簡単な説明】 【図1】本発明の第1実施の形態による車輛用充電装置
の回路図 【図2】本発明の第2実施の形態による車輛用充電装置
の回路図 【図3】従来のバッテリ電源と電気二重層コンデンサと
の等価モデルを示す回路図 【図4】従来の車輛用充電装置の回路図 【符号の説明】 12…バッテリ電源 13…イグニッションスイッチ 14…熱線プリント配線抵抗 15…リレースイッチ 15a…可動接点 15b…常閉側固定接点 15c…常開側固定接点 15d…励磁コイル 16…電気二重層コンデンサ 17…電気的負荷手段 19…霜取り用スイッチ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a vehicle charging device according to a first embodiment of the present invention. FIG. 2 is a circuit diagram of a vehicle charging device according to a second embodiment of the present invention. FIG. 4 is a circuit diagram showing an equivalent model of a conventional battery power supply and an electric double layer capacitor. FIG. 4 is a circuit diagram of a conventional vehicle charging device. Description of reference numerals 12 ... battery power supply 13 ... ignition switch 14 ... hot wire printed wiring resistance 15 relay switch 15a movable contact 15b normally closed fixed contact 15c normally open fixed contact 15d excitation coil 16 electric double layer capacitor 17 electric load means 19 defrost switch

Claims (1)

(57)【特許請求の範囲】 【請求項1】 電気的負荷手段に対して短時間に大電流
を出力可能な電気二重層コンデンサに対する給電を車載
電源から行う車輛用充電装置において、 上記車載電源に車輛のウインドウガラス表面に配設した
霜取り用熱線抵抗の一端をイグニッションスイッチを介
して接続し、 この霜取り用熱線抵抗の他端に2メーク接点を有するリ
レースイッチの可動接点を接続し、 このリレースイッチの常開側固定接点を接地する一方
で、常閉側固定接点に上記電気二重層コンデンサを接続
し、 さらに上記リレースイッチの励磁コイルを霜取り用スイ
ッチを介して上記車載電源に接続したことを特徴とする
車輛用充電装置。
(57) [Claim 1] A vehicle charging apparatus for supplying electric power to an electric double layer capacitor capable of outputting a large current to an electric load means in a short time from an on-board power supply. One end of a defrosting hot wire resistor disposed on the surface of the vehicle window glass is connected via an ignition switch, and the other end of the defrosting hot wire resistor is connected to a movable contact of a relay switch having two make contacts. While the normally open fixed contact of the switch is grounded, the electric double layer capacitor is connected to the normally closed fixed contact, and the exciting coil of the relay switch is connected to the on-vehicle power supply via a defrosting switch. Characteristic vehicle charging device.
JP25158095A 1995-09-28 1995-09-28 Vehicle charging device Expired - Fee Related JP3372147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25158095A JP3372147B2 (en) 1995-09-28 1995-09-28 Vehicle charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25158095A JP3372147B2 (en) 1995-09-28 1995-09-28 Vehicle charging device

Publications (2)

Publication Number Publication Date
JPH0993808A JPH0993808A (en) 1997-04-04
JP3372147B2 true JP3372147B2 (en) 2003-01-27

Family

ID=17224936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25158095A Expired - Fee Related JP3372147B2 (en) 1995-09-28 1995-09-28 Vehicle charging device

Country Status (1)

Country Link
JP (1) JP3372147B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050040151A1 (en) 2003-08-20 2005-02-24 Robert Dyrdek Heated side window glass
US20120256583A1 (en) * 2011-04-08 2012-10-11 Davis Stuart M Low Cost Fast Charger with Internal Accumulator and Method

Also Published As

Publication number Publication date
JPH0993808A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
JP3370336B2 (en) Control method of electric heating of catalyst
JP2001239902A (en) Control device of power source for automobile
KR940020658A (en) ELECTRICALLY DRIVEN AUTOMOBILE VEHICLE COMPRISING AN ENERGY RECOVERY DEVICE
JP2001065437A (en) Control device for hybrid vehicle
JP5119330B2 (en) Method for driving a drive device and drive device
JP2006250134A (en) Vehicular control device
JP2004023803A (en) Voltage controller for battery pack
JPH03117685A (en) Engine preheat device
US5580477A (en) Electric power supply for a heater heating a catalyst for purifying automotive exhaust gases
JPH0984212A (en) Power supply apparatus of electric car
JP3707176B2 (en) In-vehicle load control device
JP3372147B2 (en) Vehicle charging device
JPH10169433A (en) Preheating control device for catalyst
JPH0865815A (en) Charging controller for electric vehicle
JPH08338234A (en) Electric power feeder for heater for vehicle
JP3178486B2 (en) Power supply for starting the engine
JPH0993807A (en) Apparatus and method for charging vehicle
JP3053309B2 (en) Hybrid electric vehicle device
JP3665414B2 (en) Vehicle power supply device
JPH09149508A (en) Power supply unit for electric car
JP5102595B2 (en) Battery device and in-vehicle load control system including the battery device
JPH07309210A (en) Windshield heater for electric vehicle
JP2836395B2 (en) Engine exhaust gas purification device
JPH05300660A (en) Power supply for automobile
JP2020136163A (en) Power supply unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees