JP3370210B2 - Synthetic resin fluid control valve body - Google Patents

Synthetic resin fluid control valve body

Info

Publication number
JP3370210B2
JP3370210B2 JP17794095A JP17794095A JP3370210B2 JP 3370210 B2 JP3370210 B2 JP 3370210B2 JP 17794095 A JP17794095 A JP 17794095A JP 17794095 A JP17794095 A JP 17794095A JP 3370210 B2 JP3370210 B2 JP 3370210B2
Authority
JP
Japan
Prior art keywords
fluid control
control valve
synthetic resin
valve body
side pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17794095A
Other languages
Japanese (ja)
Other versions
JPH094734A (en
Inventor
康晴 栗原
広昭 佐藤
利勝 川田
潤 木村
一夫 松井
弘志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP17794095A priority Critical patent/JP3370210B2/en
Publication of JPH094734A publication Critical patent/JPH094734A/en
Application granted granted Critical
Publication of JP3370210B2 publication Critical patent/JP3370210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合成樹脂製流体制御バ
ルブ本体の構造に関するものである。特に、流体の圧力
によるダイアフラムの変位を利用した、シール機能によ
って流体制御を行う合成樹脂製流体制御バルブ本体に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a synthetic resin fluid control valve body. In particular, the present invention relates to a fluid control valve body made of synthetic resin, which uses displacement of a diaphragm due to pressure of fluid to perform fluid control by a sealing function.

【0002】[0002]

【従来の技術】従来、流体制御バルブは、シール機能に
よって流体制御を行うために必要な寸法精度を得るため
に、また、流体の圧力による変形・破壊を防ぐために、
砲金などの金属材料から鋳造および切削加工などによっ
て製作されてきた。また、実開平6−30272号公報
には、一部樹脂化したバルブが開示されているが、樹脂
化されているのは本体部材のみで、連結のジョイント部
分には金属が使用されており、樹脂化の程度は不十分で
あった。
2. Description of the Related Art Conventionally, a fluid control valve has been required to obtain the dimensional accuracy required for fluid control by a sealing function, and to prevent deformation and destruction due to fluid pressure.
It has been manufactured from metal materials such as gun metal by casting and cutting. Further, Japanese Utility Model Laid-Open No. 6-30272 discloses a valve partly resinized, but only the main body member is resinized, and metal is used for the joint part of the connection, The degree of resinification was insufficient.

【0003】[0003]

【発明が解決しようとする課題】金属材料の機械加工に
よって製品を作成する場合、製造の手間もかかり、その
製造コストは高価である。また、代替材料としての合成
樹脂を採用する場合、金属用の設計そのままでは、金属
に比較して強度・剛性が低いので、製品が使用に耐えら
れないばかりでなく、成形時の樹脂の収縮によって、設
計通りの寸法・形状・精度の製品が得られず、流体制御
を行うシール部分に漏れが生じ、機能を阻害する。強度
・剛性を補うために、一般には、製品にリブを付加する
方法が採られるが、流体制御バルブ本体の場合には、こ
れと接続する流体配管に使用される部品の多くは規格品
であるので、本体の外部にリブを建てたときに、接続部
品の寸法と合わなくなることは避けなければならない。
しかし、これを避けようとすると、十分な強度・剛性の
確保が困難になるという問題があった。
When a product is produced by machining a metal material, it takes a lot of time and effort to manufacture it, and its manufacturing cost is high. In addition, when a synthetic resin is used as an alternative material, the strength and rigidity of the metal design as it is is lower than that of metal, so not only can the product not withstand use, but the resin shrinks during molding. A product with the size, shape, and accuracy as designed cannot be obtained, and leakage occurs at the seal part that controls the fluid, which hinders the function. In order to supplement strength and rigidity, generally, ribs are added to the product, but in the case of the fluid control valve body, most of the parts used for fluid piping connected to this are standard products. Therefore, when the rib is built on the outside of the main body, it is necessary to avoid that the dimensions do not match the dimensions of the connecting parts.
However, if this is avoided, there is a problem that it is difficult to secure sufficient strength and rigidity.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
上記問題の解決手段として、入口側管の内部に縦リブを
設けることにより、強度・剛性を大きく改善し、金属に
近づけることができるだけでなく、ダイアフラムのシー
ル不良の原因となる、成形時の冷却収縮による変形も最
小限にとどめられることを見いだし、さらに、その他の
部分の設計と強度または収縮変形との関係および水圧を
かけたときの変形との関係を知見し、本発明に到達し
た。
Therefore, the present inventors have
As a means to solve the above problem, by providing a vertical rib inside the inlet side pipe, the strength and rigidity can be greatly improved, and not only can it be made closer to metal, but also cooling during molding, which causes defective sealing of the diaphragm. It has been found that the deformation due to contraction can be minimized, and further, the inventors have found the relationship between the design of the other part and the strength or the contraction deformation, and the relationship between the deformation when water pressure is applied, and arrived at the present invention.

【0005】すなわち、本発明は、入口側管(1)、出
口側管(2)およびシール部(3)からなり、該シール
部は同心の二重の筒体(4)とその上に一体に設けられ
た、ダイアフラムの周縁部を水平に固定することができ
る、フランジ部(5)を有し、該二重の筒体の外側の筒
体(6)は入口側管と連通し、内側の筒体(7)は出口
側管と連通し、また該内側の筒体の上端には、ダイアフ
ラムの弁体が着座する弁座(8)を設けてなる、合成樹
脂製流体制御バルブ本体(10)であって、(A)前記
入口側管と出口側管の中心線が、二重の筒体のそれと直
交するか、直交に対し±45度以内になるように配置
し、かつ(B)前記入口側管内部には、流体供給部材の
接続部(11)の端面(11a)入口側管の入口端(1
a)までの任意の位置より、前記内側の筒体の外表面に
至るまで、実質的に連続して全径高さにわたり、該内側
の筒体(7)の外表面の軸方向のリブ(9)を設けたこ
とを特徴とする合成樹脂製流体制御バルブ本体にある。
That is, the present invention comprises an inlet side pipe (1), an outlet side pipe (2), and a seal portion (3), which is a concentric double cylinder (4) and is integrated therewith. Has a flange portion (5) capable of horizontally fixing the peripheral portion of the diaphragm, and the outer tubular body (6) of the double tubular body communicates with the inlet side pipe, The fluid control valve body made of synthetic resin (7) has a valve seat (8) communicating with the outlet side pipe, and a valve seat (8) on which the valve element of the diaphragm is seated is provided at the upper end of the inner tube. 10), wherein (A) the center line of the inlet side pipe and the center line of the outlet side pipe are orthogonal to that of the double cylinder or are arranged within ± 45 degrees with respect to the orthogonal, and (B) ) Inside the inlet side pipe, the end face (11a) of the connection portion (11) of the fluid supply member, the inlet end (1
From any position up to a) to the outer surface of the inner cylindrical body, the ribs in the axial direction of the outer surface of the inner cylindrical body (7) are substantially continuously formed over the entire diameter height. 9) is provided in the fluid control valve body made of synthetic resin.

【0006】以下、本発明を図面に従って説明する。図
1は、本発明の合成樹脂製流体制御バルブ本体の縦断面
図であり、図2は、同正面図であり、図3は、同底面図
であり、図4は、同側面図であり、図5は、同F−F断
面図であり、図6は、従来の金属製流体制御バルブの縦
断面図である。
The present invention will be described below with reference to the drawings. 1 is a longitudinal sectional view of a synthetic resin fluid control valve body of the present invention, FIG. 2 is a front view thereof, FIG. 3 is a bottom view thereof, and FIG. 4 is a side view thereof. 5 is a sectional view taken along line F-F of FIG. 5, and FIG. 6 is a longitudinal sectional view of a conventional metal fluid control valve.

【0007】この種のダイアフラムを利用する流体制御
バルブにあっては、図6に示すように、従来から、入口
側管(1)、出口側管(2)およびシール部(3)から
なり、該シール部は同心の二重の筒体(4)とその上に
一体に設けられた、ダイアフラムの周縁部を水平に固定
することができる、フランジ部(5)を有し、該二重の
筒体の外側の筒体(6)は入口側管(1)と連通し、内
側の筒体(7)は出口側管(2)と連通し、また該内側
の筒体(7)の上端には、ダイアフラムの弁体(図示せ
ず)が着座する弁座(8)を設けてなる、流体制御バル
ブ本体(10)が用いられている。
As shown in FIG. 6, a fluid control valve using a diaphragm of this type has conventionally been composed of an inlet side pipe (1), an outlet side pipe (2) and a seal portion (3). The seal portion has a concentric double cylinder body (4) and a flange portion (5) which is integrally provided on the double cylinder body and can horizontally fix the peripheral edge portion of the diaphragm. The outer cylinder (6) of the cylinder communicates with the inlet side tube (1), the inner cylinder (7) communicates with the outlet side tube (2), and the upper end of the inner cylinder (7). Uses a fluid control valve body (10) provided with a valve seat (8) on which a valve element (not shown) of a diaphragm is seated.

【0008】入口側管から出口側管への流体の通路は、
シール部に設けたダイアフラムによって開閉される。ダ
イアフラムは弾性体でつくられ、周縁部のみが固定され
ているので、両側の流体の圧力差に応じて、その中心部
が上下に変位する。特に、ここに設けられた弁体が、前
記弁座(8)に着座すると、流体の流れは停止され、該
弁座(8)から脱座すると、流体の流れが開通される。
The passage of fluid from the inlet side pipe to the outlet side pipe is
It is opened and closed by the diaphragm provided in the seal part. Since the diaphragm is made of an elastic body and only the peripheral edge is fixed, the center of the diaphragm is vertically displaced according to the pressure difference between the fluids on both sides. In particular, when the valve element provided therein is seated on the valve seat (8), the flow of fluid is stopped, and when the valve body is removed from the valve seat (8), the flow of fluid is opened.

【0009】図6には示さなかったが、入口側に流体供
給部材が設けられ、出口側に貯蔵タンクが設けられる。
また、貯蔵タンクは、リンク機構を備え、貯蔵タンク内
の流体の液面が上昇し所定の高さに達すると、ダイアフ
ラムが差圧によって押し下げられ、また液面が下降し所
定の高さに達すると、押し上げられるように設計されて
いる。
Although not shown in FIG. 6, a fluid supply member is provided on the inlet side and a storage tank is provided on the outlet side.
Further, the storage tank is provided with a link mechanism, and when the liquid level of the fluid in the storage tank rises and reaches a predetermined height, the diaphragm is pushed down by the differential pressure, and the liquid level lowers and reaches a predetermined height. Then, it is designed to be pushed up.

【0010】従来の金属製品を樹脂化するに際しても、
これらの基本的な構造は、図1〜5に示すように、その
まま踏襲されるが、樹脂化に際し、特に留意しなければ
ならないのは、以下の諸点にある。 (A)前記入口側管と出口側管の中心線が、二重の筒体
のそれと直交するか、直交に対し±45度以内となるよ
うに配置すること。 (B)前記入口側管内部には、流体供給部材の接続部の
端面から入口側管の入口端までの任意の位置より、前記
内側の筒体の外表面に至るまで、実質的に連続して全径
高さにわたり、該内側の筒体の外表面の軸方向のリブを
設けること。
When converting conventional metal products into resins,
These basic structures are followed as they are, as shown in FIGS. 1 to 5, but in the case of resinification, the following points should be particularly noted. (A) The center lines of the inlet side pipe and the outlet side pipe are arranged so as to be orthogonal to that of the double cylinder or within ± 45 degrees with respect to the orthogonality. (B) The inside of the inlet side pipe is substantially continuous from an arbitrary position from the end face of the connection portion of the fluid supply member to the inlet end of the inlet side pipe to the outer surface of the inner cylindrical body. To provide axial ribs on the outer surface of the inner cylinder over the entire height of the inner diameter.

【0011】すなわち、まず、金属並の強度・剛性を確
保する必要性との関係についてみてみると、本発明のバ
ルブ本体にあっては、流路を流体が流れ、本体の内面に
圧力がかかると、出口側管が僅かではあるが下方に傾く
現象が観察される。特に、この種の製品にあっては、流
路を流れる流体の速度が大きく変化し、しかもこの動作
は繰り返し行われる。従って、金属であればともかく、
合成樹脂にあっては、設計上の小さな差異であっても、
これを誤ると、上記繰り返し使用の比較的早い時期に、
割れが生じて本体の破壊につながる結果となるのであ
る。このような、強度・剛性の観点からは、上記(A)
および(B)の構成が不可欠である。また、内圧がかか
ったときの、ダイアフラムの動作の精密性を決定づける
前記弁座(8)の形状保持の性能は、主として上記
(B)によって達成される。すなわち、管内に上記内側
の筒体(7)の外表面の軸方向のリブ(9)を設けるこ
とにより、製品の変形方向の断面2次モーメントが向上
され、流体の圧力による変形・破壊が防止されたと考え
られる。しかし、同様のリブを設けるにしても、二重の
筒体(4)の底面の外表面にこれを設けたのでは、殆ど
強度の向上に役立たないばかりか、付け根の部分での割
れを引き起こし好ましくない。ここで、「内側の筒体の
外表面の軸方向のリブ」においては、成形に支障がない
範囲で、軸方向から若干の変更はあり得る。また、「筒
体」としては、断面円形の円筒体が一般的ではあるが、
多角形の角を丸めた断面のものであってもよい。さら
に、断面の径に比して高さの低いものでもよいし、その
他、成形に支障がない範囲で、筒体の形状には、若干の
変更があってもよい。
That is, first, regarding the relationship with the necessity of ensuring the strength and rigidity equivalent to those of metals, in the valve body of the present invention, the fluid flows through the flow passage and pressure is applied to the inner surface of the body. Then, a phenomenon in which the outlet side tube slightly tilts downward is observed. Particularly in the case of this type of product, the velocity of the fluid flowing through the flow path changes greatly, and this operation is repeated. Therefore, any metal,
With synthetic resins, even if there are small differences in design,
If you make a mistake in this, at a relatively early stage of repeated use,
As a result, cracking occurs and the body is destroyed. From such a viewpoint of strength and rigidity, the above (A)
The configurations of and (B) are indispensable. Further, the shape retention performance of the valve seat (8), which determines the precision of the operation of the diaphragm when an internal pressure is applied, is mainly achieved by the above (B). That is, by providing the ribs (9) in the axial direction on the outer surface of the inner cylindrical body (7) in the pipe, the second moment of area in the deformation direction of the product is improved and deformation / breakage due to fluid pressure is prevented. It is thought that it was done. However, even if a similar rib is provided, providing this on the outer surface of the bottom surface of the double cylinder (4) not only serves to improve the strength almost, but also causes cracks at the base portion. Not preferable. Here, the "axial ribs on the outer surface of the inner cylinder" may be slightly changed from the axial direction as long as molding is not hindered. Further, as the "cylindrical body", a cylindrical body having a circular cross section is generally used,
It may have a cross section with rounded corners. Further, the height may be lower than the diameter of the cross section, or the shape of the cylinder may be slightly changed within a range that does not hinder the molding.

【0012】また、内側の筒体(7)の外表面の軸方向
のリブ(9)の先端が、図1に示すように、流体供給部
材の接続部(11)の端面(11a)と入口側管(1)
の入口端(1a)との間の位置まで届いていることが、
強度の確保上必要である。他方このリブ(9)は、二重
の筒体(4)の内側の筒体(7)の外表面に至るまで、
実質的に連続した形状であることおよび入口側管の全径
高さに及ぶことがいずれも必要であるが、種々の変形も
可能である。例えば、このリブ(9)の入口側の先端
は、必ずしも、図1に示したような、入口側管(1)内
表面に直角をなす直線でなくともよい。内側の筒体
(7)に向かって、三角形または円弧のような曲線状の
切欠部を設けてもよい。もちろん、余り大きな切欠部
は、強度の確保を困難にするので、例えば三角形であれ
ば、傾斜角度約45度が限度である。その際でも、入口
側の先端は、流体供給部材の接続部(11)の端面(1
1a)よりは入口端(1a)に近い位置まで届いている
ことが必要である。また、例えば、リブ(9)の縦断面
形状は、図示のような中実体でなくともよい。該リブ
(9)を2列またはそれ以上平行に設けたような中空
体、該2列またはそれ以上のリブの中間を1個またはそ
れ以上の該リブに対して垂直なリブで連結したような中
空体の構造も成形・使用可能である。
Further, as shown in FIG. 1, the tips of the axial ribs (9) on the outer surface of the inner cylinder (7) are connected to the end face (11a) of the connecting portion (11) of the fluid supply member and the inlet. Side pipe (1)
Reach the position between the entrance end (1a) of
Necessary for securing strength. On the other hand, the rib (9) extends to the outer surface of the inner tubular body (7) of the double tubular body (4).
Both need to be substantially continuous and span the entire diameter of the inlet tube, but various variations are possible. For example, the tip of the rib (9) on the inlet side does not necessarily have to be a straight line perpendicular to the inner surface of the inlet side tube (1) as shown in FIG. A curved notch such as a triangle or an arc may be provided toward the inner cylinder (7). Of course, the notch which is too large makes it difficult to secure the strength. Therefore, for example, in the case of a triangle, the inclination angle is about 45 degrees. Even in this case, the tip on the inlet side has the end face (1) of the connecting portion (11) of the fluid supply member.
It is necessary to reach a position closer to the entrance end (1a) than 1a). In addition, for example, the vertical cross-sectional shape of the rib (9) does not have to be a solid body as illustrated. A hollow body in which the ribs (9) are provided in parallel in two or more rows, such that the middle of the two or more ribs is connected by a rib perpendicular to the one or more ribs The structure of the hollow body can also be molded and used.

【0013】一方、内側の筒体(7)の外表面の軸方向
のリブ(9)の厚さは、0.5〜5.0mmの範囲から
選ばれるが、強度の確保の面からは、約2.0mm以上
が好ましい。一般的には、さらに、ゲート位置との関係
でリブ真上にウエルド・ラインが発生することのない最
低の厚みを考慮し、また、製品の形状や肉厚とのバラン
スを考慮して決定される。また、該リブ(9)は、図1
に示されるように、入口側管(1)の内表面、二重の筒
体(4)の内側の筒体(7)の外表面および外側の筒体
(6)の内表面と接続されるが、該リブ(9)の端面が
これら表面と接続する部位には、曲率半径0.25mm
以上、好ましくは0.5mm以上の円みを持たせるのが
よい。これにより、応力集中を避け、水流の剥離を防ぐ
ことができる。
On the other hand, the thickness of the ribs (9) in the axial direction on the outer surface of the inner cylinder (7) is selected from the range of 0.5 to 5.0 mm, but from the viewpoint of ensuring strength, It is preferably about 2.0 mm or more. In general, it is also determined in consideration of the minimum thickness at which a weld line does not occur directly above the rib in relation to the gate position, and in consideration of the balance with the shape and thickness of the product. It The rib (9) is shown in FIG.
As shown in FIG. 2, the inner surface of the inlet pipe (1), the outer surface of the inner cylinder (7) of the double cylinder (4) and the inner surface of the outer cylinder (6) are connected. However, the radius of curvature is 0.25 mm at the part where the end surface of the rib (9) is connected to these surfaces.
As described above, it is preferable to have a roundness of 0.5 mm or more. Thereby, concentration of stress can be avoided and separation of the water stream can be prevented.

【0014】また、これら強度・剛性の観点から、前記
フランジ部(5)と前記入口側管(1)および/または
前記出口側管(2)との間に、余分の距離をとらずに、
前記外側の筒体(6)が露出し首部を形成しないように
するのが好ましい。しかし、入口側管(1)と出口側管
(2)の口径が異なるなどの理由で、前記外側の筒体
(6)に首部(6a)ができた場合、図1に示すよう
に、該首部(6a)には、縦リブ(12)を該出口側管
(2)の中心線と平行に該首部(6a)の全高さにわた
って設け、かつ、該縦リブ(12)の該管(2)表面へ
の接続部位には、曲率半径0.5mm以上の円みを持た
せるのがよい。この円み付けを行わないと、接続部位か
ら割れが生じ補強効果を失うことになる。また、入口側
管(1)側に首部ができる場合には、該首部に同様の縦
リブを設けることもできる。ここで、「縦リブ」とは、
二重の筒体の中心軸を含む平面上にあるリブを指すが、
成形に支障がない範囲で、リブの方向などに若干の変更
はあり得る。
From the viewpoint of strength and rigidity, an extra distance is not provided between the flange portion (5) and the inlet side pipe (1) and / or the outlet side pipe (2),
It is preferable that the outer cylindrical body (6) is exposed and does not form a neck portion. However, when a neck portion (6a) is formed on the outer tubular body (6) due to a difference in diameter between the inlet side pipe (1) and the outlet side pipe (2), as shown in FIG. A vertical rib (12) is provided on the neck (6a) in parallel with the center line of the outlet side pipe (2) over the entire height of the neck (6a), and the pipe (2) of the vertical rib (12) is provided. ) It is preferable that the connection portion to the surface has a circle with a radius of curvature of 0.5 mm or more. If this rounding is not performed, a crack will occur from the connecting portion and the reinforcing effect will be lost. When a neck portion is formed on the inlet side pipe (1) side, a similar vertical rib can be provided on the neck portion. Here, the "vertical rib" means
Refers to the rib on the plane containing the central axis of the double cylinder,
The direction of the ribs may be slightly changed within a range that does not hinder the molding.

【0015】次に、成形収縮との関係についてみてみる
と、合成樹脂製品は、その部位によって成形時の冷却速
度を異にし、これが成形品のそりの原因となる。本発明
のバルブ本体のように、これとダイアフラムまたは他の
部品・機構との接合が精密であることを要求される場合
には、成形時に生じた収縮ゆえに、その接合部位の寸法
・形状が当初設計したものと違ってしまうと、製品は正
規の機能を果たし得ないものとなってしまう。従って、
接合の精密さが要求される部位、例えば前記弁座(8)
の寸法・形状については、成形収縮が影響を与えないよ
うに、製品全体が均衡のとれた構成としなければならな
いことが判明した。
Looking at the relationship with molding shrinkage, synthetic resin products have different cooling rates during molding depending on their parts, which causes warpage of the molded products. When the valve body of the present invention is required to be precisely joined to the diaphragm or other parts / mechanisms, the dimensions and shape of the joint part are initially small due to the shrinkage that occurs during molding. If it is different from what it was designed for, the product will not be able to perform its proper function. Therefore,
Parts where precision of joining is required, such as the valve seat (8)
Regarding the size and shape of the product, it was found that the entire product must have a balanced configuration so that the molding shrinkage does not affect it.

【0016】このような、成形収縮の観点からは、上記
(B)の構成が不可欠である。すなわち、前記出口側管
(2)の成形収縮によって前記弁座(8)が出口側に引
き寄せられる変形が、主として前記内側の筒体(7)の
外表面の軸方向のリブ(9)の収縮にバランスされて矯
正されているものと考えられる。中でも、成形収縮によ
る変形を防止するのに最も効果的なのは、このリブ
(9)が、二重の筒体(4)の内側の筒体(7)の外表
面から入口側管(1)の入口端に向かって、連続してい
る構成にある。特に、内側の筒体(7)の外表面と外側
の筒体(6)の内表面の間が、このリブ(9)によって
一体化されている構造が重要である。その意味では、該
リブ(9)の高さが、上記一体化構造の間においては、
入口側管(1)の内径の全径高さよりも大きいことが、
より好ましい。
From the viewpoint of molding shrinkage as described above, the structure (B) is indispensable. That is, the deformation of the valve seat (8) drawn toward the outlet side due to the molding contraction of the outlet side pipe (2) is mainly caused by the contraction of the axial rib (9) on the outer surface of the inner cylindrical body (7). It is thought that it is balanced and corrected. Among them, the rib (9) is most effective in preventing the deformation due to the molding shrinkage from the outer surface of the inner tubular body (7) of the double tubular body (4) to the inlet side pipe (1). The structure is continuous toward the entrance end. In particular, a structure in which the outer surface of the inner cylinder (7) and the inner surface of the outer cylinder (6) are integrated by the ribs (9) is important. In that sense, the height of the rib (9) between the integrated structures is
The inner diameter of the inlet side pipe (1) is larger than the total diameter height,
More preferable.

【0017】また、強度・剛性および成形収縮の両方の
観点から、補強の必要がある場合には、図5に示される
ように、内側の筒体(7)と外側の筒体(6)とを接続
する、該内側の筒体(7)の外表面の軸方向のリブ(9
a)を設けることもできる。このリブ(9a)の高さ
は、弁座(8)へのダイアフラムの弁体の着座、脱座の
動作を妨げない範囲で、できるだけ高い方が、補強効果
が大きい。また、このリブ(9a)の厚みや、接続部位
の円みは、前記の内側の筒体(7)の外表面の軸方向の
リブ(9)と同様の基準で選択される。
When reinforcement is required from the viewpoint of both strength / rigidity and molding shrinkage, as shown in FIG. 5, the inner cylinder (7) and the outer cylinder (6) are connected to each other. For connecting the axial ribs (9) on the outer surface of the inner cylindrical body (7).
It is also possible to provide a). The height of the rib (9a) is as high as possible within a range that does not hinder the operation of seating and seating of the valve element of the diaphragm on the valve seat (8). Further, the thickness of the rib (9a) and the roundness of the connecting portion are selected based on the same criteria as the axial rib (9) on the outer surface of the inner cylindrical body (7).

【0018】また、入口側管(1)と出口側管(2)
が、管の外表面の底の高さを異にする場合、成形収縮に
加えて軽量化のためにも、前記二重の筒体(4)の底面
は、成形時の樹脂の流れを可及的均一にすべく、底の高
い方の管、図1の場合は出口側管(2)、の方向の肉を
落とすのが好ましい。通常は、樹脂の通路の厚みが、言
い替えれば入口側管(1)や出口側管(2)の肉厚が、
二重の筒体(4)の底面においても大きく変わることな
く保持されるよう考慮する。
Further, the inlet side pipe (1) and the outlet side pipe (2)
However, in the case where the height of the bottom of the outer surface of the pipe is different, not only the molding shrinkage but also the weight reduction, the bottom surface of the double cylinder body (4) allows the resin flow during molding. In order to make it as uniform as possible, it is preferable to drop the meat in the direction of the higher-bottom tube, in the case of FIG. 1, the outlet-side tube (2). Usually, the thickness of the resin passage, in other words, the wall thickness of the inlet side pipe (1) or the outlet side pipe (2),
It is also considered that the double cylinder (4) is held on the bottom surface without much change.

【0019】肉の落とし方は、種々の態様が考えられる
が、もっとも好ましくは、階段状にすることである。例
えば、図1に示した、入口側管(1)が出口側管(2)
よりも口径が大きく、しかも両管(1)、(2)の中心
線が一致している場合は、図3〜4に示すように、前記
二重の筒体(4)の底面は、その内側の筒体(7)の内
表面で最も入口側の位置(A)から出口側を、出口側管
(2)の外表面の底の高さ(B)に達するまで肉を落と
して、階段状にする。この場合、出口側管(2)の底の
高さ(B)より低い部分の肉だけでなく、それより高い
部分の肉も落とすことが好ましい。例えば、前記内側の
筒体(7)の外表面で最も出口側の位置(C)より出口
側については、これが可能である。すなわち、この
(C)の位置より出口側には、外側の筒体(6)と出口
側管(2)とが交差し、前記階段状に肉を落としてもな
お、二重の筒体(4)の底面を構成する部分が厚肉であ
り、ここは適当な高さ(D)まで肉を落とすのが好まし
い。もちろん、同じ観点から、前記階段状とする前の前
記二重の筒体(4)の底面は、前記入口側管(1)の外
表面の底の高さ(E)と面一にしておくのがよい。
Various methods can be considered for dropping meat, but the most preferable method is stepwise. For example, the inlet side pipe (1) shown in FIG. 1 is the outlet side pipe (2).
When the diameters of the two tubes (1) and (2) are the same, the bottom surface of the double cylinder (4) is From the position (A) closest to the inlet side on the inner surface of the inner cylindrical body (7) to the outlet side, meat is dropped until reaching the height (B) of the bottom of the outer surface of the outlet side tube (2), and the stairs are reached. Make a state. In this case, it is preferable to drop not only the meat at a portion lower than the height (B) of the bottom of the outlet side pipe (2) but also the meat at a portion higher than that. For example, this is possible on the outer surface of the inner cylinder (7) on the outlet side from the position (C) on the most outlet side. That is, on the outlet side from the position of (C), the outer tubular body (6) and the outlet side tube (2) intersect with each other, and even if the meat is dropped stepwise, the double tubular body ( The portion forming the bottom surface of 4) is thick, and it is preferable to drop the meat to an appropriate height (D). Of course, from the same viewpoint, the bottom surface of the double cylindrical body (4) before forming the stepped shape is flush with the bottom height (E) of the outer surface of the inlet side tube (1). Is good.

【0020】そのほか、斜面状に肉を落とす態様、いわ
ゆる肉盗みとする態様などがある。前者は、図3〜4の
態様に比べると樹脂の流れの均一化の点ではやや不十分
であるが、成形品の外観上選択される場合もある。後者
は、成形品の概略の形状を保持したいが、肉を落とさな
い場合の生じる成形収縮によるヒケを防ぎ、かつ軽量化
を図る必要のある場合に、しばしば選択される。成形品
の外観上は、肉厚部に外縁を残して深い凹陥部が1個ま
たはそれ以上形成されていることから、肉盗みが判別さ
れる。
In addition, there is a mode in which meat is dropped in a slope shape, a so-called meat stealing mode, and the like. The former is a little insufficient in terms of making the resin flow uniform as compared with the embodiments of FIGS. 3 to 4, but may be selected in terms of the appearance of the molded product. The latter is often selected when it is necessary to maintain the general shape of the molded product, but it is necessary to prevent sink marks due to molding shrinkage that occurs when the meat is not dropped and to reduce the weight. From the appearance of the molded product, one or more deep recesses are formed leaving the outer edge in the thick portion, so that meat stealing is determined.

【0021】これら肉落としの設計に際して標準となる
のは、入口側管(1)または出口側管(2)および二重
の筒体(4)の外側の筒体(6)または内側の筒体
(7)の厚みであり、これらは通常1.0〜5.0mm
の範囲から選ばれる。これら標準となる厚み間だけでな
く、本発明の合成樹脂製流体制御バルブ本体の他の部位
の肉厚との間でも、強度上の制約のある場合は格別、成
形収縮の観点からは、標準となる厚みと均一な分布とな
るように選択するのが望ましい。
Standards for designing the meat removal are the inlet side pipe (1) or the outlet side pipe (2) and the outer cylinder (6) or the inner cylinder of the double cylinder (4). (7) thickness, these are usually 1.0-5.0 mm
Selected from the range. Not only between these standard thicknesses, but also between the wall thicknesses of other parts of the synthetic resin fluid control valve body of the present invention, where there are restrictions on strength, from the viewpoint of molding shrinkage, It is desirable to select such that the thickness and the distribution are uniform.

【0022】本発明の製品を成形するには、通常射出成
形法が用いられるが、合成樹脂として好ましいのは、引
張強度500kg/cm2 以上の熱可塑性結晶性合成樹
脂であり、具体的には、ポリアセタール樹脂、ポリエス
テル樹脂、ポリプロピレン樹脂、芳香族ナイロン樹脂お
よびポリフェニレンサルファイド樹脂から選ばれる。ま
た、これらの樹脂は、ガラス繊維などで補強することも
できる。
An injection molding method is usually used for molding the product of the present invention, but a synthetic resin is preferably a thermoplastic crystalline synthetic resin having a tensile strength of 500 kg / cm 2 or more, specifically, , Polyacetal resin, polyester resin, polypropylene resin, aromatic nylon resin and polyphenylene sulfide resin. Further, these resins can be reinforced with glass fiber or the like.

【0023】[0023]

【実施例】次に、実施例を用いて、本発明を具体的に説
明するが、本発明はその要旨を超えない限り、これらの
実施例によって制限を受けるものではない。
EXAMPLES Next, the present invention will be described in detail with reference to examples, but the present invention is not limited by these examples as long as the gist thereof is not exceeded.

【0024】射出成形法により、図1〜5に示される合
成樹脂製流体制御バルブ本体を成形した。合成樹脂とし
ては、ポリアセタール樹脂「ユピタールF10−02」
(三菱エンジニアリングプラスチックス株式会社製)を
用いた。
A synthetic resin fluid control valve body shown in FIGS. 1 to 5 was molded by an injection molding method. As a synthetic resin, polyacetal resin "Iupital F10-02"
(Manufactured by Mitsubishi Engineering Plastics Co., Ltd.) was used.

【0025】得られた成形品の評価は、耐水圧テストに
よって行った。すなわち、合成樹脂製流体制御バルブ本
体に、ダイアフラムの周縁部を固定し、これを導水管、
圧力制御室、貯水タンク、フロートなどと接続し、流体
を流して、部品の破壊・変形および気密の保持状況を観
察した。流体圧は、配管で起こるウォーターハンマー現
象を考慮して設定した。
The evaluation of the obtained molded product was carried out by a water pressure resistance test. That is, the peripheral portion of the diaphragm is fixed to the synthetic resin fluid control valve body, and the
It was connected to a pressure control room, a water storage tank, a float, etc., and a fluid was made to flow to observe the destruction / deformation of parts and the maintenance of airtightness. The fluid pressure was set in consideration of the water hammer phenomenon that occurs in piping.

【0026】その結果は、35kg/cm2 の水圧を1
0万回かけても、成形品に破壊が起こらず、またダイア
フラムからの漏水もないことを、目視で確認した。ま
た、7.5kg/cm2 の水圧で1000時間以上保
ち、成形品に破壊がないことも、目視で確認した。さら
に、水道水に含有される塩素化合物による劣化、使用環
境に通常存在する薬品や化学物質による変化も、確認さ
れなかった。
The result shows that a water pressure of 35 kg / cm 2 is 1
It was visually confirmed that the molded product did not break even after being subjected to 0,000 times, and that there was no water leakage from the diaphragm. Further, it was visually confirmed that the molded product was not broken by keeping it at a water pressure of 7.5 kg / cm 2 for 1000 hours or more. Furthermore, neither deterioration due to chlorine compounds contained in tap water nor changes due to chemicals or chemical substances normally present in the use environment were confirmed.

【0027】[0027]

【発明の効果】本発明の流体制御バルブは、(A)入口
側管と出口側管の中心線が、二重の筒体のそれと直交す
るか、直交に対し±45度以内となるように配置するこ
とおよび(B)前記入口側管内部には、流体供給部材の
接続部の端面から入口側管の入口端までの任意の位置よ
り、前記内側の筒体に至るまで、実質的に連続して全径
高さにわたり、該内側の筒体の外表面の軸方向のリブを
設けることによって、金属並の強度・剛性を確保するこ
とが可能となり、また、(B)のようなリブを設けるこ
とによって、成形収縮の問題を解決することが可能にな
り、管内にこのようなリブを設けない場合と比較する
と、成型時の樹脂本体の変形によるダイアフラムからの
漏水防止に有効であり、破壊耐久性が非常に高くなって
いる。さらに、外部に突出したリブはないので、規格品
の配管部品との接続使用に際して、何の支障もないとい
う利点がある。本発明の流体制御バルブにおいて、上記
リブの端面の二重筒体表面との接続部位に適切な円みを
持たせることにより、応力の集中を避け、水流の剥離を
防ぐことが可能となる。また、該リブの厚みを適切にす
ることにより、強度の確保を確実にし、ウエルド・ライ
ンの発生防止が可能となる。さらに、本発明の流体制御
バルブにおいて、入口側管と出口側管のサイズまたは位
置関係が特定の場合には、二重筒体の底面は、成形時の
樹脂の流れを可及的均一にすべく、肉を落とした形状、
例えば階段状とすることにより、成形収縮を軽減しまた
軽量化を図ることが可能となり、また、フランジ部と入
口側管または出口側管との間にできる首部には、縦リブ
を設け、その端面の接続部位に円みを持たせることによ
り、強度・剛性の確保を確実にし、補強効果を確実にす
ることが可能となる。また、本発明の流体制御バルブに
おいて、適切な合成樹脂を使用することにより、金属材
料を使用した従来品と比較すると、非常に安価、軽量で
あり、生産性が向上し、施工も容易で、経年変化も少な
いものとすることができるなどの利点がある。さらに、
本発明の流体制御バルブにおいて、内側の筒体の外表面
と外側の筒体の内表面とを接続する、該内側の筒体の外
表面の軸方向のリブを設けることにより、強度・剛性お
よび成形収縮の両面からの補強が可能となる。
In the fluid control valve of the present invention, (A) the center lines of the inlet side pipe and the outlet side pipe are orthogonal to that of the double cylinder or within ± 45 degrees with respect to the orthogonality. And (B) inside the inlet side pipe, it is substantially continuous from an arbitrary position from the end face of the connection portion of the fluid supply member to the inlet end of the inlet side pipe to the inner cylinder. By providing the ribs in the axial direction on the outer surface of the inner cylindrical body over the entire diameter height, it is possible to secure strength and rigidity comparable to those of metal, and a rib like (B) is provided. By providing it, it becomes possible to solve the problem of molding shrinkage, and it is more effective in preventing water leakage from the diaphragm due to the deformation of the resin body at the time of molding compared to the case where such a rib is not provided inside the pipe, Very durable. Further, since there is no rib protruding to the outside, there is an advantage that there is no problem when connecting and using standard piping parts. In the fluid control valve of the present invention, it is possible to avoid concentration of stress and prevent separation of water flow by providing an appropriate roundness at the connection portion of the end surface of the rib with the surface of the double cylinder. Further, by making the thickness of the rib appropriate, it is possible to ensure the strength and prevent the occurrence of weld lines. Further, in the fluid control valve of the present invention, when the size or positional relationship between the inlet side pipe and the outlet side pipe is specific, the bottom surface of the double cylinder body makes the resin flow during molding as uniform as possible. So, the shape that dropped meat,
For example, by forming a step shape, it is possible to reduce molding shrinkage and to reduce the weight, and a vertical rib is provided in the neck portion formed between the flange portion and the inlet side pipe or the outlet side pipe. By providing a rounded connecting portion on the end face, it is possible to ensure the strength and rigidity and the reinforcing effect. Further, in the fluid control valve of the present invention, by using an appropriate synthetic resin, as compared with a conventional product using a metal material, it is very cheap and lightweight, productivity is improved, and construction is easy, There is an advantage that it can be changed little over time. further,
In the fluid control valve of the present invention, strength / rigidity is improved by providing an axial rib on the outer surface of the inner cylinder that connects the outer surface of the inner cylinder and the inner surface of the outer cylinder. Reinforcement from both sides of molding shrinkage is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の合成樹脂製流体制御バルブ本体の縦断
面図。
FIG. 1 is a vertical cross-sectional view of a synthetic resin fluid control valve body of the present invention.

【図2】本発明の合成樹脂製流体制御バルブ本体の正面
図。
FIG. 2 is a front view of a synthetic resin fluid control valve body of the present invention.

【図3】本発明の合成樹脂製流体制御バルブ本体の底面
図。
FIG. 3 is a bottom view of the synthetic resin fluid control valve body of the present invention.

【図4】本発明の合成樹脂製流体制御バルブ本体の側面
図。
FIG. 4 is a side view of the synthetic resin fluid control valve body of the present invention.

【図5】本発明の合成樹脂製流体制御バルブ本体のF−
F断面図。
FIG. 5: F- of the synthetic resin fluid control valve body of the present invention
F sectional view.

【図6】従来の金属製流体制御バルブの縦断面図。FIG. 6 is a vertical cross-sectional view of a conventional metal fluid control valve.

【符号の説明】[Explanation of symbols]

1 入口側管 1a 入口側管の入口端 2 出口側管 3 シール部 4 二重の筒体 5 フランジ部 6a 首部 6 外側の筒体 7 内側の筒体 8 弁座 9、9a 内側の筒体の外表面の軸方向のリブ 10 流体制御バルブ本体 11 流体供給部材の接続部 11a 流体供給部材の接続部の端面 12 首部に設けた縦リブ A 内側の筒体の内表面で最も入口側の位置 B 出口側管の外表面の底の高さ C 内側の筒体の外表面で最も出口側の位置 D 適当な高さ E 入口側管の外表面の底の高さ 1 Inlet tube 1a Inlet end of inlet tube 2 Exit side tube 3 Seal part 4 double cylinder 5 Flange 6a neck 6 Outer cylinder 7 Inner cylinder 8 seat 9, 9a Axial rib on the outer surface of the inner cylinder 10 Fluid control valve body 11 Fluid supply member connection 11a End face of connection part of fluid supply member 12 Vertical ribs on the neck A The position closest to the inlet on the inner surface of the inner cylinder B Height of the bottom of the outer surface of the outlet side pipe C The position on the outermost surface of the inner cylinder that is closest to the outlet D Suitable height E Height of the bottom of the outer surface of the inlet side pipe

フロントページの続き (72)発明者 佐藤 広昭 神奈川県平塚市東八幡五丁目6番2号 三菱エンジニアリングプラスチックス株 式会社 技術センター平塚内 (72)発明者 川田 利勝 神奈川県平塚市東八幡五丁目6番2号 三菱エンジニアリングプラスチックス株 式会社 技術センター平塚内 (72)発明者 木村 潤 福岡県北九州市小倉北区中島二丁目1番 1号 東陶機器株式会社内 (72)発明者 松井 一夫 福岡県北九州市小倉北区中島二丁目1番 1号 東陶機器株式会社内 (72)発明者 田中 弘志 福岡県北九州市小倉北区中島二丁目1番 1号 東陶機器株式会社内 (56)参考文献 特開 昭62−63272(JP,A) 実開 平6−30272(JP,U) 実開 昭48−91533(JP,U) 実開 昭64−24776(JP,U) 実開 昭61−61379(JP,U) 実開 昭62−115581(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16K 7/00 F16K 27/00 (72) Inventor Hiroaki Sato 5-6-2 Higashihachiman, Hiratsuka-shi, Kanagawa Mitsubishi Engineering Plastics Co., Ltd. Technical Center Hiratsukanai (72) Inventor Toshikatsu Kawada 5-6-2, Higashihachiman, Hiratsuka-shi, Kanagawa No. Mitsubishi Engineering Plastics Co., Ltd. Technical Center Hiratsukanai (72) Inventor Jun Kimura 1-1-1, Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture Totoki Kikai Co., Ltd. (72) Kazuo Matsui Kitakyushu, Fukuoka 2-1, 1-1 Nakajima, Kokurakita-ku, Totoki Kiki Co., Ltd. (72) Inventor Hiroshi Tanaka, 2-1-1, Nakajima, Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka (56) References 62-63272 (JP, A) Actually open 6-30272 (JP, U) Actually opened 48-91533 (JP, U) Actually opened 64-24776 (JP, U) Actually opened 61-61379 (JP , U) JitsuHiraku Akira 62-115581 (JP, U) (58 ) investigated the field (Int.Cl. 7 DB name) F16K 7/00 F16K 27/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入口側管、出口側管およびシール部からな
り、該シール部は同心の二重の筒体とその上に一体に設
けられた、ダイアフラムの周縁部を水平に固定すること
ができる、フランジ部を有し、該二重の筒体の外側の筒
体は入口側管と連通し、内側の筒体は出口側管と連通
し、また該内側の筒体の上端には、ダイアフラムの弁体
が着座する弁座を設けてなる、合成樹脂製流体制御バル
ブ本体であって、(A)前記入口側管と出口側管の中心
線が、二重の筒体のそれと直交するか、直交に対し±4
5度以内となるように配置し、かつ(B)前記入口側管
内部には、流体供給部材の接続部の端面から入口側管の
入口端までの任意の位置より、前記内側の筒体の外表面
に至るまで、実質的に連続して全径高さにわたり、該内
側の筒体の外表面の軸方向のリブを設けたことを特徴と
する合成樹脂製流体制御バルブ本体。
1. An inlet side pipe, an outlet side pipe, and a seal portion, wherein the seal portion is capable of horizontally fixing a peripheral edge portion of a diaphragm integrally provided on a concentric double cylinder body. The double cylinder has an outer cylinder communicating with the inlet side tube, an inner cylinder communicating with the outlet side tube, and an upper end of the inner cylinder, A fluid control valve body made of synthetic resin, comprising: a valve seat on which a valve body of a diaphragm is seated, wherein (A) the center lines of the inlet side pipe and the outlet side pipe are orthogonal to those of the double cylinder body. Or ± 4 to the orthogonal
Within 5 degrees, and (B) inside the inlet side tube, the inside of the tubular body is located at an arbitrary position from the end face of the connecting portion of the fluid supply member to the inlet end of the inlet side tube. A fluid control valve body made of synthetic resin, characterized in that an axial rib on the outer surface of the inner cylindrical body is provided substantially continuously over the entire height up to the outer surface.
【請求項2】前記リブの端面の、入口側管内表面およ
び、必要に応じて、二重の筒体の内側筒体外表面または
外側筒体内表面への接続部位には、曲率半径0.25m
m以上の円みを持たせたことを特徴とする請求項1記載
の合成樹脂製流体制御バルブ本体。
2. A radius of curvature of 0.25 m at the connecting portion of the end surface of the rib to the inner surface of the inlet side tube and, if necessary, the outer surface of the inner cylinder or the surface of the outer cylinder of the double cylinder.
The synthetic resin fluid control valve body according to claim 1, wherein the fluid control valve body has a roundness of m or more.
【請求項3】前記リブの厚みが0.5〜5.0mmであ
ることを特徴とする請求項1〜2記載の合成樹脂製流体
制御バルブ本体。
3. A synthetic resin fluid control valve body according to claim 1, wherein the rib has a thickness of 0.5 to 5.0 mm.
【請求項4】前記入口側管と前記出口側管が、管外表面
の底の高さを異にする場合、前記二重の筒体の底面は、
成形時の樹脂の流れを可及的均一にすべく、肉を落とし
た形状とすることを特徴とする請求項1〜3記載の合成
樹脂製流体制御バルブ本体。
4. When the inlet-side pipe and the outlet-side pipe have different bottom heights on the outer surface of the pipe, the bottom surfaces of the double cylinders are:
The synthetic resin fluid control valve body according to any one of claims 1 to 3, wherein the fluid control valve main body has a shape in which meat is dropped in order to make the flow of the resin during molding as uniform as possible.
【請求項5】前記入口側管が前記出口側管よりも口径が
大きく、しかも両管の中心線が一致している場合、前記
二重の筒体の底面は、その内側の筒体の内表面で最も入
口側の位置から出口側を、出口側管の外表面の底の高さ
に達するまで肉を落して、階段状としたことを特徴とす
る請求項4記載の合成樹脂製流体制御バルブ本体。
5. When the inlet-side pipe has a larger diameter than the outlet-side pipe and the center lines of both pipes are aligned with each other, the bottom surface of the double cylinder is the inner cylinder. 5. The synthetic resin fluid control according to claim 4, wherein meat is dropped from the position closest to the inlet side on the surface to the outlet side until the height of the bottom of the outer surface of the outlet side pipe is reached to form a step. The valve body.
【請求項6】前記フランジ部と前記入口側管または前記
出口側管との間に前記外側の筒体の首部ができた場合、
該首部に、縦リブを該管の中心線と平行に該首部の全高
さにわたって設け、かつ、該縦リブの該管外表面への接
続部位には、曲率半径0.5mm以上の円みを持たせた
ことを特徴とする請求項1〜5記載の合成樹脂製流体制
御バルブ本体。
6. When a neck portion of the outer cylindrical body is formed between the flange portion and the inlet side pipe or the outlet side pipe,
A vertical rib is provided on the neck in parallel with the center line of the tube over the entire height of the neck, and a circle having a radius of curvature of 0.5 mm or more is formed at a connection portion of the vertical rib to the outer surface of the tube. The fluid control valve body made of synthetic resin according to claim 1, wherein the fluid control valve body is made of synthetic resin.
【請求項7】引張強度500kg/cm2 以上の熱可塑
性結晶性合成樹脂を射出成形したものである請求項1〜
6記載の合成樹脂製流体制御バルブ本体。
7. A thermoplastic crystalline synthetic resin having a tensile strength of 500 kg / cm 2 or more is injection molded.
6. A synthetic resin fluid control valve body according to 6.
【請求項8】合成樹脂が、繊維強化されていてもよい、
ポリアセタール樹脂、ポリエステル樹脂、ポリプロピレ
ン樹脂、芳香族ナイロン樹脂およびポリフェニレンサル
ファイド樹脂から選ばれた請求項1〜6記載の合成樹脂
製流体制御バルブ本体。
8. A synthetic resin may be fiber-reinforced.
The synthetic resin fluid control valve body according to any one of claims 1 to 6, which is selected from polyacetal resin, polyester resin, polypropylene resin, aromatic nylon resin and polyphenylene sulfide resin.
【請求項9】前記内側の筒体の外表面と前記外側の筒体
の内表面とを接続する、該内側の筒体の外表面の軸方向
のリブを設けたことを特徴とする請求項1〜8記載の合
成樹脂製流体制御バルブ本体。
9. An axial rib on the outer surface of the inner cylinder connecting the outer surface of the inner cylinder and the inner surface of the outer cylinder is provided. The fluid control valve body made of synthetic resin according to 1-8.
JP17794095A 1995-06-22 1995-06-22 Synthetic resin fluid control valve body Expired - Fee Related JP3370210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17794095A JP3370210B2 (en) 1995-06-22 1995-06-22 Synthetic resin fluid control valve body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17794095A JP3370210B2 (en) 1995-06-22 1995-06-22 Synthetic resin fluid control valve body

Publications (2)

Publication Number Publication Date
JPH094734A JPH094734A (en) 1997-01-07
JP3370210B2 true JP3370210B2 (en) 2003-01-27

Family

ID=16039736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17794095A Expired - Fee Related JP3370210B2 (en) 1995-06-22 1995-06-22 Synthetic resin fluid control valve body

Country Status (1)

Country Link
JP (1) JP3370210B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412963B2 (en) 2003-10-10 2010-02-10 旭有機材工業株式会社 Plastic parts for valves
DE102006045162A1 (en) * 2006-09-25 2008-04-03 Robert Bosch Gmbh hydraulic block
US7766040B2 (en) * 2007-03-13 2010-08-03 Eaton Corporation Pressure control valve assembly
JP5060874B2 (en) * 2007-08-27 2012-10-31 株式会社不二工機 Ball valve
JP5642760B2 (en) * 2011-12-02 2014-12-17 Ckd株式会社 Fluid control valve

Also Published As

Publication number Publication date
JPH094734A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
CN1496930B (en) Mouthpiece of container for filling liquid
KR950005882B1 (en) Ball valve
CN101305138B (en) Canister flush valve
US5062452A (en) Valve member and method of making such a member
JP5138375B2 (en) Dome check valve and manufacturing method thereof
US6983766B2 (en) Lined pipe wherein the liner comprises a one-way valve
JP6987140B2 (en) Improved antistatic pressure tank
JP3370210B2 (en) Synthetic resin fluid control valve body
US4180542A (en) Methods for making molded plug and plug valve
US5593135A (en) Precise throttling ball valve
JP2010525248A (en) Valve with integral hinge
EP2374736B1 (en) Material storage container comprising a metal insert fitting
US6416038B1 (en) Inline process valve assembly
TWI626208B (en) Water server
US4988077A (en) Reinforced plastic valve
US6904929B2 (en) Check valve and filter assembly incorporating such valve, especially for water cooler assemblies
US20100132805A1 (en) Air vent valve for beverage makers
JP7181945B2 (en) Closure mechanism for liquid container
US11105434B2 (en) Flow rib in valves
US318479A (en) Combined filler and faucet
JP7173536B2 (en) ball check valve
US6026835A (en) High Cv bulk process valve, control system and method
JP4373261B2 (en) Liquid filling nozzle for beverage with pulp and liquid filling device for beverage with pulp
KR200342643Y1 (en) Quick air-valve
CN220540402U (en) Gas-liquid separation valve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees