JP3369449B2 - Layer thickness control method for sinter cooler - Google Patents

Layer thickness control method for sinter cooler

Info

Publication number
JP3369449B2
JP3369449B2 JP29954797A JP29954797A JP3369449B2 JP 3369449 B2 JP3369449 B2 JP 3369449B2 JP 29954797 A JP29954797 A JP 29954797A JP 29954797 A JP29954797 A JP 29954797A JP 3369449 B2 JP3369449 B2 JP 3369449B2
Authority
JP
Japan
Prior art keywords
layer thickness
sinter
speed
cooler
cooling machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29954797A
Other languages
Japanese (ja)
Other versions
JPH11118359A (en
Inventor
昌倫 鎗山
浩二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29954797A priority Critical patent/JP3369449B2/en
Publication of JPH11118359A publication Critical patent/JPH11118359A/en
Application granted granted Critical
Publication of JP3369449B2 publication Critical patent/JP3369449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、焼結鉱冷却機に
おいて効率よく焼結鉱の排熱回収をはかるための焼結鉱
冷却機の層厚制御方法に関する。 【0002】 【従来の技術】焼結を完了した高温の焼結鉱を冷却する
冷却機の排ガスも焼結機排ガスと同様高温であるため、
冷却機の排ガスからも熱回収が行われている。このよう
な焼結鉱冷却設備としては、図4にその概要を示すごと
く、冷却機1のクーラーパン2の下方に送風ダクト3
と、上方に排気フード4が配され、送風ダクト3と排気
フード4間に設けた導管5にボイラー等の排熱回収装置
7が設置され、焼結機8から給鉱された高温の焼結鉱9
が冷却機1の排鉱部に移行する間に該焼結鉱を通気冷却
し、その冷却により高温となった空気をボイラー等の排
熱回収装置7に導入して排熱回収する方式となってい
る。すなわち、焼結機8から給鉱された高温の焼結鉱9
が冷却機1に給鉱され該冷却機1の排鉱部に移行する間
に送風ダクト3より冷却用空気が下方から上向きに吹込
まれ、クーラーパン2上の高温の焼結鉱9を冷却し、空
気は加熱されて排気フード4に入り導管5によって排熱
回収装置7へ導入され、排熱回収後の排ガスは冷却用空
気として循環使用されるようになっている。図中、10
は焼結機8から排鉱された焼結鉱を破砕するクラッシ
ャ、11は破砕された焼結鉱を整粒するホットスクリー
ン、12は給鉱シュートである。 【0003】このような構成の焼結鉱冷却設備におい
て、焼結鉱の冷却が均一に行われるためには、クーラー
パン2上の焼結鉱の層厚が適正かつ一定であることが必
要であるが、操業中にクーラーパン2上の焼結鉱9の層
厚が、焼結機生産ベース変動により冷却機投入焼結鉱量
が変動したり、焼成後の焼結鉱粒度の変動によりホット
スクリーン11の篩上量が変動した場合には、冷却効率
の低下、排鉱側ベルトコンベアの焼損、冷却用排風機の
動力損失の増大等の問題が発生し好ましくない。 【0004】図5はクーラーパン2上の焼結鉱の層厚が
一定の場合と変動する場合の冷却状況を例示したもの
で、(A)は層厚が適正かつ一定の場合、(B)は層厚
が変動した場合をそれぞれ示す。すなわち、図5(A)
に示すごとく、焼結鉱冷却機の機長方向層厚が適正かつ
一定の場合は、焼結鉱9の冷却が均一に行われるととも
に、ボイラー等の排熱回収装置7により回収する熱量も
ばらつきなく安定する。しかし、前記の理由により図5
(B)に示すごとく、焼結鉱冷却機の機長方向層厚に変
動がある場合、冷却ガスは層厚が薄く通気性の低い領域
を優先的に通過し、冷却機全体の冷却効率の低下をもた
らす。同時に、冷却機内排熱回収ゾーンの冷却効率も低
下するので、層厚が一定の場合に比べて排ガス温度は低
く、排熱回収量も低下する。また、冷却機内の焼結鉱レ
ベルが極端に低くなる場合、冷却排風機による冷風が焼
結鉱層内を通過せずに、いわゆる漏風となり冷却効果を
著しく低下させ、冷却機より排出される焼結鉱の温度上
昇による排鉱側ベルトコンベアの焼損を生じるととも
に、冷却用排風機の動力損失を増大させる。このため、
図4に示す焼結鉱冷却設備においては、クーラーパン1
上の焼結鉱の層厚を制御するためのレベル制御が望まれ
る。 【0005】なお、特開昭62−89824号公報に
は、ホッパー形の焼結鉱冷却機内の焼結鉱の量を計測
し、その目標値との偏差をなくすように、冷却機からの
焼結鉱の切出量を、焼結機から冷却機へ投入される焼結
鉱の量に連動して調節する焼結鉱冷却機のレベル制御方
法が提案されている。このレベル制御方法によれば、ホ
ッパー形の焼結鉱冷却機内の焼結鉱レベルを均一に保つ
ことができることにより、ホッパー形冷却機内の落下高
さが均一となり焼結鉱の粉発生率を減少できるという効
果が得られる。しかし、このレベル制御方法は、いわゆ
る竪形の冷却機を対象としたものであるため、前記した
図4に示すベルトコンベア方式の焼結鉱冷却機には適用
できないという難点がある。 【0006】 【発明が解決しようとする課題】この発明は、従来のこ
のような現状に鑑み、ベルトコンベア方式の焼結鉱冷却
機におけるクーラーパン上の焼結鉱の層厚の変動を防止
し、常に冷却機層厚を適正な厚さに維持することができ
る焼結鉱冷却機の層厚制御方法を提案しようとするもの
である。 【0007】 【課題を解決するための手段】この発明に係る焼結鉱冷
却機の層厚制御方法は、冷却機給鉱側での層厚を考慮し
て冷却機速度を自動制御することにより冷却層厚を適正
レベルに維持する方法であり、その要旨は、焼結機パレ
ット速度から焼結鉱冷却機速度を制御する回路に、焼結
鉱冷却機速度比例制御を組込み、焼結鉱冷却機の給鉱側
シュートに設置した層厚計により検出したクーラーパン
上の層厚検出信号を元に、下記式1により焼結機パレッ
ト速度Psに比例し設定される焼結鉱冷却機速度Pの比
例定数Kを前記速度比例制御により変更することによっ
てクーラーパン上の層厚を適正レベルに制御することを
特徴とするものである。 【0008】 【式1】P=K*Ps P:焼結鉱冷却機速度(m/H) Ps:焼結機パレット速度(m/H) K:速度比例定数 【0009】焼結鉱冷却機のクーラーパン上の層厚は、
周知のごとく冷却機給鉱量と冷却機速度によって決定さ
れるので、層厚が適正レベルより低い場合焼結鉱冷却機
速度を低下させて層厚を上昇方向に調整し、反対に層厚
が適正レベルより高い場合には焼結鉱冷却機速度を上げ
層厚を低下方向に調整することにより、層厚を適正レベ
ルに維持することができる。その制御手段として、この
発明は焼結機速度から冷却機速度を制御する回路の途中
に、焼結鉱冷却機の給鉱側シュートに設置した層厚計に
より検出された層厚データに基づいて、焼結機パレット
速度Psに比例し設定される焼結鉱冷却機速度Pの比例
定数Kを決定する比例制御を組込み、例えば層厚が外乱
により低下した場合、その層厚をもとの適正レベルに調
整すべく、前記比例定数Kを低く調整して冷却機速度を
低下させ、その反対に層厚が上昇した場合は、比例定数
Kは高くする方法をとったのである。 【0010】なお、比例制御とは焼結機パレット速度P
sに対して、焼結鉱冷却機速度Pを前記式1により決定
する制御のことであり、焼結機パレット速度Psに比例
し設定される焼結鉱冷却機速度Pの比例定数Kは自動制
御にて調整される。勿論、比例定数Kの調整は手動で行
うことも可能であるが、手動の場合はオペレーターが層
厚計の指示を見ながらダイヤル調整することにより、冷
却速度を設定し層厚を調整することになるが、手動の場
合は、オペレーターが常時監視する必要があり、また層
厚が適正範囲を外れた場合の調整タイミングが遅れると
層厚を適正範囲に戻すのに時間を要するため、この発明
では比例定数Kは自動制御にて調整する。 【0011】また、焼結鉱冷却機の給鉱側シュート部に
設置する層厚計としては、超音波レベル計、非接触式レ
ベル計、接触式レベル計のいずれでもよく、かつ焼結鉱
冷却機の層厚を適正レベルに調整するには、層厚計は1
個より2個設置する方が望ましい。なお、層厚計はクー
ラーパン上の層厚レベルが最適レベルになるように高さ
位置を調整して設置する。 【0012】 【発明の実施の態様】図1はこの発明の一実施例を示す
概略図、図2は図1に示す実施例における焼結鉱冷却
機、焼結鉱および層厚計の位置関係を拡大して示す概略
図、図3は同上実施例における層厚計の作動状況と焼結
鉱レベルを示す説明図であり、13は焼結鉱冷却機速度
比例制御装置、Aは上部層厚計、Bは下部層厚計であ
る。 【0013】上部層厚計Aおよび下部層厚計Bは、図2
に拡大して示すごとく、検出器本体A−1、B−1に軸
ピンA−3、B−3を支点にして焼結鉱の流れ方向に回
動自在に支持されたレベル検出棒A−2、B−2の先端
に焼結鉱が接触し当該レベル検出棒が振り子状に動作し
た場合に、検出器本体A−1、B−1の無接点型検出セ
ンサーA−4、B−4にて検出器が作動してONの信号
を出力し、レベル検出棒の端部が検出センサーから離れ
ると検出器がOFFの信号を出力するごとく給鉱シュー
ト12に設置され、各出力値が焼結鉱冷却機速度比例制
御装置13に入力されるように構成されている。この上
下2個の層厚計によれば、層厚レベルを下記表1のよう
に3つのレベルに区別できる。 【0014】 【表1】 【0015】すなわち、図3に示すごとく、上部層厚計
AがON、下部層厚計BがOFFの場合を層厚の適正レ
ベル(図(B))とし、上部層厚計Aと下部層厚計Bが
共にOFFで層厚が適正レベルより低い場合(図3
(A))には、焼結鉱冷却機速度比例制御装置13によ
り前記式1の速度比例定数Kを少なくし焼結鉱冷却機速
度を低下させて層厚を上昇方向に制御し、また上部層厚
計Aと下部層厚計Bが共にONで層厚が適正レベルより
高い場合(図3(C))には、速度比例定数Kを増加さ
せて焼結鉱冷却機速度を上げ層厚を低下方向に制御す
る。このようにして、焼結鉱冷却機給鉱側での層厚を考
慮して該冷却機速度を自動制御することにより、冷却機
層厚を適正レベルに維持可能となる。 【0016】 【実施例】能力15000T/Dの焼結鉱冷却機にこの
発明法を適用した場合の結果を以下に示す。本実施例に
おける焼結鉱冷却機の運転条件を表2に、冷却機層厚制
御効果を表3に示す。すなわち本実施例は、焼結鉱冷却
機速度調整前は上部層厚計Aと下部層厚計Bが共にOF
Fで層厚が適正レベルより低くなったので、速度比例定
数Kを少なくし焼結鉱冷却機速度を低下させて層厚を上
昇方向に制御した場合の結果である。なお、本実施例で
は、層厚適正レベルを450〜500mm、層厚低レベ
ルを450mm未満、層厚高レベルを500mm以上と
設定した。 【0017】表3の結果より明らかなごとく、冷却機層
厚制御前(冷却機速度調整前)は層厚が適正レベルより
低いことから排ガス温度380℃、排熱回収蒸気量4
0.2T/Hであったのが、冷却機層厚制御を実施して
層厚を適正レベルに戻した結果、排ガス温度は390℃
に上昇し、排熱回収蒸気量も42.4T/Hと増加し
た。また、層厚を適正レベルに戻したことにより、漏風
が低減し冷却機排鉱側ベルトコンベアの焼損事故の危険
性がなくなり、冷却機用排風機の動力損失も低減した。 【0018】 【表2】【0019】 【表3】 【0020】 【発明の効果】以上説明したごとく、この発明はベルト
コンベア方式の冷却機給鉱側での層厚を考慮して冷却機
速度を自動制御することにより冷却層厚を適正レベルに
維持する方法であるから、焼結機生産ベース変動による
冷却機投入焼結鉱量の変動や、焼成後の焼結鉱粒度の変
動によるホットスクリーンの篩上量の変動にも十分に対
応できて、焼結鉱冷却機におけるクーラーパン上の焼結
鉱の層厚の変動を防止でき、常に冷却機層厚を適正な厚
さに維持することができるので、冷却効率の向上、排鉱
側ベルトコンベアの焼損防止および冷却用排風機の動力
損失の低減に大なる効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the thickness of a sinter cooling machine for efficiently recovering waste heat of sinter in the sinter cooling machine. About. [0002] Exhaust gas from a cooler for cooling a high-temperature sintered ore after sintering is also high in temperature similarly to exhaust gas from a sintering machine.
Heat recovery is also performed from the exhaust gas of the cooler. As shown in FIG. 4, such a sinter cooling equipment has a blower duct 3 below a cooler pan 2 of a cooler 1.
An exhaust hood 4 is disposed above, and an exhaust heat recovery device 7 such as a boiler is installed in a conduit 5 provided between the blower duct 3 and the exhaust hood 4. Ore 9
Is cooled by aeration while the sinter moves to the exhaust ore part of the cooler 1, and air heated to a high temperature by the cooling is introduced into an exhaust heat recovery device 7 such as a boiler to recover the exhaust heat. ing. That is, the high-temperature sinter 9 supplied from the sintering machine 8
Is supplied to the cooler 1 and the cooling air is blown upward from the blower duct 3 from the blower duct 3 while moving to the mining part of the cooler 1 to cool the high-temperature sinter 9 on the cooler pan 2. The air is heated and enters the exhaust hood 4 and is introduced into the exhaust heat recovery device 7 via the conduit 5, and the exhaust gas after the exhaust heat recovery is circulated and used as cooling air. In the figure, 10
Is a crusher for crushing the sintered ore discharged from the sintering machine 8, 11 is a hot screen for sizing the crushed sintered ore, and 12 is a feed chute. In the sinter cooling system having such a configuration, in order to uniformly cool the sinter, it is necessary that the layer thickness of the sinter on the cooler pan 2 is appropriate and constant. However, during operation, the layer thickness of the sinter 9 on the cooler pan 2 varies depending on the sintering machine production base. If the amount of sieve on the screen 11 fluctuates, problems such as a decrease in cooling efficiency, burning of the belt conveyor on the exhaust side, and an increase in power loss of the exhaust fan for cooling are undesirable. FIGS. 5A and 5B show examples of the cooling condition when the layer thickness of the sintered ore on the cooler pan 2 is constant and when the layer thickness fluctuates. FIG. Indicates the case where the layer thickness fluctuates. That is, FIG.
As shown in the figure, when the machine direction direction thickness of the sinter cooler is appropriate and constant, the sinter 9 is cooled uniformly and the amount of heat recovered by the exhaust heat recovery device 7 such as a boiler does not vary. Stabilize. However, for the reasons described above, FIG.
As shown in (B), when the layer thickness in the machine direction of the sinter cooling machine fluctuates, the cooling gas preferentially passes through a region where the layer thickness is small and air permeability is low, and the cooling efficiency of the entire cooling machine decreases. Bring. At the same time, the cooling efficiency of the exhaust heat recovery zone in the cooler also decreases, so that the exhaust gas temperature is lower and the amount of exhaust heat recovery is lower than when the layer thickness is constant. In addition, when the level of the sinter in the cooler becomes extremely low, the cool air generated by the cooling air blower does not pass through the sinter ore layer, resulting in a so-called wind leak, which significantly reduces the cooling effect and the sinter discharged from the cooler. The increase in the temperature of the ore causes burning of the belt conveyor on the exhaust side, and increases the power loss of the exhaust fan for cooling. For this reason,
In the sinter cooling equipment shown in FIG.
Level control to control the thickness of the sinter above is desired. Japanese Patent Application Laid-Open No. Sho 62-89824 discloses that the amount of sinter in a hopper-type sinter cooler is measured, and the amount of sinter from the cooler is reduced so as to eliminate a deviation from the target value. There has been proposed a level control method for a sinter cooler in which the amount of condensate cut is adjusted in accordance with the amount of sinter that is fed from the sinter machine to the cooler. According to this level control method, the sinter ore level in the hopper type sinter cooler can be kept uniform, so that the drop height in the hopper type chiller becomes uniform and the powder generation rate of the sinter decreases. The effect that it can be obtained is obtained. However, since this level control method is intended for a so-called vertical cooler, there is a drawback that it cannot be applied to the belt conveyor type sinter cooler shown in FIG. 4 described above. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been made to prevent a change in the layer thickness of sinter on a cooler pan in a sinter cooling machine of a belt conveyor type. Another object of the present invention is to propose a method for controlling a layer thickness of a sinter cooling machine that can always maintain a proper cooling machine layer thickness. A method for controlling the thickness of a sinter cooler according to the present invention is to automatically control the speed of the chiller in consideration of the thickness of the chiller feeder. This is a method of maintaining the cooling layer thickness at an appropriate level. The gist of this method is to incorporate the sinter cooling machine speed proportional control into the circuit that controls the sinter cooling machine speed from the sinter machine pallet speed, The sinter cooling machine speed P set in proportion to the sintering machine pallet speed Ps by the following equation 1 based on the layer thickness detection signal on the cooler pan detected by the layer thickness meter installed on the feeder side chute of the machine. Is controlled by the speed proportional control to control the layer thickness on the cooler pan to an appropriate level. P = K * Ps P: Sinter cooler speed (m / H) Ps: Sinter machine pallet speed (m / H) K: Speed proportional constant Sinter cooler The layer thickness on the cooler pan is
As is well known, it is determined by the amount of ore supplied to the cooler and the speed of the cooler, so if the layer thickness is lower than the appropriate level, the speed of the sinter cooler is reduced and the layer thickness is adjusted in the ascending direction. If it is higher than the appropriate level, the layer thickness can be maintained at the appropriate level by increasing the sinter cooling machine speed and adjusting the layer thickness in the decreasing direction. As the control means, the present invention is based on layer thickness data detected by a layer thickness gauge installed on a feeder side chute of a sinter cooling machine in a circuit for controlling a cooling machine speed from a sintering machine speed. Incorporating a proportional control for determining a proportional constant K of the sinter cooling machine speed P set in proportion to the sintering machine pallet speed Ps, for example, when the layer thickness is reduced by disturbance, In order to adjust to the level, the proportional constant K was adjusted to be low and the speed of the cooling machine was decreased. On the contrary, when the layer thickness was increased, the proportional constant K was increased. The proportional control means the pallet speed P of the sintering machine.
is a control for determining the sinter cooling machine speed P by the above equation 1, and the proportional constant K of the sinter cooling machine speed P set in proportion to the sintering machine pallet speed Ps is automatically determined. It is adjusted by control. Of course, the adjustment of the proportionality constant K can be performed manually, but in the case of manual operation, the operator adjusts the dial speed while watching the indication of the layer thickness gauge, thereby setting the cooling rate and adjusting the layer thickness. However, in the case of manual operation, it is necessary for the operator to constantly monitor, and if the adjustment timing is delayed when the layer thickness is out of the appropriate range, it takes time to return the layer thickness to the appropriate range. The proportional constant K is adjusted by automatic control. The thickness gauge installed on the chute on the feed side of the sinter cooling machine may be any of an ultrasonic level meter, a non-contact type level meter and a contact type level meter. To adjust the machine layer thickness to an appropriate level,
It is more desirable to install two than one. The layer thickness meter is installed with its height adjusted so that the layer thickness level on the cooler pan is at an optimum level. FIG. 1 is a schematic view showing one embodiment of the present invention, and FIG. 2 is a positional relationship between a sinter cooling machine, a sinter and a layer thickness gauge in the embodiment shown in FIG. FIG. 3 is an explanatory view showing the operation state and the sinter level of the layer thickness gauge in the above embodiment, 13 is a sinter cooling machine speed proportional control device, and A is the upper layer thickness. B is a lower layer thickness gauge. The upper thickness gauge A and the lower thickness gauge B are shown in FIG.
As shown in the enlarged view, a level detection rod A- is rotatably supported on the detector main bodies A-1 and B-1 around the shaft pins A-3 and B-3 in the direction of flow of the sinter. 2. When the ore contacts the tip of B-2 and the level detection rod operates in a pendulum-like manner, contactless detection sensors A-4 and B-4 of the detector bodies A-1 and B-1. The detector operates to output an ON signal, and when the end of the level detection rod is separated from the detection sensor, the detector is installed on the feed chute 12 as if the detector outputs an OFF signal. It is configured to be input to the condensate cooler speed proportional control device 13. According to the upper and lower two layer thickness gauges, the layer thickness levels can be distinguished into three levels as shown in Table 1 below. [Table 1] That is, as shown in FIG. 3, when the upper layer thickness gauge A is ON and the lower layer thickness gauge B is OFF, the appropriate layer thickness level (FIG. 3B) is determined. When both thickness gauges B are OFF and the layer thickness is lower than the appropriate level (FIG. 3)
(A)), the sinter cooling machine speed proportional control device 13 reduces the speed proportional constant K of the above equation 1 to reduce the sinter cooling machine speed, thereby controlling the layer thickness in the ascending direction. When both the thickness gauge A and the lower thickness gauge B are ON and the thickness is higher than an appropriate level (FIG. 3 (C)), the speed proportional constant K is increased to increase the sinter cooling machine speed and increase the thickness. Is controlled in the downward direction. In this way, by automatically controlling the speed of the cooling machine in consideration of the layer thickness on the sinter cooling machine supply side, the cooling machine layer thickness can be maintained at an appropriate level. The results obtained when the present invention is applied to a sinter cooling machine having a capacity of 15000 T / D are shown below. Table 2 shows the operating conditions of the sinter cooler in this embodiment, and Table 3 shows the effect of controlling the thickness of the cooler layer. That is, in the present embodiment, both the upper layer thickness gauge A and the lower layer thickness gauge B
Since the layer thickness became lower than the appropriate level at F, the results are obtained when the speed proportional constant K was reduced and the sinter cooling machine speed was reduced to control the layer thickness in the upward direction. In this example, the appropriate layer thickness level was set to 450 to 500 mm, the low layer thickness level was set to less than 450 mm, and the high layer thickness level was set to 500 mm or more. As is clear from the results in Table 3, before the control of the cooler layer thickness (before adjusting the cooler speed), the exhaust gas temperature was 380 ° C. and the amount of exhaust heat recovery steam was 4 because the layer thickness was lower than the appropriate level.
Although it was 0.2 T / H, the exhaust gas temperature was 390 ° C. as a result of controlling the cooler layer thickness and returning the layer thickness to an appropriate level.
And the amount of exhaust heat recovery steam also increased to 42.4 T / H. In addition, by returning the layer thickness to an appropriate level, air leakage was reduced, and there was no risk of burnout of the belt conveyor on the exhaust side of the cooler, and power loss of the exhaust for the cooler was also reduced. [Table 2] [Table 3] As described above, the present invention maintains the cooling layer thickness at an appropriate level by automatically controlling the cooling machine speed in consideration of the layer thickness on the feeder side of the belt conveyor type cooling machine. Since it is a method of sintering machine, it is possible to sufficiently cope with fluctuations in the amount of sinter ore input to the cooler due to fluctuations in the production base of the sintering machine, and fluctuations in the on-screen amount of the hot screen due to fluctuations in the particle size of the sinter after firing. In the sinter cooler, fluctuations in the layer thickness of the sinter on the cooler pan can be prevented, and the layer thickness of the cooler can always be maintained at an appropriate thickness, thus improving cooling efficiency and improving the belt conveyor on the mining side. This has a great effect on the prevention of burnout and reduction of the power loss of the cooling exhaust fan.

【図面の簡単な説明】 【図1】この発明の一実施例を示す概略図である。 【図2】図1に示す実施例における焼結鉱冷却機、焼結
鉱および層厚計の位置関係を拡大して示す概略図であ
る。 【図3】同上実施例における層厚計の作動状況と焼結鉱
レベルを示す説明図で、(A)は上部層厚計Aと下部層
厚計Bが共にOFFで層厚が適正レベルより低い場合、
(B)は上部層厚計AがON、下部層厚計BがOFFで
層厚が適正レベルの場合、(C)は上部層厚計Aと下部
層厚計Bが共にONで層厚が適正レベルより高い場合を
それぞれ示す。 【図4】この発明の対象とする焼結鉱冷却機の全体構造
例を示す概略図である。 【図5】同上の焼結鉱冷却機のクーラーパン上の焼結鉱
の層厚が一定の場合と変動する場合の冷却状況を例示し
たもので、(A)は層厚が適正かつ一定の場合、(B)
は層厚が変動した場合をそれぞれ示す概略図である。 【符号の説明】 1 焼結鉱冷却機 2 クーラーパン 3 送風ダクト 4 排気フード 5 導管 7 排熱回収装置 8 焼結機 9 焼結鉱 10 クラッシャ 11 ホットスクリーン 12 給鉱シュート 13 焼結鉱冷却機速度比例制御装置 A 上部層厚計 B 下部層厚計
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing one embodiment of the present invention. FIG. 2 is an enlarged schematic view showing a positional relationship among a sinter cooler, a sinter and a thickness gauge in the embodiment shown in FIG. FIG. 3 is an explanatory view showing the operation status of the layer thickness gauge and the sinter ore level in the above embodiment. FIG. If lower,
(B) when the upper layer thickness gauge A is ON and the lower layer thickness gauge B is OFF and the layer thickness is at an appropriate level, and (C), when both the upper layer thickness meter A and the lower layer thickness meter B are ON and the layer thickness is Each case is higher than the appropriate level. FIG. 4 is a schematic view showing an example of the entire structure of a sinter cooling machine to which the present invention is applied. FIG. 5 is a diagram illustrating an example of a cooling condition in which the layer thickness of the sinter on the cooler pan of the sinter cooling machine is constant and fluctuates. If (B)
FIG. 3 is a schematic view showing a case where the layer thickness fluctuates. [Description of Signs] 1 sinter cooler 2 cooler pan 3 blower duct 4 exhaust hood 5 conduit 7 waste heat recovery device 8 sinter machine 9 sinter 10 crusher 11 hot screen 12 feed chute 13 sinter cooler Speed proportional controller A Upper layer thickness gauge B Lower layer thickness gauge

フロントページの続き (56)参考文献 特開 平7−138663(JP,A) 特開 平7−243769(JP,A) 特開 平5−272872(JP,A) 特開 昭52−117204(JP,A) (58)調査した分野(Int.Cl.7,DB名) F27B 21/14 C22B 1/26 F27B 21/00 Continuation of front page (56) References JP-A-7-138663 (JP, A) JP-A-7-243769 (JP, A) JP-A-5-272287 (JP, A) JP-A-52-117204 (JP, A) , A) (58) Field surveyed (Int. Cl. 7 , DB name) F27B 21/14 C22B 1/26 F27B 21/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 焼結機パレット速度から焼結鉱冷却機速
度を制御する回路に、焼結鉱冷却機速度比例制御を組込
み、焼結鉱冷却機の給鉱側シュートに設置した層厚計に
より検出したクーラーパン上の層厚検出信号を元に、下
記式により焼結機パレット速度Psに比例し設定される
焼結鉱冷却機速度Pの比例定数Kを前記速度比例制御に
より変更することによってクーラーパン上の層厚を適正
レベルに制御することを特徴とする焼結鉱冷却機の層厚
制御方法。 P=K*Ps P:焼結鉱冷却機速度(m/H) Ps:焼結機パレット速度(m/H) K:速度比例定数
(57) [Claims] [Claim 1] A sinter cooling machine speed proportional control is incorporated in a circuit for controlling a sinter cooling machine speed from a sinter cooling machine pallet speed to supply the sinter cooling machine. Based on the layer thickness detection signal on the cooler pan detected by the layer thickness gauge installed on the ore side chute, the proportional constant K of the sinter cooling machine speed P set in proportion to the sintering machine pallet speed Ps by the following equation A layer thickness on a cooler pan is controlled to an appropriate level by changing the thickness by the speed proportional control. P = K * Ps P: Sinter cooling machine speed (m / H) Ps: Sintering machine pallet speed (m / H) K: Speed proportional constant
JP29954797A 1997-10-16 1997-10-16 Layer thickness control method for sinter cooler Expired - Fee Related JP3369449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29954797A JP3369449B2 (en) 1997-10-16 1997-10-16 Layer thickness control method for sinter cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29954797A JP3369449B2 (en) 1997-10-16 1997-10-16 Layer thickness control method for sinter cooler

Publications (2)

Publication Number Publication Date
JPH11118359A JPH11118359A (en) 1999-04-30
JP3369449B2 true JP3369449B2 (en) 2003-01-20

Family

ID=17874038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29954797A Expired - Fee Related JP3369449B2 (en) 1997-10-16 1997-10-16 Layer thickness control method for sinter cooler

Country Status (1)

Country Link
JP (1) JP3369449B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954792B1 (en) * 2002-12-20 2010-04-28 주식회사 포스코 Apparatus for preventing conveyor-belt from being damaged by fire of sintered ores

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954792B1 (en) * 2002-12-20 2010-04-28 주식회사 포스코 Apparatus for preventing conveyor-belt from being damaged by fire of sintered ores

Also Published As

Publication number Publication date
JPH11118359A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
JP5298634B2 (en) Quality control method for sintered ore
JP5061481B2 (en) Dry preheating equipment for blast furnace raw materials
JP2010181055A (en) Equipment and method of granulating sintered ore coagulating material
JP3369449B2 (en) Layer thickness control method for sinter cooler
JP6319594B2 (en) Coal feed amount control method and apparatus for coal crushing mill
JP4402760B2 (en) Control method of transfer speed of lattice cooler
US4410355A (en) Process for controlling a pelletizing plant for fine-grained ores
TWI783285B (en) Blast furnace operation method
US3784115A (en) Process for the manufacturing of dry material, by crushing, grinding or milling
JP3439112B2 (en) Crusher control device
JP6959590B2 (en) Sintered ore manufacturing method
JP6179726B2 (en) Method for producing sintered ore
JP2020023729A (en) Method and apparatus for producing fine coal for blast furnace blowing
KR101859639B1 (en) System and method for sintering cooler temperature control
JP2022039966A (en) Manufacturing method of sintered ore and production apparatus of sintered ore
JPH0774397B2 (en) Method for controlling air permeability of sintering raw material layer
KR100286675B1 (en) Method for sintering iron ore
JP3049617B2 (en) Sintering method using pulverized fuel-containing gas
JP2007254837A (en) Apparatus for drying and preheating raw material for blast furnace and controlling method therefor
JP2000140680A (en) Primary air flow rate controller for pulverized coal mill
JPS58115047A (en) Powder raw material baking equipment
KR19990055427A (en) Sintered ore device and sintered ore manufacturing method
JPH0578675A (en) Production of powdered coal
JP2622483B2 (en) Quicklime production method in sintering machine
JPH03207824A (en) Operating method for sintering

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees