JP3369111B2 - Evaluation method of purification effect of contaminated ground - Google Patents
Evaluation method of purification effect of contaminated groundInfo
- Publication number
- JP3369111B2 JP3369111B2 JP23119498A JP23119498A JP3369111B2 JP 3369111 B2 JP3369111 B2 JP 3369111B2 JP 23119498 A JP23119498 A JP 23119498A JP 23119498 A JP23119498 A JP 23119498A JP 3369111 B2 JP3369111 B2 JP 3369111B2
- Authority
- JP
- Japan
- Prior art keywords
- suction
- soil
- ground
- hole
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は,土壌ガス吸引法に
より汚染地盤の土壌浄化を行う場合の浄化効果を定量的
に評価する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitatively evaluating a cleaning effect when cleaning soil of contaminated ground by a soil gas suction method.
【0002】[0002]
【従来の技術】近年,揮発性有機化合物で汚染された土
壌の浄化方法の一つとして土壌ガス吸引法が用いられて
いる。この方法は地盤中に鑿井した吸引井戸から地盤内
の土壌ガスを地表に吸引することにより,該土壌ガスに
揮発性有機化合物を同伴させようとするものであり,例
えば図1のようにして実施される。すなわち,地盤中に
鑿井した吸引井戸1から真空ポンプ2によって土壌ガス
を吸引し,土壌ガス中に同伴する揮発性有機化合物を吸
着塔3の活性炭層で吸着したあと,大気に放出する。そ
のさい,吸引される土壌ガスに随伴する水分を分離する
気液分離機5も設置される。水分に溶解している揮発性
有機化合物はこの気液分離機5で分離される。2. Description of the Related Art In recent years, a soil gas suction method has been used as a method for cleaning soil contaminated with volatile organic compounds. This method is to suck the soil gas in the ground to the surface of the ground from a suction well formed in the ground, thereby entraining the volatile organic compound in the soil gas. For example, as shown in FIG. Be implemented. That is, the soil gas is sucked from the suction well 1 formed in the ground by the vacuum pump 2, and the volatile organic compounds entrained in the soil gas are adsorbed by the activated carbon layer of the adsorption tower 3 and then released into the atmosphere. At that time, a gas-liquid separator 5 is also installed to separate moisture accompanying the sucked soil gas. Volatile organic compounds dissolved in water are separated by the gas-liquid separator 5.
【0003】[0003]
【発明が解決しようとする課題】このような土壌ガス吸
引法の実施にあたっては,対象地盤の性質や該地盤中の
揮発性有機化合物濃度等について或る程度の事前調査が
行われているとしても,吸引井戸からの揮発性有機化合
物の吸引効果は実際に実施して見なければ判らないこと
が多い。すなわち処理対象地盤の透気特性を予め定量的
に把握することが困難であることから,吸引井戸の鑿井
位置や規模,さらには吸引井戸の本数等を決めるのは殆
んど経験に頼っているのが実情であり,土壌ガス吸引法
を実施してみて始めてその効果が判明することが多い。
このため,効率よく浄化成果を得ることには困難を伴っ
た。In carrying out such a soil gas suction method, even if some preliminary research is conducted on the properties of the target ground and the concentration of volatile organic compounds in the ground. However, the suction effect of volatile organic compounds from the suction well is often unknown unless actually observed. In other words, since it is difficult to quantitatively grasp the air permeability characteristics of the ground to be treated in advance, it is almost dependent on experience to determine the position and scale of the suction wells and the number of suction wells. However, the effect is often found only after the soil gas suction method is implemented.
Therefore, it was difficult to obtain purification results efficiently.
【0004】したがって,本発明は,特に不飽和地盤の
透気特性を定量的に評価する簡易な方法を開発し,土壌
ガス吸引法の設計(吸引井戸の位置・本数・分布等の決
定)に役立てることを目的としたものである。Therefore, the present invention has developed a simple method for quantitatively evaluating the air permeation characteristics of unsaturated soil, and designed a soil gas suction method (determination of the position, number, distribution, etc. of suction wells). It is intended to be useful.
【0005】[0005]
【課題を解決するための手段】本発明によれば,土壌ガ
ス吸引法により汚染地盤の土壌浄化を行うにあたり,処
理対象地盤に土壌ガス吸引孔を設けると共に,この吸引
孔から所定の距離を隔てた地盤中に土壌ガス観測用孔を
設け,該吸引孔から土壌ガスを吸引しながら観測用孔で
のCO2濃度を測定し,計測された観測用孔位置での土
壌中CO2濃度の変化から当該地盤の透過度等の透気特
性を評価することを特徴とする汚染地盤の浄化効果の評
価法を提供する。According to the present invention, when the soil gas suction method is used to clean the contaminated soil, a soil gas suction hole is provided in the ground to be treated and a predetermined distance is provided from the suction hole. and soil gas observation hole provided in the ground, the CO 2 concentration at the observation hole while sucking soil gas from the suction hole was measured, change in soil CO 2 concentration at the observation hole positions measured Provides a method for evaluating the effect of cleaning contaminated ground, which is characterized by evaluating air permeability characteristics such as permeability of the ground.
【0006】[0006]
【発明の実施の形態】本発明者らは,地盤中には生物活
動により大気中よりも高濃度のCO2ガスが存在してい
ることに着目し,この地盤中のCO2ガスを,吸引孔か
ら地盤中の気体を吸引する場合の透気特性(透過度や影
響半径)を実験的に調べる場合のトレーサーガスとして
利用することを試みた。DETAILED DESCRIPTION OF THE INVENTION The present inventors pay attention to the fact that CO 2 gas having a higher concentration than that in the atmosphere is present in the ground due to biological activity, and the CO 2 gas in the ground is absorbed. An attempt was made to use it as a tracer gas when experimentally examining the air permeability characteristics (permeability and radius of influence) when sucking the gas in the ground through the holes.
【0007】すなわち,まず処理対象地盤に土壌ガス吸
引孔を設け,この吸引孔から所定の距離を隔てて土壌ガ
ス観測用孔を設ける。吸引孔および観測用孔とも,所定
の内径(例えば25〜50mmφ)をもつ塩ビ管または
鋼管等を地盤中にほぼ垂直に埋設し,その先に,浄化対
象層の厚さ程度のストレーナを取付けることによって形
成することができる。That is, first, a soil gas suction hole is provided in the ground to be treated, and a soil gas observation hole is provided at a predetermined distance from the suction hole. For both the suction hole and the observation hole, a PVC pipe or steel pipe with a specified inner diameter (for example, 25 to 50 mmφ) is buried almost vertically in the ground, and a strainer about the thickness of the layer to be purified is attached to the end Can be formed by.
【0008】吸引孔ではこの管を真空ポンプに接続し,
真空ポンプを稼働することにより,ストレーナから土壌
ガスが吸引される。他方,観測孔では該管の上端を封鎖
し,管内のCO2濃度および圧力を計測する機器を接続
する。これにより,観測孔のストレーナを介して,地盤
中のCO2濃度と圧力が管内のものと平衡するので,ス
トレーナの位置する地盤のCO2濃度と圧力が計測でき
る。At the suction hole, connect this tube to a vacuum pump,
By operating the vacuum pump, soil gas is drawn from the strainer. On the other hand, in the observation hole, the upper end of the tube is closed and a device for measuring the CO 2 concentration and pressure in the tube is connected. As a result, the CO 2 concentration and pressure in the ground are balanced with those in the pipe through the strainer in the observation hole, so that the CO 2 concentration and pressure in the ground where the strainer is located can be measured.
【0009】この観測孔は吸引孔から異なる距離を隔て
て複数本設置し,吸引孔で吸引操作を行ったさいに,各
観測孔でのCO2濃度変化と圧力変化を同時に計測する
ことが好ましい。It is preferable that a plurality of the observation holes are provided at different distances from the suction holes, and when the suction operation is performed in the suction holes, the change in CO 2 concentration and the pressure change in each of the observation holes are simultaneously measured. .
【0010】吸引孔と観測孔の深さは,対象地盤の種類
によって適宜選定すればよいが,本発明では不飽和地盤
の透気特性が計測できることから,浄化対象とする不飽
和地盤中にストレーナが位置するように吸引孔と観測孔
を設けるのがよい。The depths of the suction holes and the observation holes may be appropriately selected depending on the type of the target ground. In the present invention, since the air permeability characteristic of the unsaturated ground can be measured, the strainer is installed in the unsaturated ground to be cleaned. It is preferable that the suction hole and the observation hole are provided so that
【0011】以下に本発明者らが行った原位置透気実験
例を挙げて,本発明の効果を具体的に示す。The effects of the present invention will be specifically shown below with reference to an example of an in-situ air-permeation experiment conducted by the present inventors.
【0012】図2に示すように,約2.5mの表土(黒
ボク)の下に約2.5mのローム層が存在し,その下層
がシルト質細砂層であり,地下水位が8.5mの地盤を
対象とした。ローム層は,Wn=72.3%,Sn=8
7.5%,n=68.3%であり,CO2濃度は9000
〜21000ppmである。ちなみに大気中のCO2濃
度は約400ppm程度である。シルト質細砂層は,W
n=34.5%,Sn=77.2%,n=55.3%であ
る。As shown in FIG. 2, there is a loam layer of about 2.5 m below the surface soil of about 2.5 m (black ground), the lower layer is a silty fine sand layer, and the groundwater level is 8.5 m. Targeting the ground. The ROHM layer has Wn = 72.3%, Sn = 8
7.5%, n = 68.3%, CO 2 concentration is 9000
~ 21000 ppm. By the way, the CO 2 concentration in the atmosphere is about 400 ppm. The silty fine sand layer is W
n = 34.5%, Sn = 77.2%, and n = 55.3%.
【0013】この地盤に吸引孔R−1を設けた。この吸
引孔R−1は,内径50mmの塩ビ管の下端に長さ25
cmのストレーナを取付けたもので,地表からストレー
ナ端までの埋設深さは3.6mとした。この鋼管の上端
は真空ポンプ(図示せず)に接続した。A suction hole R-1 was provided in this ground. This suction hole R-1 has a length of 25 mm at the lower end of a PVC pipe with an inner diameter of 50 mm.
A strainer of cm was attached, and the burial depth from the surface to the end of the strainer was 3.6 m. The upper end of this steel pipe was connected to a vacuum pump (not shown).
【0014】吸引孔R−1から,1.25, 2.5, 5.0,7.5,
10.0 mの地点に観測用孔R−2,R−3,R−4,R
−5およびR−6を設けた。これらの観測用孔はいずれ
もR−1の吸引孔と同じ径の鋼管と同じ長さのストレー
ナを取付けたものであり,ストレーナの埋設深さも3.
6mであるが,鋼管の上端は封鎖し,管内のCO2濃度
と圧力を測定する機器(図示せず)を接続した。また,
R−6と同じ距離の別位置に,シルト質細砂層に通ずる
ようにストレーナの埋設深さが約6mの同じ構造の観測
用孔S−6を設けた。From the suction hole R-1, 1.25, 2.5, 5.0, 7.5,
Observation holes R-2, R-3, R-4, R at 10.0 m
-5 and R-6 were provided. Each of these observation holes was equipped with a strainer of the same length as the steel pipe with the same diameter as the suction hole of R-1, and the burial depth of the strainer was 3.
Although the length was 6 m, the upper end of the steel pipe was closed, and a device (not shown) for measuring CO 2 concentration and pressure inside the pipe was connected. Also,
An observation hole S-6 having the same structure with a strainer burial depth of about 6 m was provided at another position at the same distance as R-6 so as to communicate with the silty fine sand layer.
【0015】吸引孔R−1から真空ポンプによってロー
ム層中に強制的に負圧を発生させた(吸引風量≒1.4
m3/min,初期吸引負圧≒75kPa)。吸引風量
Qおよび吸引負圧P0 の経時変化を図3に示した。図3
によれば,吸引孔R−1での吸引風量は経時的に増加す
るのに対し,吸引負圧は経時的に減少することがわか
る。A negative pressure was forcibly generated in the loam layer from the suction hole R-1 by a vacuum pump (suction air volume ≈1.4).
m 3 / min, initial suction negative pressure ≈ 75 kPa). The changes over time of the suction air volume Q and the suction negative pressure P 0 are shown in FIG. Figure 3
According to the figure, the suction air volume in the suction hole R-1 increases with time, while the suction negative pressure decreases with time.
【0016】図4に,前記の条件で吸引孔R−1から吸
引したときの各観測用孔で観測された発生負圧Pi の経
時変化を示した。図5によれば,吸引風量の経時的な増
加と同様に各観測位置での発生負圧も経時的に増加して
様子ががわかる。FIG. 4 shows a change with time of the generated negative pressure P i observed in each observation hole when the suction is performed through the suction hole R-1 under the above conditions. According to FIG. 5, it can be seen that the negative pressure generated at each observation position also increases with time as the suction air volume increases with time.
【0017】図5に,前記の条件で吸引孔R−1から吸
引したときの各観測用孔で観測されたCO2濃度の経時
変化を示した。横軸の吸引孔中心からの距離rは対数目
盛りである。図5によれば,吸引口近傍の観測用孔のC
O2濃度は吸引開始とともに急速に低下すること,吸引
孔から遠い観測用孔のCO2濃度は吸引開始から暫くし
た後,徐々に低下し始めることがわかる。すなわち,各
観測用孔位置での土壌中のCO2濃度がどのように低下
してゆくか(大気中のCO2濃度に近づくまでにどのよ
うに経時的に変化するか)の挙動が定量的に評価でき
る。FIG. 5 shows the change with time of the CO 2 concentration observed in each observation hole when suctioned from the suction hole R-1 under the above conditions. The distance r from the center of the suction hole on the horizontal axis is a logarithmic scale. According to FIG. 5, C of the observation hole near the suction port
It can be seen that the O 2 concentration decreases rapidly with the start of suction, and the CO 2 concentration in the observation hole far from the suction hole begins to gradually decrease after a while from the start of suction. That is, the behavior of how the CO 2 concentration in the soil at each observation hole position decreases (how it changes with time until it approaches the atmospheric CO 2 concentration) is quantitative. Can be evaluated.
【0018】したがって,図4および図5の結果から,
不飽和地盤でガスを吸引したときの透気特性すなわち透
過度や影響半径を把握することができ,とくに図5の結
果から,各位置でのガス吸引効果を定量的に評価するこ
とができる。Therefore, from the results of FIGS. 4 and 5,
It is possible to grasp the air permeability characteristics when the gas is sucked in the unsaturated ground, that is, the permeability and the influence radius, and in particular, the gas suction effect at each position can be quantitatively evaluated from the results of FIG.
【0019】[0019]
【発明の効果】以上説明したように,本発明によると,
土壌ガスを吸引した場合に,周辺土壌中のガスの吸引挙
動を予め定量的に把握できる。したがって,この計測結
果を基にして,吸引井戸の規模・本数・配置等を決定す
ることができ,従来の経験に頼っていた土壌ガス吸引法
を成果の確実な方法に改変することができる。したがっ
て土壌ガス吸引法によって例えば揮発性有機化合物で汚
染された土壌を効率良く浄化できる。As described above, according to the present invention,
When soil gas is sucked, the suction behavior of gas in the surrounding soil can be quantitatively grasped beforehand. Therefore, based on this measurement result, the size, number, and arrangement of suction wells can be determined, and the soil gas suction method, which has relied on conventional experience, can be modified to a method with a reliable result. Therefore, soil polluted with volatile organic compounds can be efficiently purified by the soil gas suction method.
【図1】土壌ガス吸引法の一実施例を示す略断面図であ
る。FIG. 1 is a schematic sectional view showing an embodiment of a soil gas suction method.
【図2】ローム層の地盤に対して本発明法を実施した例
を示す吸引孔と土壌ガス観測用孔の配置を示す図であ
る。FIG. 2 is a diagram showing an arrangement of suction holes and soil gas observation holes showing an example in which the method of the present invention is performed on the ground of a loam layer.
【図3】図2の吸引孔における吸引風量と吸引負圧の経
時変化を示す図である。FIG. 3 is a diagram showing changes over time of suction air volume and suction negative pressure in the suction holes of FIG.
【図4】図2の吸引孔から図3のように吸引したときの
各観測用孔で測定された発生負圧の経時変化を示す図で
ある。FIG. 4 is a diagram showing a time-dependent change in generated negative pressure measured in each observation hole when suction is performed as in FIG. 3 from the suction hole in FIG.
【図5】図2の吸引孔から図3のように吸引したときの
各観測用孔で測定されたCO2濃度の経時変化を示す図
である。5 is a diagram showing a change with time in CO 2 concentration measured in each observation hole when sucked through the suction hole in FIG. 2 as in FIG.
1 吸引井戸 2 真空ポンプ 3 吸着塔 4 活性炭 5 気液分離機 1 suction well 2 vacuum pump 3 adsorption tower 4 activated carbon 5 gas-liquid separator
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 33/24 G01N 1/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 33/24 G01N 1/24
Claims (4)
化を行うにあたり,処理対象地盤に土壌ガス吸引孔を設
けると共に,この吸引孔から所定の距離を隔てた地盤中
に土壌ガス観測用孔を設け,該吸引孔から土壌ガスを吸
引しながら観測用孔でのCO2濃度を測定し,計測され
た観測用孔位置での土壌中CO2濃度の変化から当該地
盤の透過度等の透気特性を評価することを特徴とする汚
染地盤の浄化効果の評価法。1. When performing soil purification of contaminated soil by the soil gas suction method, a soil gas suction hole is provided in the ground to be treated, and a soil gas observation hole is provided in the ground at a predetermined distance from the suction hole. The CO 2 concentration in the observation hole is measured while suctioning the soil gas from the suction hole, and the air permeability such as the permeability of the ground is measured from the change in the CO 2 concentration in the soil at the measured observation hole position. A method for evaluating the effect of cleaning contaminated soil, characterized by evaluating its characteristics.
計測する請求項1に記載の評価法。2. The evaluation method according to claim 1, wherein the negative pressure generated in the soil gas observation hole is simultaneously measured.
距離を隔てて複数個設置される請求項1または2に記載
の評価法。3. The evaluation method according to claim 1, wherein a plurality of soil gas observation holes are installed at different distances from the suction holes.
汚染された土壌である請求項1,2または3に記載の評
価法。4. The evaluation method according to claim 1, wherein the ground to be purified is soil contaminated with a volatile organic compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23119498A JP3369111B2 (en) | 1998-08-02 | 1998-08-02 | Evaluation method of purification effect of contaminated ground |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23119498A JP3369111B2 (en) | 1998-08-02 | 1998-08-02 | Evaluation method of purification effect of contaminated ground |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000055908A JP2000055908A (en) | 2000-02-25 |
JP3369111B2 true JP3369111B2 (en) | 2003-01-20 |
Family
ID=16919821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23119498A Expired - Lifetime JP3369111B2 (en) | 1998-08-02 | 1998-08-02 | Evaluation method of purification effect of contaminated ground |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3369111B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6666068B2 (en) * | 2001-09-25 | 2003-12-23 | Pertect Detectors, Inc. | Vapor trap system and associated method for detecting volatile organic chemical vapors |
JP3742398B2 (en) * | 2003-03-20 | 2006-02-01 | 喜計 鈴木 | Non-destructive geological survey method and equipment |
CN105699136B (en) * | 2016-01-28 | 2018-07-17 | 东南大学 | Pollute soil-column test unsaturation band gas multi-point transient synchronized sampling unit |
CN110702473A (en) * | 2019-09-20 | 2020-01-17 | 中国石油天然气股份有限公司 | Method and device for synchronously monitoring carbon dioxide flux of aeration zone soil at multiple points |
-
1998
- 1998-08-02 JP JP23119498A patent/JP3369111B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000055908A (en) | 2000-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE33102E (en) | Removal of volatile contaminants from the vadose zone of contaminated ground | |
JP3304842B2 (en) | Soil pore water sampling method and soil contamination survey method | |
JPH04309626A (en) | Method and device for extracting underground water by using high vacuum | |
JP3369111B2 (en) | Evaluation method of purification effect of contaminated ground | |
JP2004045308A (en) | Sampling construction method by suction type boring, and its apparatus | |
JP2000009721A (en) | Investigation method of soil pollution | |
CN116805515B (en) | Method for calculating removal rate of organic pollutants after air jet treatment based on radon isotope | |
CN110793819A (en) | Active soil gas sampling device suitable for shallow underground water burial depth area | |
JP3142007B2 (en) | How to remove pollutants from contaminated soil | |
JP2000202426A (en) | Treatment for sucking harmful gas of underground contaminant and device therefor | |
JP2001289751A (en) | Soil contamination investigating method and land treatment device | |
JP2000263030A (en) | Method for purifying soil polluted with volatile compound | |
JPH06315675A (en) | Purifying method for polluted soil | |
JP4813617B1 (en) | Cover for surface layer suction leaching apparatus, surface layer suction leaching apparatus and surface layer suction leaching method | |
JP3782845B2 (en) | Method for measuring air permeability and air permeability in contaminated strata or waste collection points | |
JP3965505B2 (en) | Underground air survey method and apparatus | |
JPH06254537A (en) | Method for purifying underground water and its device | |
JP3841339B2 (en) | Viscous ground purification structure and purification method | |
JP2007245052A (en) | In situ oil recovery method of oil contaminated soil | |
JP2003160927A (en) | Forcible drainage facility for soft ground | |
JP2663252B2 (en) | How to remove underground pollutants | |
JPH07259144A (en) | Ground water collecting method and cleaning method of under-ground pit | |
JP2002001296A (en) | Method for decontaminating contaminated ground and strengthening ground at the same time | |
JP3509449B2 (en) | Soil pollution purification method | |
JP4017421B2 (en) | In-pipe cleaning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141115 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |