JP3369021B2 - Steel sheet cooling method - Google Patents

Steel sheet cooling method

Info

Publication number
JP3369021B2
JP3369021B2 JP06239595A JP6239595A JP3369021B2 JP 3369021 B2 JP3369021 B2 JP 3369021B2 JP 06239595 A JP06239595 A JP 06239595A JP 6239595 A JP6239595 A JP 6239595A JP 3369021 B2 JP3369021 B2 JP 3369021B2
Authority
JP
Japan
Prior art keywords
roughness
steel sheet
cooling
roll
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06239595A
Other languages
Japanese (ja)
Other versions
JPH08257622A (en
Inventor
孟文 鈴木
茂克 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06239595A priority Critical patent/JP3369021B2/en
Publication of JPH08257622A publication Critical patent/JPH08257622A/en
Application granted granted Critical
Publication of JP3369021B2 publication Critical patent/JP3369021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、鋼板の冷却方法、特に
熱間圧延に引き続き、鋼板を水あるいは水溶性媒体で冷
却するに際し、鋼板の板幅方向の温度分布を均一に冷却
する方法に関するものである。 【0002】 【従来の技術】熱間圧延により製造される鋼板は、所定
の材質特性を得るため、通常、熱間圧延に引き続き強制
冷却される。強制冷却のための媒体としては、多くの場
合、水が使用される。水が使用される理由は、冷却能力
が大きく、かつ、冷却装置の設備費および操業費が比較
的少なくて済むためである。しかしながら、水を冷却媒
体として使用すると、水の沸騰熱伝達特性に起因する冷
却のばらつきが生じ、そのため、材質のばらつきや、形
状不良および残留応力増大を招く。 【0003】水の沸騰熱伝達特性に起因して冷却のばら
つきが生じやすい理由は、沸騰熱伝達現象においては、
流体側の要因や、粗度等の伝熱面側の要因の変化に対し
て熱伝達特性の変化が比較的敏感であることによる。こ
のうち、粗度については、沸騰の関係しない冷却媒体、
例えば溶融金属や溶融塩、で冷却する場合は、通常、そ
の熱伝達特性にほとんど影響を与えないが、水のような
沸騰熱伝達の場合のみに問題となってくる。 【0004】そのため、水や、水に例えば有機溶剤を溶
かした水溶液媒体のように沸騰熱伝達が支配的な鋼板の
冷却において、粗度等の伝熱面側の要因を冷却前に調整
して冷却する方法が、従来、いくつか提案されている。 【0005】例えば、特開昭62−54507号公報に
おいては、冷却前に、鋼板表面に、Rz粗度表示で20
μm以上の突起高さを有する粗さを付与することが提案
されている。また、特開昭63−149315号公報に
おいては、圧延終了後の鋼板の表面粗度をRa粗度表示
で8μm以上、15μm以下に調整して冷却する方法が
提案されている。また、特開平02−70017号公報
においては、表面に、Rz粗度表示で25μm以下の多
数の線状溝からなる粗さを付与することが提案されてい
る。 【0006】 【発明が解決しようとする課題】これら従来の提案の方
法は、いずれも鋼板表面に付与する粗さの粗度の大きさ
の程度(レベル)を限定するものである。しかしなが
ら、この粗度の大きさの程度は、これら従来の提案の方
法3例でも限定範囲が各々異なることでも推量できるよ
うに、未だ、冷却前の伝熱面側要因の有効な調整の目標
値が定まっていないのが実状である。本発明者等は、前
記の従来法3例を含めた従来の技術を詳細に検討し、再
現実験を試みたが所期の結果は得られなかった。従っ
て、本発明者等は、従来の提案の方法においては、いず
れも、鋼板表面の粗度の限定の理由が冷却特性のばらつ
きとの直接の関係を必ずしも明確に示していないため、
結局、どのような粗度調整をしたら良いかの判然としな
いことが、問題であると認識した。 【0007】本発明は、この問題を実験等により明らか
にし、熱間圧延に引き続き、鋼板を水あるいは水溶性媒
体で冷却するに際し、鋼板の板幅方向の温度分布を均一
に冷却する方法を提供するものである。 【0008】 【課題を解決するための手段】本発明は、熱間圧延に引
き続き、鋼板を水あるいは水溶性媒体で冷却するのに先
立ち、圧延用ロールの表面を研磨して粗さを付与し、該
粗さを熱間圧延時に鋼板に転写して鋼板の粗度を調整す
ることにより冷却を制御するに際し、圧延用ロールの表
面の粗度を、Rz粗度表示で、圧延用ロールで鋼板を継
続して圧延した時の圧延用ロールの粗度の変化の収束値
から該収束値+5μmの範囲に調整することを特徴とす
る鋼板の冷却方法である。 【0009】以下、本発明を詳細に説明する。先ず、本
発明の提案に至るまでに本発明者等が実施した実験結果
について説明する。実験を2段階に分け実施した。第1
段階は、従来法の効果の再現実験であり、第2段階は、
伝熱面側要因である粗度と冷却特性の関係を詳細に調べ
るための実験である。 【0010】第1段階の従来法の再現実験は、「鋼板表
面の粗度の程度(レベル)そのものが、冷却のばらつき
に顕著な影響を与えるか」という疑問を明確にするため
行った。実験は工場の実機圧延ラインにおいて行い、オ
フラインで予め、粗度を実験水準の値に調整した圧延用
ロールを交換した後の一定期間の圧延した鋼板を調査対
象とし、繰り返し、実験を行った。実験の主な条件を表
1に、実験結果を表2に各々示す。鋼板表面の粗度の目
標設定値は、従来法として、特開昭62−54507号
公報に提案されている「冷却前に、鋼板表面に、Rz粗
度表示で20μm以上の突起高さを有する粗さを付与す
る」効果を調べるために、板幅内の平均粗度Rzで15
μmと30μmとした。これらの設定をするに当って
は、予め、ロールそのものの調整された表面粗度とそれ
が圧延中に転写された鋼板表面の粗度との関係を調べて
おいた。また、冷却特性の板幅内ばらつきとしては、水
冷停止直後の鋼板表面温度の板幅内最大温度偏差(℃)
を指標として採用し、比較した。 【0011】 【表1】 【0012】 【表2】【0013】表2に示すように、工場Aでの実験結果で
は、鋼板の平均粗度Rzが15μmよりも30μmのほ
うが、鋼板表面温度の板幅内最大温度偏差が明らかに小
さく、従来法の効果を再現しているように思われたが、
工場Bでの実験結果では、鋼板の平均粗度Rzが15μ
mと30μmで、鋼板表面温度の板幅内最大温度偏差の
差異はみられず、従来法の効果を再現できなかった。そ
こで、鋼板の粗度Rzの板幅内の設定値を詳細に調べた
ところ、そのばらつきの範囲が表2に示す値であること
が判明した。これらの値から、工場Aでの実験結果で、
鋼板の平均粗度Rzが15μmよりも30μmのほう
が、鋼板表面温度の板幅内最大温度偏差が小さかった原
因は、平均粗度Rzを30μmにしたからではなく、そ
の際の鋼板の粗度Rzの板幅内のばらつきが6μmと小
さかったからではないかとの疑問が生じた。すなわち、
鋼板表面の粗度の大きさの程度(レベル)そのものが、
冷却のばらつきに顕著な影響を与えることはないのでは
ないかとも考えられる。 【0014】そこで、第2段階として、伝熱面側要因で
ある粗度と冷却特性の関係を詳細に調べるための実験を
行った結果について説明する。実験の条件を表3に、実
験結果を図2に各々示す。図2において、横軸は鋼板表
面の粗度Rzであり、縦軸には冷却特性の代表として、
冷却直後の870℃から500℃までの平均冷却速度を
とっている。平均冷却速度を冷却特性の代表とした理由
は、冷却時間等の冷却条件が同一の場合の鋼板部位によ
る冷却終了時温度偏差をほぼ表すことができるからであ
る。図2の結果によれば、鋼板表面の粗度Rzを60μ
m以下の範囲において変化させた時、粗度Rz(μm)
の増大に伴い、平均冷却速度(℃/s)はほぼ直線的に
増大している。すなわち、鋼板表面の粗度Rzが60μ
m以下の範囲において、粗度Rzがある範囲で変化した
場合、それに対応した平均冷却速度の変化は粗度Rzの
大きさの程度によらず、ほぼ一定である。 【0015】 【表3】 【0016】これら、第1段階および第2段階の実験結
果から、本発明者等は従来提案されている鋼板表面に付
与する粗さの粗度の大きさの程度(レベル)を限定する
方法では鋼板の均一冷却は必ずしも達成できないのでは
ないかとの懸念から、本発明の提案に至った。すなわ
ち、前記の実験結果から、鋼板表面に付与する粗さの粗
度を特定のレベルに調整するのではなく、粗度のばらつ
きの範囲を小さくできる粗度のレベルを見出し、それを
目標に粗度調整するのが有効であると考えた。 【0017】この考えに基づき、圧延用ロールを回転す
る研削砥石でいくつかの粗度レベルに研削した後、圧延
された鋼板に転写された粗度のばらつきの範囲を調査し
たところ、圧延用ロールで鋼板を継続して圧延した時の
圧延用ロールの粗度の変化の収束値から該収束値+5μ
mの範囲に圧延用ロールの粗度を研削調整すると、鋼板
に転写された粗度のばらつきの範囲が最小となり、鋼板
の温度ばらつきも最小となることを見出した。ここに、
圧延用ロールの粗度の変化の収束値とは、ある圧延用ロ
ールを継続使用して、圧延量を増していった時、圧延用
ロールの表面の粗度がある値に収束していく傾向がある
ことから、この収束する粗度の値として定義する。 【0018】ある圧延用ロールを継続使用して、圧延量
を増していき、その間粗度の調整はしない時の、ロール
粗度と圧延量の関係の例を図3に示す。図3において、
を付した曲線でロール粗度の履歴を示したロールは、
初期に高めの粗度を付与されて研削されたものであり、
また、を付した曲線でロール粗度の履歴を示したロー
ルは、初期に低めの粗度を付与されて研削されたもので
あるが、ロールの材質等、初期の粗度以外の性状は同じ
ロールである。図3に例を示したように、初期の粗度が
異なっても、圧延量が増すに従いロール粗度はある値に
収束する傾向がある。この収束値は、圧延用ロールと被
圧延材との、使用温度での、機械的性質等の相互関係に
よって決まるものと考えられる。通常、鋼板では100
から300トン程度圧延すると収束値が判明する。な
お、この収束値は、大幅なロール材質、圧延設備、圧延
条件等の変更がなければ、一度の調査で十分有効であ
る。 【0019】転写された後の鋼板表面の粗度の板内のば
らつきの範囲は、本発明者等による調査実験によれば、
図4に示すように圧延ロール3の粗度調整値によって変
化する。すなわち、鋼板表面の粗度の板内のばらつきの
範囲は、ロール粗度調整値が前記ロール粗度の収束値か
ら該収束値+5μmの間で最少となり、前述した鋼板表
面に付与する粗さの粗度を特定のレベルに調整するので
はなく、粗度のばらつきの範囲を小さくできる粗度のレ
ベルを見出し、それを目標にロール粗度を調整する考え
を具体化する方法として本発明の提案に至った。 【0020】以下、本発明について、図面を参照しなが
ら作用とともに、詳細に説明する。図1は本発明の方法
の実施例を説明するための設備の側断面概略図を示すも
のである。図1において、1は搬送用ロール、2は鋼
板、3は圧延ロール、4は圧延ロール粗度調整装置、5
は冷却装置である。圧延ロール粗度調整装置4は、回転
する研削砥石でロール表面をオンラインで研削調整でき
る装置である。 【0021】図1において、鋼板2は搬送用ロール1で
搬送されつつ、圧延ロール3により圧延されるが、この
時、圧延ロール3の表面は、圧延ロール粗度調整装置4
で予め粗度調整されている。圧延ロール粗度調整装置4
の研磨用砥石は、前記ロール粗度の収束値から該収束値
+5μmの範囲に研磨するように粗さが選択されてい
る。圧延ロール3の表面の粗さは鋼板2に転写され、鋼
板2の表面の粗さを変化させる。この時、鋼板2の表面
の粗さのばらつきは、前述したように最小の値となって
いる。 【0022】このように形成された表面粗さを伴って鋼
板2は冷却装置5に搬入され、水または水溶性媒体で冷
却される。この時、鋼板2の表面の板内各部の平均冷却
速度は、各々の部位の粗度に対応して、板内で異なる値
となる。その関係は、前記実験結果を図2で説明したよ
うに、実用上の鋼板の粗度範囲である60μm以下の範
囲において、粗度のばらつき(変化の範囲)に対応する
平均冷却速度のばらつきが、粗度の程度によらず一定で
あるため、粗度の程度を、粗度のばらつきを最も小さく
し易いレベルに設定して粗度を調整した、本発明法では
平均冷却速度の板内のばらつきを最小とすることができ
るため、極めて均一な冷却が行われる。 【0023】 【実施例】以下本発明の実施例について説明する。図1
に示した装置を用いて行った実施例の結果を、従来法の
粗度Rzを10μmに設定して粗度調整した結果と比較
して表4に示す。 【0024】表4において、本発明法は圧延ロール3の
ロール粗度の収束値を予め調査実験して、該収束値が2
0μmであることを知っておき、圧延ロール3の表面粗
度を20μmから25μmに圧延ロール粗度調整装置4
で粗度調整して後、鋼板2を圧延ロール3で圧延し、引
き続き、冷却装置5で冷却した。 【0025】表4から従来法に比較して本発明法が均一
な冷却が実現していることが明らかである。この結果か
ら、鋼板の板幅方向の温度分布を均一に冷却する目的が
達成されることがわかる。 【0026】 【表4】 【0027】 【発明の効果】以上説明したように、本発明によれば、
鋼板を水あるいは水溶性媒体で冷却するに際し、鋼板の
板内の温度分布を均一に冷却する方法を提供することが
でき、当該産業分野において多大な貢献を期待できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of cooling a steel sheet, and more particularly to a method of cooling a steel sheet with water or a water-soluble medium following hot rolling. And a method for uniformly cooling the temperature distribution. [0002] A steel sheet manufactured by hot rolling is usually forcibly cooled after hot rolling in order to obtain predetermined material properties. Water is often used as a medium for forced cooling. Water is used because of its high cooling capacity and relatively low equipment and operating costs of the cooling device. However, when water is used as the cooling medium, cooling fluctuations due to the boiling heat transfer characteristics of water occur, which leads to variations in materials, poor shape, and increased residual stress. [0003] The reason why the variation in cooling is likely to occur due to the boiling heat transfer characteristics of water is that the boiling heat transfer phenomenon
This is because the change of the heat transfer characteristic is relatively sensitive to the change of the fluid side factor and the change of the heat transfer surface side factor such as roughness. Among them, for the roughness, cooling medium not related to boiling,
For example, when cooling with a molten metal or a molten salt, the heat transfer characteristics are usually hardly affected, but a problem occurs only in the case of boiling heat transfer such as water. Therefore, in cooling a steel sheet in which boiling heat transfer is dominant, such as water or an aqueous medium in which an organic solvent is dissolved in water, factors on the heat transfer surface side such as roughness are adjusted before cooling. Conventionally, several cooling methods have been proposed. For example, in Japanese Unexamined Patent Publication No. 62-54507, before cooling, a steel sheet surface is coated with Rz roughness by 20%.
It has been proposed to provide a roughness having a protrusion height of at least μm. Further, Japanese Patent Application Laid-Open No. 63-149315 proposes a method of cooling the steel sheet after rolling, by adjusting the surface roughness of the steel sheet to 8 μm or more and 15 μm or less in terms of Ra roughness. Further, Japanese Patent Application Laid-Open No. 02-70017 proposes that the surface is provided with a roughness composed of a large number of linear grooves of 25 μm or less in terms of Rz roughness. [0006] All of these conventional proposed methods limit the degree of roughness (level) of the roughness provided to the steel sheet surface. However, the degree of the roughness is still the target value of the effective adjustment of the heat transfer surface side factor before cooling so that it can be inferred that even in the three methods of the conventional proposal, the limited ranges are different from each other. The fact is that is not fixed. The present inventors have studied in detail the conventional techniques including the three examples of the conventional method described above, and attempted a reproduction experiment, but could not obtain the expected results. Therefore, the present inventors, in any of the conventional proposed methods, because the reason for limiting the roughness of the steel sheet surface does not necessarily clearly show a direct relationship with the variation in cooling characteristics,
In the end, he recognized that the problem was that it was not clear what kind of roughness adjustment should be made. The present invention clarifies this problem through experiments and the like, and provides a method of uniformly cooling the temperature distribution in the width direction of the steel sheet when the steel sheet is cooled with water or a water-soluble medium following hot rolling. Is what you do. According to the present invention, the surface of a rolling roll is polished and roughened prior to cooling the steel sheet with water or a water-soluble medium, following hot rolling. In controlling the cooling by transferring the roughness to the steel sheet during hot rolling and adjusting the roughness of the steel sheet, the surface roughness of the rolling roll is expressed by Rz roughness, and the steel sheet is rolled by the rolling roll. The method for cooling a steel sheet is characterized in that the convergence value of the change in the roughness of the rolling roll when rolling is continued is adjusted to the range of the convergence value +5 μm. Hereinafter, the present invention will be described in detail. First, the results of experiments performed by the present inventors before reaching the proposal of the present invention will be described. The experiment was performed in two stages. First
The stage is a reproduction experiment of the effect of the conventional method, and the second stage is
This is an experiment for examining in detail the relationship between roughness, which is a heat transfer surface side factor, and cooling characteristics. The first stage reproduction experiment of the conventional method was conducted in order to clarify the question "whether the degree (level) of the roughness of the steel sheet surface itself has a remarkable effect on the variation in cooling". The experiment was carried out on a rolling mill line at a factory, and a steel plate rolled for a certain period of time after exchanging a roll for which the roughness was adjusted to an experimental level beforehand was replaced offline, and the experiment was repeated. Table 1 shows the main conditions of the experiment, and Table 2 shows the experimental results. The target set value of the roughness of the steel sheet surface is, as a conventional method, proposed in JP-A-62-54507, "Before cooling, the steel sheet surface has a projection height of 20 μm or more in terms of Rz roughness. In order to examine the effect of “giving roughness”, the average roughness Rz within the plate width was 15
μm and 30 μm. In making these settings, the relationship between the adjusted surface roughness of the roll itself and the roughness of the steel sheet surface transferred during rolling was previously examined. The variation in cooling characteristics within the width of the sheet is the maximum temperature deviation (° C) of the surface temperature of the steel sheet immediately after the stop of water cooling.
Was used as an index and compared. [Table 1] [Table 2] As shown in Table 2, according to the experimental results at the factory A, when the average roughness Rz of the steel sheet is 30 μm than that of 15 μm, the maximum temperature deviation in the width of the steel sheet surface temperature is clearly smaller. It seemed to reproduce the effect,
According to the experimental result at the factory B, the average roughness Rz of the steel sheet was 15 μm.
No difference in the maximum temperature deviation in the width of the steel sheet surface temperature was observed between m and 30 μm, and the effect of the conventional method could not be reproduced. Then, when the set value of the roughness Rz of the steel sheet within the sheet width was examined in detail, it was found that the range of the variation was the value shown in Table 2. From these values, the experimental results at Factory A:
The reason why the maximum temperature deviation within the width of the steel sheet surface temperature is smaller when the average roughness Rz of the steel sheet is 30 μm than when it is 15 μm is not because the average roughness Rz is 30 μm but the roughness Rz of the steel sheet at that time. Was questioned because the variation in the sheet width was as small as 6 μm. That is,
The degree (level) of the roughness of the steel plate surface itself is
It is also conceivable that cooling variations would not be significantly affected. Therefore, as a second stage, the result of an experiment for examining in detail the relationship between roughness, which is a factor on the heat transfer surface side, and cooling characteristics will be described. Table 3 shows the experimental conditions, and FIG. 2 shows the experimental results. In FIG. 2, the horizontal axis is the roughness Rz of the steel sheet surface, and the vertical axis is a representative of the cooling characteristics.
The average cooling rate from 870 ° C. to 500 ° C. immediately after cooling is taken. The reason why the average cooling rate is used as a representative of the cooling characteristics is that the temperature deviation at the end of cooling by the steel plate portion can be almost expressed when the cooling conditions such as the cooling time are the same. According to the results of FIG. 2, the surface roughness Rz of the steel sheet was 60 μm.
m, the roughness Rz (μm)
With the increase, the average cooling rate (° C./s) increases almost linearly. That is, the surface roughness Rz of the steel sheet is 60 μm.
When the roughness Rz changes within a certain range within the range of m or less, the corresponding change in the average cooling rate is substantially constant regardless of the degree of the roughness Rz. [Table 3] From the experimental results of the first and second stages, the inventors of the present invention have proposed a method of limiting the degree of roughness (level) of the roughness to be applied to the steel sheet surface, which has been conventionally proposed. The concern of whether or not the uniform cooling of the steel sheet cannot always be achieved led to the proposal of the present invention. In other words, rather than adjusting the roughness of the surface imparted to the steel sheet to a specific level from the above experimental results, a level of roughness that can reduce the range of the variation in roughness is found, and the target is the roughness level. Adjusting the degree was considered to be effective. Based on this idea, after the rolling roll was ground to several roughness levels with a rotating grinding wheel, the range of variation in the roughness transferred to the rolled steel sheet was investigated. From the convergence value of the change in the roughness of the rolling roll when the steel sheet is continuously rolled at
It has been found that, when the roughness of the rolling roll is adjusted by grinding in the range of m, the range of the variation in the roughness transferred to the steel sheet is minimized, and the temperature variation of the steel sheet is also minimized. here,
The convergence value of the change in the roughness of the rolling roll means that when a certain rolling roll is continuously used and the rolling amount is increased, the surface roughness of the rolling roll tends to converge to a certain value. Therefore, it is defined as the value of this converging roughness. FIG. 3 shows an example of the relationship between the roll roughness and the rolling amount when a certain rolling roll is continuously used to increase the rolling amount and the roughness is not adjusted during that time. In FIG.
Rolls showing the history of roll roughness with the curve marked with
Initially, it was ground with a high roughness,
Also, the rolls showing the history of the roll roughness with the curve attached are those that were initially ground and given a lower roughness, but the properties other than the initial roughness, such as the material of the rolls, are the same. Roll. As shown in FIG. 3, even when the initial roughness differs, the roll roughness tends to converge to a certain value as the rolling amount increases. It is considered that this convergence value is determined by the interrelationship between the rolling roll and the material to be rolled, such as mechanical properties at the operating temperature. Usually 100
The convergence value becomes clear when rolling is performed for about 300 tons from the above. Note that this convergence value is sufficiently effective in a single investigation unless there is a significant change in roll material, rolling equipment, rolling conditions, and the like. According to the investigations conducted by the present inventors, the range of the in-plate variation in the roughness of the steel sheet surface after the transfer has been determined.
As shown in FIG. 4, it changes depending on the roughness adjustment value of the rolling roll 3. That is, the range of the in-plate variation in the roughness of the steel sheet surface is such that the roll roughness adjustment value is minimized between the convergence value of the roll roughness and the convergence value +5 μm, and the roughness given to the steel sheet surface described above. Instead of adjusting the roughness to a specific level, the present invention proposes a method of realizing the idea of adjusting the roll roughness with the aim of finding a roughness level that can reduce the range of roughness variation and aiming at it. Reached. Hereinafter, the present invention will be described in detail together with its operation with reference to the drawings. FIG. 1 is a schematic side sectional view of a facility for explaining an embodiment of the method of the present invention. In FIG. 1, 1 is a transport roll, 2 is a steel plate, 3 is a roll, 4 is a roll roll roughness adjusting device,
Is a cooling device. The rolling roll roughness adjusting device 4 is a device capable of online grinding adjustment of the roll surface with a rotating grinding wheel. In FIG. 1, a steel sheet 2 is rolled by a rolling roll 3 while being conveyed by a conveying roll 1. At this time, the surface of the rolling roll 3 is adjusted by a rolling roll roughness adjusting device 4.
The roughness is adjusted in advance. Roller roughness adjusting device 4
The roughness of the polishing grindstone is selected so that it is polished from the convergence value of the roll roughness to the range of the convergence value + 5 μm. The surface roughness of the rolling roll 3 is transferred to the steel plate 2 and changes the surface roughness of the steel plate 2. At this time, the variation in the roughness of the surface of the steel plate 2 has the minimum value as described above. The steel plate 2 with the surface roughness thus formed is carried into the cooling device 5 and cooled with water or a water-soluble medium. At this time, the average cooling rate of each part in the plate on the surface of the steel plate 2 has a different value in the plate according to the roughness of each part. As described in FIG. 2, the relationship between the average cooling rate and the variation in the roughness (range of change) in the range of 60 μm or less, which is the range of the roughness of the steel sheet in practical use, is explained in FIG. Since the roughness is constant irrespective of the degree of roughness, the degree of roughness was adjusted by setting the degree of roughness to a level at which variation in roughness was most easily reduced. Since the variation can be minimized, extremely uniform cooling is performed. Examples of the present invention will be described below. FIG.
Table 4 shows the results of the examples performed using the apparatus shown in Table 4 in comparison with the results obtained by setting the roughness Rz of the conventional method to 10 μm and adjusting the roughness. In Table 4, according to the method of the present invention, the convergence value of the roll roughness of the rolling roll 3 was investigated and tested in advance.
0 μm, the surface roughness of the roll 3 was reduced from 20 μm to 25 μm.
After adjusting the roughness of the steel sheet 2, the steel sheet 2 was rolled by the rolling roll 3 and subsequently cooled by the cooling device 5. It is apparent from Table 4 that the method of the present invention achieves uniform cooling as compared with the conventional method. From this result, it is understood that the purpose of uniformly cooling the temperature distribution in the width direction of the steel sheet is achieved. [Table 4] As described above, according to the present invention,
When cooling a steel sheet with water or a water-soluble medium, it is possible to provide a method for uniformly cooling the temperature distribution in the steel sheet, and a great contribution can be expected in the industrial field.

【図面の簡単な説明】 【図1】本発明の実施例の装置を説明する側断面概略
図。 【図2】平均冷却速度と粗度の関係の実験結果を示す
図。 【図3】ロール粗度と圧延量の関係を示す説明図。 【図4】転写鋼板粗度のばらつきとロール粗度調整目標
値との関係を示す説明図。 【符号の説明】 1 搬送用ロール 2 鋼板 3 圧延ロール 4 圧延ロール粗度調整装置 5 冷却装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side sectional view illustrating an apparatus according to an embodiment of the present invention. FIG. 2 is a diagram showing an experimental result of a relationship between an average cooling rate and roughness. FIG. 3 is an explanatory diagram showing a relationship between a roll roughness and a rolling amount. FIG. 4 is an explanatory diagram showing a relationship between a variation in roughness of a transfer steel sheet and a target value for adjusting roll roughness. [Description of Signs] 1 Transport roll 2 Steel plate 3 Roll roll 4 Roll roll roughness adjusting device 5 Cooling device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−54507(JP,A) 特開 平6−79305(JP,A) 特開 平7−290129(JP,A) 特開 平1−181902(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21B 1/22 B21B 45/00 - 45/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-54507 (JP, A) JP-A-6-79305 (JP, A) JP-A-7-290129 (JP, A) JP-A-1- 181902 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B21B 1/22 B21B 45/00-45/02

Claims (1)

(57)【特許請求の範囲】 【請求項1】 熱間圧延に引き続き、鋼板を水あるいは
水溶性媒体で冷却するのに先立ち、圧延用ロールの表面
を研磨して粗さを付与し、該粗さを熱間圧延時に鋼板に
転写して鋼板の粗度を調整することにより冷却を制御す
るに際し、圧延用ロールの表面の粗度を、Rz粗度表示
で、圧延用ロールで鋼板を継続して圧延した時の圧延用
ロールの粗度の変化の収束値から該収束値+5μmの範
囲に調整することを特徴とする鋼板の冷却方法。
(57) [Claims 1] Following hot rolling, prior to cooling the steel sheet with water or a water-soluble medium, the surface of a rolling roll is polished to impart roughness. When controlling the cooling by transferring the roughness to the steel sheet during hot rolling and adjusting the roughness of the steel sheet, the surface roughness of the rolling roll is displayed as Rz roughness, and the steel sheet is continued with the rolling roll. A method for cooling a steel sheet, comprising adjusting a convergence value of a change in roughness of a rolling roll when rolling is performed to a range of the convergence value +5 μm.
JP06239595A 1995-03-22 1995-03-22 Steel sheet cooling method Expired - Fee Related JP3369021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06239595A JP3369021B2 (en) 1995-03-22 1995-03-22 Steel sheet cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06239595A JP3369021B2 (en) 1995-03-22 1995-03-22 Steel sheet cooling method

Publications (2)

Publication Number Publication Date
JPH08257622A JPH08257622A (en) 1996-10-08
JP3369021B2 true JP3369021B2 (en) 2003-01-20

Family

ID=13198913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06239595A Expired - Fee Related JP3369021B2 (en) 1995-03-22 1995-03-22 Steel sheet cooling method

Country Status (1)

Country Link
JP (1) JP3369021B2 (en)

Also Published As

Publication number Publication date
JPH08257622A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
JP3369021B2 (en) Steel sheet cooling method
US3947294A (en) Method for temper rolling of a thin-gauge steel strip
JP3637901B2 (en) Cold rolling method for metal sheet
JP3661434B2 (en) Controlled cooling method for hot rolled steel sheet
JPH05220503A (en) Fe-ni shadow mask sheet and its manufacture
JP3215266B2 (en) Method for producing austenitic stainless steel sheet with excellent image clarity
US848323A (en) Method of preparing rolls for rolling.
JP2672614B2 (en) Cold rolling method
JPH11226614A (en) Method for improving service life of mandrel bar for manufacturing hot seamless steel tube
JPH03210903A (en) Method for giving surface roughness on hot rolled metallic material and line of hot rolling stand for it
JPS6187824A (en) Uniform cooling method of high temperature metal pipe
RU2071990C1 (en) Method of strip heat treatment
JP3067984B2 (en) Continuous high-speed rolling method
JP3238569B2 (en) Method for controlling winding temperature of hot rolled steel sheet
JP3370616B2 (en) Cold rolling method for metal plate with excellent gloss
RU2190488C1 (en) Method for cold rolling of strips in continuous multistand rolling mill
JP3496459B2 (en) Rolling method of ferritic stainless steel sheet
JP2545468B2 (en) Cold rolling method for stainless steel strip
JP2951424B2 (en) In-line skin pass dull eye transfer method in continuous annealing equipment
JPS6272430A (en) Straightening equipment provided with induction heating device
JP2005248302A (en) Method for producing long, large diameter, and thin-walled seamless steel pipe having little bending
JPS619902A (en) Production of black plate for surface treatment having excellent surface quality by wet temper rolling
JP3292274B2 (en) Manufacturing method of high carbon steel bright finish
JPS60170508A (en) Method and device for rolling
JP3343009B2 (en) Backup roll role profile control method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees