JP3368733B2 - Method for producing modified soy protein - Google Patents
Method for producing modified soy proteinInfo
- Publication number
- JP3368733B2 JP3368733B2 JP31622195A JP31622195A JP3368733B2 JP 3368733 B2 JP3368733 B2 JP 3368733B2 JP 31622195 A JP31622195 A JP 31622195A JP 31622195 A JP31622195 A JP 31622195A JP 3368733 B2 JP3368733 B2 JP 3368733B2
- Authority
- JP
- Japan
- Prior art keywords
- protein
- deamidation
- soybean protein
- soybean
- solubility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Peptides Or Proteins (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は改変された大豆蛋白
の製造法に関する。
【0002】
【従来の技術】大豆たん白質は、グルタミン、アスパラ
ギンといったアミド型のアミノ酸を多く含んでおり、グ
リシニンでは全アミノ酸の18%がこれらのアミド型アミ
ノ酸である。こうした特徴から、大豆たん白質の脱アミ
ド化により、グルタミン酸、アスパラギン酸の負荷電が
増加し、高次構造の安定性が低下するために、溶解性、
乳化性、起泡性など食品素材として重要な機能特性が改
変されることが予測され、研究が行われてきた。
【0003】しかしながら、これまでに用いられてきた
希酸処理( Matsudomi, N., Sasaki, T., Kato, A. an
d Kobayashi, K. (1985) "Conformational changes and
functional properties of acid-modified soy protei
n." Agric. Biol. Chem., Vol. 49,p1251-1256.)やプ
ロテア−ゼ処理( Kato, A., Tanaka, A., Matsudomi,
N. and Kobayashi, K. (1987)"Deamidation of food pr
oteins by protease inalkaline pH. :J. Agric. Food
Chem.,35, 224-227.)によるたん白質の脱アミド化はペ
プチドの開裂も同時に生じるために正確に脱アミドだけ
の影響を調べることは困難であった。
【0004】脱アミドに関する特許公報には以下があ
る。特開昭 59-210097号(特公平5-37635号) 「改質さ
れた蛋白質の製造法」には、蛋白質のアミノ基と無水マ
レイン酸及び/又は無水マレイン酸誘導体とを反応せし
めて得たアシル化蛋白質にトランスグルタミナーゼを作
用せしめて脱アミド化し、次いで脱アシル化する改質さ
れた蛋白質の製造法、が開示されている。
【0005】特開平3-91445号「 酵素変性蛋白の製造方
法」には、蛋白の水性スラリを加水分解と脱アミド化に
かける処理蛋白に苦味成分を生ぜしめることなしに蛋白
の溶解度を増大させ蛋白の機能性を増大させるのに有効
な蛋白質の処理法、が開示されている。
【0006】特開平3-53850号「加水分解された植物タ
ンパク質の製造方法等」には、植物タンパク質を少なく
とも一個のプロテアーゼを有する水性溶液に加えて、加
水分解し、可溶性タンパク質から不溶性塊を分解し、酸
を加水分解された可溶性タンパク質に加え、混合物を加
熱し、加水分解物を実質上脱アミド化することが開示さ
れている。
【0007】特開昭63-36797号「蛋白の改質法」には、
脱アミドpH領域、脱アミド温度領域においてプロテア
ーゼを用い蛋白を脱アミドすることが開示されている。
【0008】しかし、本発明のような脱アミドによる大
豆蛋白の改変法は知られていない。
【0009】
【発明が解決しようとする課題】本発明は、大豆蛋白の
溶解性を比較的低下させずに機能特性(乳化性、起泡性
等)を改変することを目的とした。
【0010】
【課題を解決するための手段】本発明者等は、種々の蛋
白の加熱による脱アミドを研究した。ところが、卵白が
加熱だけで脱アミドが可能なのに比べ、大豆蛋白は加熱
だけで脱アミドすると不溶化してしまう問題に直面し
た。そこで、鋭意研究を進めた結果、窒素ガス中で乾燥
大豆蛋白を常温乃至高温で貯蔵することにより、溶解性
を比較的低下させずに脱アミドでき、大豆蛋白の機能特
性を改変できる知見を得て本発明を完成するに到った。
【0011】即ち、本発明は、
【請求項1】乾燥大豆蛋白を非酸素ガス中で貯蔵するこ
とを特徴とする改変された大豆蛋白の製造法、である。
【0012】
【発明の実施の態様】本発明に用いる乾燥大豆蛋白は、
乾燥状態の大豆蛋白が適当である。大豆蛋白が湿ってい
ると非酸素ガス中でも貯蔵中に大豆蛋白の溶解度が低下
するので好ましくない。通常、微生物が生育し難い水分
(例えば、15重量%以下、好ましくは12重量%以
下、より好ましくは10重量%以下)とすることが出来
る。
【0013】非酸素ガスは酸素以外のガス、換言すれば
酸化作用を有しないガスであれば何れの公知のガスでも
使用出来る。窒素ガスは入手も容易で実用的である。
【0014】大豆蛋白の非酸素ガス貯蔵中の雰囲気の相
対湿度は、約75%以下、好ましくは60%以下が適当
である。
【0015】大豆蛋白の貯蔵中の雰囲気の相対湿度が高
いと、大豆蛋白の溶解度が低下し易いので好ましくな
い。
【0016】又、大豆蛋白のpHにより脱アミド化率が
変化させることが出来る、pHは大豆蛋白の等電点(p
H4.5)付近を除く範囲とすることが出来るが、大豆
蛋白がアルカリ側であるほど脱アミド化率を増加するこ
とが出来る。しかし、あまりアルカリ側にするとリジノ
アラニン等の生成の恐れがあるのでpH約5〜11、好
ましくはpH7〜10、より好ましくは8〜10が実用
的である。
【0017】本発明において乾燥大豆蛋白を貯蔵する温
度が高いほど脱アミドの速度を速くすることが出来る。
常温で長期間貯蔵することも出来るが、高温で短期間貯
蔵して脱アミドした後で冷蔵することも出来る。例え
ば、乾燥大豆蛋白を相対湿度65%、貯蔵温度60℃で
あれば、7日貯蔵して脱アミド化率はpH5.5では8.2
%、pH8.0では12.2%、pH10.0では14.3%とすることが出来
る。
【0018】本発明の方法により、大豆蛋白の溶解性を
比較的低下させずに脱アミドすることができ、例えば脱
アミド化率8〜15%の脱アミド化を行うことが出来
る。
【0019】この脱アミド化により大豆蛋白の乳化性や
起泡性等の機能特性を改変することが出来る。
【0020】脱アミド化率が大きいほど乳化性並びに起
泡性が向上する。同時に乳化安定性、気泡安定性も向上
する。例えば、前記7日間の貯蔵で乳化性を1.2〜1.
3倍、乳化安定性を2.5〜3倍、起泡力1.5倍、気泡
安定性で2倍以上増加することが出来る。
【0021】
【実施例】以下、実施例により、本発明の実施態様を説
明する。
実施例1
(酸沈殿大豆蛋白の調製)低温抽出脱脂大豆(不二製油
(株)製)に20倍(重量比)の水を加え、1時間撹拌
してスラリーとなし、遠心分離して不溶画分(いわゆる
オカラ)を除去し、獲られた溶液画分(いわゆる豆乳)
に塩酸を加えてpH4.5に調整し、生じた沈殿画分
(いわゆるカード)を遠心分離回収して、約19倍量
(低温抽出脱脂大豆に対する重量比)の水を加えて分散
液となし、水酸化ナトリウムを用いてpH7に調整し、
凍結乾燥して酸沈澱たん白質(APP)とし、このAPPを大豆
たん白質として用いた。
(大豆たん白質の脱アミド化)酸沈殿大豆たん白質を水
に溶解させた後に、pH5.5, 8.0, 10.0に調整し、凍結乾
燥した。これらの粉末(水分約5重量%)を窒素ガス中
で種々の相対湿度に制御したデシケーター中で、60℃で
1〜2週間貯蔵することにより脱アミド化を行った。
(脱アミド化率の測定)7日間、上述の条件下で脱アミ
ド化した試料を蒸留水に対して48時間透析し、遊離のア
ミド基を除去する。透析後に各試料は凍結乾燥し、得ら
れた乾燥粉末試料(50mg)は1mlの2N塩酸に溶解し
封管中で110℃で2時間加水分解し、残存するアミドをア
ンモニアガスとして塩酸中に捕捉し、これに等量の10%
TCA溶液を加え、除蛋白し遠心分離で不溶物を除去し
透明な上澄液を調製した。こうして得られた塩酸溶液中
のアンモニアをアンモニアイオン電極により定量した。
この方法は定量前にpHをアルカリにすることにより生
ずるアンモニアガスを測定できる。
(溶解度の測定)各々の条件下で得られた乾燥貯蔵粉末
を一定量とり、水に溶かした試料の280nmでの吸収を
測定することにより溶解度を調べた。
(乳化性の測定)脱アミド化した大豆たん蛋白質の乳化
性はPearceとKinsellaの方法5)を用いて測定した。1/
15Mリン酸ナトリウムバッファー(pH7.4)に試料を
たん白質濃度で0.1%になるように溶解する。この試料
溶液3mlにコ−ンオイル1mlを加えポリトロンを用い
て12,000rpmで1分間ホモゲナイズする。形成したエ
マルジョン0.1mlをホモゲナイズ直後、1、2、3、5、
10分後に試験管底部から取り0.1%SDS溶液5ml中に
懸濁させ、その濁度を500nmの吸光度で測定した。ホ
モゲナイズ直後の値を相対乳化活性として表し、その半
減期を乳化安定性として示した。
(起泡性の測定)0.1Mリン酸ナトリウムバッファ−
(pH7.4)に試料をたん白質濃度で0.2%になるように
溶解し、加藤らの導電率法(Kato, A., Takahashi, A.,
Matsudomi, N. and Kobayashi, K. (1983) Determinat
ion of foaming properties of proteins by conductiv
ity measurements., J. Food Sci., 48, 62-65.)によ
り起泡性、気泡安定性を測定した。
【0022】以上の結果、大豆たん白質は乾燥加熱によ
り、極めて不溶化しやすく、60℃の乾燥加熱下では数日
後に大部分不溶化した。これは大豆たん白質に特有の性
質であり、SH、SS交換反応による凝集体形成によ
る。この不溶化を防止するために、窒素ガスで充填した
デシケ−タ−中で酸化を抑え、湿度をコントロ−ルした
条件下で乾燥加熱を行った。図1に窒素ガス中と空気中
で相対湿度65%、60℃での貯蔵中の大豆たん白質の溶
解度変化を示した。窒素ガス充填下では7日間貯蔵では
ほとんど溶解度に変化を与えずに貯蔵できるが、空気中
では50%にまで低下した。相対湿度79%での貯蔵は一層
不溶化を促進するため、65%湿度、60℃、7日間貯蔵し
た試料の性質を以下に調べた。
【0023】表1に窒素ガス中で相対湿度65%、60℃、7
日間貯蔵した大豆たん白質の脱アミド化率を示した。
【0024】
【表1】
【0025】乾燥粉末のpHは乾燥前の溶液のpHを示
し、貯蔵後に溶液にしても同じ値になる。この結果か
ら、乾燥粉末のpHがアルカリ側になるほど脱アミド化
率は増加することがわかる。このように、脱アミド化が
乾燥下での貯蔵中に8〜14%も生じることは大変興味深
いことである。対照として、これまでよく用いられてき
た希酸(0.1N塩酸溶液)中で70℃、3時間の加水分解に
よる脱アミド化率は8.5%であり、このことからも乾燥
下で生じる脱アミド化の程度が大きいことを示してい
る。希酸中での加熱はペプチドの加水分解も起る可能性
があり、乾燥下ではこうした副反応はないのでより優れ
た方法といえる。
【0026】図2はこうして得られた脱アミド化大豆た
ん白質の乳化性を示している。図から明らかなように、
乾燥加熱で脱アミド化した大豆たん白質の乳化性は著し
く改変され、特にpH10で貯蔵したものは優れた乳化性
を示した。
【0027】表2は脱アミド化による乳化活性、乳化安
定性の値を示した。
【0028】
【表2】【0029】乳化活性はいずれのpHでも7日間貯蔵の
試料は貯蔵前の1.2〜1.3倍に増加し、乳化安定性は2.5
〜3.0倍に改変された。このように乾燥下での脱アミド
化により大豆たん白質の乳化性が著しく上昇することが
示された。これは脱アミド化により負荷電が増加し、た
ん白質の高次構造がフレキシブルになり、エマルジョン
の油液界面で分子内部の疎水基に一部が表面に露出しや
すくなり、両親媒構造を形成しやすくなるためと考えら
れる。
【0030】もう一つの重要な起泡性の改変のデ−タを
図3に示した。乾燥加熱による脱アミド化により起泡性
が改変され、起泡力で1.5倍に気泡安定性でも2倍以上に
上昇した。しかしながら、乳化性の場合と異なり、脱ア
ミド化率が8.2%のpH5.5で乾燥貯蔵したものは最も優
れた起泡性を示し、脱アミド化率の高いpH10で乾燥
貯蔵したものは起泡性の上昇は少なかった。これは気泡
膜形成のためには、たん白質分子の分子間相互作用が重
要な因子となるが、脱アミド化が進みすぎると負荷電が
増加し過ぎることにより、分子間の相互作用が低下する
ためであると考えられる。
【0031】
【発明の効果】乾燥大豆蛋白を窒素ガス等の非酸素ガス
中で貯蔵することにより、大豆蛋白の溶解度を損なわず
に脱アミド化することが出来、乳化性、起泡性のような
食品機能特性を改変出来たものである。Description [0001] The present invention relates to a method for producing a modified soybean protein. 2. Description of the Related Art Soy protein contains a large amount of amide-type amino acids such as glutamine and asparagine, and 18% of all amino acids in glycinin are these amide-type amino acids. From these characteristics, the deamidation of soy protein increases the negative charge of glutamic acid and aspartic acid, lowering the stability of the higher-order structure, resulting in solubility,
It has been predicted that important functional properties such as emulsifying properties and foaming properties as food materials will be altered, and research has been conducted. [0003] However, the dilute acid treatment used so far (Matsudomi, N., Sasaki, T., Kato, A. an
d Kobayashi, K. (1985) "Conformational changes and
functional properties of acid-modified soy protei
n. "Agric. Biol. Chem., Vol. 49, p1251-1256.) and protease treatment (Kato, A., Tanaka, A., Matsudomi,
N. and Kobayashi, K. (1987) "Deamidation of food pr
oteins by protease inalkaline pH .: J. Agric. Food
Chem., 35, 224-227.), It was difficult to accurately examine the effect of deamidation alone because the deamidation of the protein was accompanied by cleavage of the peptide. [0004] Patent publications relating to deamidation include the following. JP-A-59-210097 (Japanese Patent Publication No. 5-37635) The "production method of modified protein" is obtained by reacting an amino group of a protein with maleic anhydride and / or a maleic anhydride derivative. A method for producing a modified protein in which a transglutaminase is allowed to act on an acylated protein to deamid and then deacylate the acylated protein is disclosed. [0005] Japanese Patent Application Laid-Open No. 3-91445, entitled "Method for Producing Enzymatically Modified Protein", discloses that an aqueous slurry of protein is subjected to hydrolysis and deamidation to increase the solubility of the protein without causing bitter components in the protein. Methods for treating proteins that are effective in increasing the functionality of the proteins are disclosed. Japanese Patent Application Laid-Open No. 3-53850 discloses a method for producing a hydrolyzed plant protein, etc., which comprises adding a plant protein to an aqueous solution having at least one protease, hydrolyzing the protein, and decomposing an insoluble mass from the soluble protein. And adding an acid to the hydrolyzed soluble protein, heating the mixture and substantially deamidating the hydrolyzate. [0007] JP-A-63-36797, "Protein modification method" includes:
It is disclosed that a protein is deamidated using a protease in a deamidation pH region and a deamidation temperature region. However, a method for modifying soybean protein by deamidation as in the present invention is not known. SUMMARY OF THE INVENTION An object of the present invention is to modify functional properties (emulsifying properties, foaming properties, etc.) without relatively reducing the solubility of soybean proteins. Means for Solving the Problems The present inventors have studied deamidation of various proteins by heating. However, while egg white can be deamidated only by heating, soybean protein is insolubilized when deamidated only by heating. Therefore, as a result of intensive research, it was found that by storing dried soybean protein at normal temperature or high temperature in nitrogen gas, deamidation could be performed without relatively lowering the solubility, and the functional characteristics of soybean protein could be modified. Thus, the present invention has been completed. That is, the present invention relates to a method for producing a modified soybean protein, characterized by storing the dried soybean protein in a non-oxygen gas. The dried soybean protein used in the present invention comprises:
Dry soy protein is suitable. It is not preferable that the soybean protein is moist because the solubility of the soybean protein decreases during storage even in non-oxygen gas. Usually, it can be water (for example, not more than 15% by weight, preferably not more than 12% by weight, more preferably not more than 10% by weight) in which microorganisms hardly grow. As the non-oxygen gas, any known gas other than oxygen, in other words, any gas having no oxidizing action can be used. Nitrogen gas is easily available and practical. The relative humidity of the atmosphere during storage of non-oxygen gas of soybean protein is suitably about 75% or less, preferably 60% or less. If the relative humidity of the atmosphere during storage of the soybean protein is high, the solubility of the soybean protein tends to decrease, which is not preferable. The deamidation rate can be changed by the pH of the soybean protein.
H4.5) can be excluded, but the deamidation rate can be increased as the soybean protein is more alkaline. However, if the pH is too alkaline, lysinoalanine or the like may be formed. Therefore, the pH is practically about 5 to 11, preferably 7 to 10, and more preferably 8 to 10. In the present invention, the higher the temperature at which the dried soybean protein is stored, the faster the rate of deamidation can be increased.
It can be stored at room temperature for a long period of time, or it can be stored at a high temperature for a short period of time to deamid and then refrigerated. For example, if the dry soybean protein is 65% relative humidity and the storage temperature is 60 ° C., it is stored for 7 days and the deamidation rate is 8.2 at pH 5.5.
%, 12.2% at pH 8.0, and 14.3% at pH 10.0. According to the method of the present invention, deamidation can be performed without relatively lowering the solubility of soybean protein. For example, deamidation at a deamidation rate of 8 to 15% can be performed. By this deamidation, functional characteristics such as emulsifying property and foaming property of soybean protein can be modified. The higher the deamidation rate, the better the emulsifying and foaming properties. At the same time, emulsion stability and bubble stability are improved. For example, the emulsifiability is 1.2 to 1.
It can increase the emulsification stability by 2.5 times, the foaming power by 1.5 times, and the foam stability by more than 2 times. The embodiments of the present invention will be described below with reference to examples. Example 1 (Preparation of acid-precipitated soybean protein) 20-fold (weight ratio) water was added to cold-extracted defatted soybean (manufactured by Fuji Oil Co., Ltd.), stirred for 1 hour to form a slurry, centrifuged, and insoluble Fractions (so-called okara) are removed, and the obtained solution fraction (so-called soy milk)
PH was adjusted to 4.5 by adding hydrochloric acid to the mixture, and the resulting precipitate fraction (so-called curd) was collected by centrifugation, and about 19 times the amount of water (weight ratio to low-temperature extracted defatted soybean) was added to form a dispersion. , Adjusted to pH 7 with sodium hydroxide,
Lyophilized to acid precipitated protein (APP), which was used as soy protein. (Deamidation of soybean protein) Acid precipitation Soybean protein was dissolved in water, adjusted to pH 5.5, 8.0, 10.0 and freeze-dried. These powders (about 5% by weight of water) were heated at 60 ° C. in a desiccator controlled to various relative humidity in nitrogen gas.
Deamidation was performed by storing for 1-2 weeks. (Measurement of Deamidation Rate) A sample deamidated under the above conditions for 7 days is dialyzed against distilled water for 48 hours to remove free amide groups. After dialysis, each sample was freeze-dried, and the obtained dry powder sample (50 mg) was dissolved in 1 ml of 2N hydrochloric acid, hydrolyzed in a sealed tube at 110 ° C for 2 hours, and the remaining amide was captured in hydrochloric acid as ammonia gas. And 10% of the equivalent
A TCA solution was added, protein was removed, and insoluble matter was removed by centrifugation to prepare a clear supernatant. Ammonia in the hydrochloric acid solution thus obtained was quantified using an ammonia ion electrode.
This method can measure ammonia gas generated by making the pH alkaline before quantification. (Measurement of Solubility) A certain amount of the dry storage powder obtained under each condition was taken, and the solubility was examined by measuring the absorption at 280 nm of a sample dissolved in water. (Measurement of emulsifiability) The emulsifiability of the deamidated soybean protein was measured using the method of Pearce and Kinsella5). 1 /
The sample is dissolved in a 15 M sodium phosphate buffer (pH 7.4) to a protein concentration of 0.1%. 1 ml of corn oil is added to 3 ml of this sample solution, and homogenized at 12,000 rpm for 1 minute using a polytron. Immediately after homogenizing 0.1 ml of the formed emulsion, 1, 2, 3, 5,
Ten minutes later, the sample was taken from the bottom of the test tube, suspended in 5 ml of a 0.1% SDS solution, and the turbidity was measured at an absorbance of 500 nm. The value immediately after homogenization was expressed as relative emulsification activity, and its half-life was expressed as emulsion stability. (Measurement of foaming property) 0.1 M sodium phosphate buffer
(PH 7.4), the sample was dissolved to a protein concentration of 0.2%, and the conductivity method of Kato et al. (Kato, A., Takahashi, A.,
Matsudomi, N. and Kobayashi, K. (1983) Determinat
ion of foaming properties of proteins by conductiv
Foamability and bubble stability were measured by ity measurements., J. Food Sci., 48, 62-65.). As a result, the soybean protein was extremely insoluble by drying and heating, and was mostly insolubilized after several days under drying and heating at 60 ° C. This is a characteristic peculiar to soybean protein and is due to the formation of aggregates by the SH and SS exchange reactions. In order to prevent this insolubilization, oxidation was suppressed in a desiccator filled with nitrogen gas, and drying and heating were performed under the condition of controlling humidity. FIG. 1 shows the change in solubility of soybean protein during storage at 60% in a nitrogen gas and air at a relative humidity of 65%. When stored for 7 days under nitrogen gas filling, it can be stored with almost no change in solubility, but it dropped to 50% in air. Since storage at a relative humidity of 79% further promotes insolubilization, the properties of samples stored at 65% humidity, 60 ° C. for 7 days were examined below. Table 1 shows a relative humidity of 65% in nitrogen gas, 60 ° C., 7
The deamidation rate of the soybean protein stored for a day was shown. [Table 1] The pH of the dry powder indicates the pH of the solution before drying, and the same value is obtained for the solution after storage. From this result, it can be seen that the deamidation rate increases as the pH of the dry powder becomes more alkaline. Thus, it is very interesting that deamidation occurs as much as 8-14% during storage under dry conditions. As a control, the deamidation rate by hydrolysis at 70 ° C. for 3 hours in dilute acid (0.1N hydrochloric acid solution), which has been frequently used, is 8.5%, which indicates that the deamidation occurring under drying is also observed. Is large. Heating in a dilute acid may also hydrolyze the peptide, and there is no such side reaction under drying, which is a better method. FIG. 2 shows the emulsifiability of the deamidated soybean protein thus obtained. As is clear from the figure,
The emulsifiability of the soybean protein deamidated by drying and heating was remarkably modified, and especially those stored at pH 10 showed excellent emulsifiability. Table 2 shows values of the emulsifying activity and the emulsifying stability by deamidation. [Table 2] The emulsifying activity of the sample stored for 7 days at any pH increases 1.2 to 1.3 times before storage, and the emulsification stability is 2.5
It was modified to ~ 3.0 times. Thus, it was shown that the deamidation under drying significantly increased the emulsifiability of soybean protein. This is because the deamidation increases the negative charge, makes the higher-order structure of the protein more flexible, and makes it easier to expose some of the hydrophobic groups inside the molecule at the oil-liquid interface of the emulsion to the surface, forming an amphipathic structure It is thought that it becomes easy to do. Another important foaming modification data is shown in FIG. The foaming property was modified by deamidation by drying and heating, and the foaming power increased 1.5 times and the foam stability increased more than 2 times. However, unlike the emulsifying property, those dried and stored at pH 5.5 with a deamidation rate of 8.2% show the best foaming properties, and those dried and stored at pH 10 with a high deamidation rate are foamed. Gender rise was small. This is because the intermolecular interaction of protein molecules is an important factor for bubble film formation, but if deamidation proceeds too much, the negative charge will increase too much and the intermolecular interaction will decrease. It is thought that it is. The soybean protein can be deamidated by storing it in a non-oxygen gas such as nitrogen gas without deteriorating the solubility of the soybean protein. It was able to modify various food functional characteristics.
【図面の簡単な説明】
図1は窒素ガス中と空気中で相対湿度65%、60℃での
貯蔵中の大豆たん白質の溶解度変化を示した図面であ
る。図2は 得られた脱アミド化大豆たん白質の乳化性
を示した図面である。図3は、得られた脱アミド化大豆
たん白質の起泡性を示した図面である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a drawing showing changes in the solubility of soybean protein during storage at 60% in a nitrogen gas and air at a relative humidity of 65%. FIG. 2 is a drawing showing the emulsifiability of the obtained deamidated soybean protein. FIG. 3 is a drawing showing the foaming properties of the obtained deamidated soybean protein.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A23J 3/00 - 3/18 BIOSIS(DIALOG) CA(STN)────────────────────────────────────────────────── ─── Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) A23J 3/00-3/18 BIOSIS (DIALOG) CA (STN)
Claims (1)
とを特徴とする改変された大豆蛋白の製造法。(57) [Claim 1] A method for producing a modified soy protein, comprising storing dried soy protein in a non-oxygen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31622195A JP3368733B2 (en) | 1995-12-05 | 1995-12-05 | Method for producing modified soy protein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31622195A JP3368733B2 (en) | 1995-12-05 | 1995-12-05 | Method for producing modified soy protein |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09154499A JPH09154499A (en) | 1997-06-17 |
JP3368733B2 true JP3368733B2 (en) | 2003-01-20 |
Family
ID=18074659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31622195A Expired - Fee Related JP3368733B2 (en) | 1995-12-05 | 1995-12-05 | Method for producing modified soy protein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3368733B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111493207B (en) * | 2020-04-21 | 2023-05-12 | 无锡金农生物科技有限公司 | Preparation method of modified rice protein |
-
1995
- 1995-12-05 JP JP31622195A patent/JP3368733B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09154499A (en) | 1997-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2537602B2 (en) | Stability proteins and methods for stabilizing proteins | |
Rogelj et al. | Recombinant lamb chymosin as an alternative coagulating enzyme in cheese production | |
JP2000050887A (en) | New protein deamidase, gene encoding the same, its production and use | |
CA1186549A (en) | Heat-gelling and foam-stabilizing enzymatically modified vegetable isolates | |
JPH06116300A (en) | Keratin fragment and its production | |
JP3368733B2 (en) | Method for producing modified soy protein | |
JPH10165106A (en) | Manufacture of modified soybean protein material | |
JP2000128764A (en) | Collagen-formulated cosmetic | |
JP2003250460A (en) | Method for modifying functionality of milk protein | |
CN115251365B (en) | Starch micro/nano crystal-protein gel and preparation method thereof | |
JP4789284B2 (en) | Cosmetics with collagen | |
JPH05276877A (en) | Whey protein gelatinous composition and its production | |
JP3153811B2 (en) | Pepsin treated gelatin | |
JP2502531B2 (en) | Modified protein manufacturing method | |
JP3456451B2 (en) | Foaming agent for cake and its use food | |
JP2927076B2 (en) | New protein food ingredients | |
JPH06211690A (en) | Ingestion for suppressing lipid in blood | |
JPH099911A (en) | Calcium carbonate aqueous suspension composition and its production | |
CN111280293A (en) | Preparation method of protein foaming agent | |
JPH06197788A (en) | Production of protein | |
RU2536967C1 (en) | Method for manufacture of food product with foaming properties | |
JPS63209742A (en) | Production of emulsifier | |
CN116172118B (en) | Soybean protein isolate calcium procoagulant gel and preparation method and application thereof | |
JPH0320232B2 (en) | ||
JPH0679541B2 (en) | Method for producing hydrolyzed gluten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071115 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |