JP3366354B2 - TFT active matrix liquid crystal display device and driving method thereof - Google Patents

TFT active matrix liquid crystal display device and driving method thereof

Info

Publication number
JP3366354B2
JP3366354B2 JP29665092A JP29665092A JP3366354B2 JP 3366354 B2 JP3366354 B2 JP 3366354B2 JP 29665092 A JP29665092 A JP 29665092A JP 29665092 A JP29665092 A JP 29665092A JP 3366354 B2 JP3366354 B2 JP 3366354B2
Authority
JP
Japan
Prior art keywords
polarity
pixel
voltage
amplitude
writing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29665092A
Other languages
Japanese (ja)
Other versions
JPH06123875A (en
Inventor
清吾 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP29665092A priority Critical patent/JP3366354B2/en
Publication of JPH06123875A publication Critical patent/JPH06123875A/en
Application granted granted Critical
Publication of JP3366354B2 publication Critical patent/JP3366354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はTFTアクティブマトリ
クス液晶表示装置の駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving method of a TFT active matrix liquid crystal display device.

【0002】[0002]

【従来の技術】液晶表示装置はフラットパネルディスプ
レイの代表として広く応用されている。特に各画素にス
イッチング素子としてTFTを設けて各画素独立に制御
するTFTアクティブマトリクス方式は高品質大容量の
表示が可能である。
2. Description of the Related Art Liquid crystal display devices are widely applied as a representative of flat panel displays. In particular, a TFT active matrix system in which a TFT is provided as a switching element in each pixel and each pixel is controlled independently enables high-quality and large-capacity display.

【0003】図4にTFTアクティブマトリクス液晶表
示装置のブロック図を示す。マトリクス部26は複数の
データ線24と複数の走査線25に接続されたTFT2
2及び、該TFTに接続された画素23が配置されてい
る。データ線24にはデータ線ドライバ回路27からデ
ータ信号が供給され、走査線25には走査線ドライバ回
路28から走査信号が供給される。データ線ドライバ回
路27及び走査線ドライバ回路28にはクロック及び表
示情報を処理するコントロール回路29が接続されてい
る。
FIG. 4 shows a block diagram of a TFT active matrix liquid crystal display device. The matrix portion 26 includes the TFTs 2 connected to the plurality of data lines 24 and the plurality of scanning lines 25.
2 and a pixel 23 connected to the TFT are arranged. A data signal is supplied from the data line driver circuit 27 to the data line 24, and a scanning signal is supplied from the scanning line driver circuit 28 to the scanning line 25. A control circuit 29 for processing a clock and display information is connected to the data line driver circuit 27 and the scanning line driver circuit 28.

【0004】図3に従来の駆動法を示す。液晶表示装置
は液晶の劣化や焼き付き、フリッカを防止する為に液晶
に対し正負両極性対称で直流成分のない信号を与える必
要があり、極性反転の周期によってフレーム反転、行毎
反転等の方法が知られている。図3では極性20で示し
た如くフレーム反転の例を示している。(a)は駆動波
形であり、n番目、n+1番目の走査線に供給される走
査信号φn、φn+1を31、32に示している。TF
Tアクティブマトリクス液晶表示装置では走査線はTF
Tのゲート電極に接続されており、走査信号が31、3
2のような時分割の選択信号となる。m番目のデータ線
には表示内容に応じたデータ信号ψmは33の如くな
る。即ち極性20で示される正極性と負極性のいずれの
フレームでも一定値35のデータ振幅ΔDが印加され
る。
FIG. 3 shows a conventional driving method. In order to prevent liquid crystal deterioration, burn-in, and flicker, it is necessary for the liquid crystal display device to give a signal to the liquid crystal that is positive and negative polar symmetry and that has no DC component. Are known. FIG. 3 shows an example of frame inversion as indicated by the polarity 20. (A) is a drive waveform, and scanning signals φn and φn + 1 supplied to the nth and n + 1th scanning lines are shown at 31 and 32, respectively. TF
In the T active matrix liquid crystal display device, the scanning line is TF
It is connected to the gate electrode of T and the scanning signals are 31, 3
It becomes a time division selection signal such as 2. The data signal ψm corresponding to the display content on the m-th data line is 33. That is, the data amplitude ΔD of the constant value 35 is applied in both the positive and negative frames indicated by the polarity 20.

【0005】(b)、(c)にON状態及びOFF状態
での画素に印加される電圧波形を示す。TFTでは画素
電極と走査線の間に有限の容量が存在し選択期間で書き
込んだ電圧がその直後に走査線電位が選択電位から非選
択電位に変化するのに伴って36、39の容量結合電圧
ドロップΔVの振幅で変動する。走査信号波形31,3
2はフレームの極性20によらない為、36、39容量
結合電圧ドロップΔVの方向は画素に印加される電圧の
極性にはよらず同一で図3の例ではマイナス方向に変化
する。前述の如く液晶は直流成分を嫌う為対向電極に与
える34対向信号αは正負両極性のデータ信号に対し片
寄った信号とする事により対称性を確保する事が一般的
に行われている。即ち図3では42>43とする方法が
用いられている。
(B) and (c) show voltage waveforms applied to the pixel in the ON state and the OFF state. In the TFT, a finite capacitance exists between the pixel electrode and the scanning line, and the voltage written in the selection period is immediately followed by the scanning line potential changing from the selection potential to the non-selection potential. It varies with the amplitude of the drop ΔV. Scan signal waveform 31,3
Since 2 does not depend on the polarity 20 of the frame, the direction of the 36, 39 capacitive coupling voltage drop ΔV is the same regardless of the polarity of the voltage applied to the pixel, and changes in the negative direction in the example of FIG. As described above, since the liquid crystal dislikes the direct current component, the 34 counter signal α given to the counter electrode is generally a signal deviated from the data signal of both positive and negative polarities to ensure symmetry. That is, in FIG. 3, the method of 42> 43 is used.

【0006】容量結合電圧ドロップΔVの大きさは画素
容量CPX、走査線画素間容量CPR、走査信号振幅VPPに
対しΔV=VPP×CPR/(CPR+CPX)で与えられる。
ここで画素容量CPXは画素の液晶容量と付加容量の総和
である。液晶容量には電圧依存性があるので画素容量に
も電圧依存性が存在し一般に印加電圧が大きい程画素容
量は大きくなる。即ち、ON状態の画素容量CPXONはO
FF状態で画素容量CPXOFF より大きく同一ではない。
よって前式の結果ON状態での36容量結合電圧ドロッ
プΔV1はVPP×CPR/(CPR+CPXON)となりOFF
状態での39容量結合電圧ドロップΔV2のVPP×CPR
/(CPR+CPXOFF )より小さい。その結果もしON状
態(b)で37=38と画素に直流成分が掛からないよ
うに対向信号34を設定すると、OFF状態(c)では
図の如く41>40となって大きな直流電圧が印加され
てしまう。即ち、ON状態を書き込む場合、正極性書き
込み期間でのデータ信号電位をV(ON+)、負極性書
き込み期間でのデータ信号電位をV(ON−)とする
と、容量結合電圧ドロップ後のON電位はV(ON+)
−ΔV1、OFF電位はV(ON−)−ΔV1となり対
向信号がその平均値であるα1={V(ON+)+V
(ON−)}/2−ΔV1ならば直流成分のない対称電
圧を画素に印加する事は可能である。しかし、OFF状
態を書き込む場合正極性書き込み期間でのデータ信号電
位をV(OFF+)、負極性書き込み期間でのデータ信
号電位をV(OFF−)とすると、容量結合電圧ドロッ
プ後のON電位はV(OFF+)−ΔV2、OFF電位
はV(OFF−)−ΔV2となり直流成分のない対称電
圧を画素に印加する為には対向信号がその平均値である
α2={V(OFF+)+V(OFF−)}/2−ΔV
2で無くてはならない。データ振幅ΔD=V(ON+)
−V(OFF+)=V(OFF−)−V(OFF+)を
考慮するとα2−α1=ΔV1−ΔV2の直流電圧成分
がOFF状態で画素に印加される。もしOFF状態で直
流成分が印加されないように対向信号を最適化すると今
度は逆にON状態で直流成分が印加される。階調表示で
はON信号からOFF信号の間の電圧或いはパルス幅の
信号が印加される。特定の1階調のみは対称電圧が印加
され直流成分がのらないように対向信号を調整する事は
可能だが他の階調は直流成分がのる事は避け得ない。
The magnitude of the capacitive coupling voltage drop ΔV is given by ΔV = VPP × CPR / (CPR + CPX) with respect to the pixel capacitance CPX, the scanning line pixel capacitance CPR, and the scanning signal amplitude VPP.
Here, the pixel capacitance CPX is the sum of the liquid crystal capacitance of the pixel and the additional capacitance. Since the liquid crystal capacitance has a voltage dependency, the pixel capacitance also has a voltage dependency. Generally, the larger the applied voltage, the larger the pixel capacitance. That is, the pixel capacitance CPXON in the ON state is O
In the FF state, it is not larger than the pixel capacity CPXOFF and is not the same.
Therefore, as a result of the previous equation, 36 capacitive coupling voltage drop ΔV1 in ON state becomes VPP × CPR / (CPR + CPXON) and OFF
39 Capacitive coupling voltage drop ΔV2 VPP × CPR
Less than / (CPR + CPXOFF). As a result, if the counter signal 34 is set to 37 = 38 in the ON state (b) so that no DC component is applied to the pixel, 41> 40 in the OFF state (c), and a large DC voltage is applied as shown in the figure. Will end up. That is, when writing the ON state, if the data signal potential in the positive write period is V (ON +) and the data signal potential in the negative write period is V (ON-), the ON potential after the capacitive coupling voltage drop is V (ON +)
-ΔV1 and OFF potential become V (ON-)-ΔV1 and the opposing signal is the average value α1 = {V (ON +) + V
If (ON-)} / 2-ΔV1, it is possible to apply a symmetrical voltage having no DC component to the pixel. However, when writing the OFF state, assuming that the data signal potential in the positive polarity writing period is V (OFF +) and the data signal potential in the negative polarity writing period is V (OFF-), the ON potential after the capacitive coupling voltage drop is V. (OFF +) − ΔV2, the OFF potential becomes V (OFF −) − ΔV2, and in order to apply a symmetrical voltage having no DC component to the pixel, the counter signal is the average value of α2 = {V (OFF +) + V (OFF− )} / 2-ΔV
Must be 2. Data amplitude ΔD = V (ON +)
Considering −V (OFF +) = V (OFF −) − V (OFF +), the DC voltage component of α2−α1 = ΔV1−ΔV2 is applied to the pixel in the OFF state. If the opposite signal is optimized so that the DC component is not applied in the OFF state, the DC component is applied in the ON state on the contrary. In gradation display, a voltage between the ON signal and the OFF signal or a signal having a pulse width is applied. It is possible to adjust the opposite signal so that a symmetrical voltage is applied to only one specific gray scale and no direct current component is present, but it is inevitable that the other gray scale has a direct current component.

【0007】従来の対策は画素に付加容量を付ける事に
より相対的な結合容量値を下げ電圧ドロップΔVを低減
する事であった。最近の液晶は0.3V程度以内の直流
成分に対しては焼き付き、劣化は何とか許容される為、
全ての階調範囲のうち最も大きな直流成分を該許容値以
内とするように付加容量設計する事が一般的である。し
かし付加容量は平面的に付加すると開口率を損じ、多層
構造により立体的に付加すると工程が複雑となり問題が
多い。また、付加容量を設けても0.3V程度の直流成
分は避け得ず微妙な焼き付きや劣化はまだ問題である。
更に以上は容量結合のみの効果で説明したが、TFTの
書き込み特性が十分でない場合には、従来の駆動法では
更に直流が掛かり易くなりこれは付加容量では解決でき
ない。
A conventional measure has been to reduce the voltage drop ΔV by lowering the relative coupling capacitance value by adding an additional capacitance to the pixel. Since recent liquid crystals have somehow allowed for image sticking and deterioration for DC components within about 0.3V,
It is general to design the additional capacitance so that the largest DC component in the entire gradation range is within the allowable value. However, when the additional capacitance is added two-dimensionally, the aperture ratio is impaired, and when three-dimensionally added due to the multilayer structure, the process becomes complicated and there are many problems. Further, even if an additional capacitor is provided, a DC component of about 0.3 V cannot be avoided, and subtle image sticking or deterioration is still a problem.
Further, although the above has been described only by the effect of capacitive coupling, if the writing characteristics of the TFT are not sufficient, the conventional driving method is more likely to apply direct current, which cannot be solved by the additional capacitance.

【0008】[0008]

【発明が解決しようとする課題】液晶に非対称な電圧が
印加されるとフリッカや画像の焼き付き、液晶の劣化等
が生ずる。しかし従来の駆動法では画素と走査線の間の
容量や、TFTの駆動能力不足によってON状態、OF
F状態或いは中間階調状態で全て画素に対称電圧を印加
する事が出来ない。また付加容量を形成する事で直流印
加は低減する事は可能であるが問題を解決する事にはな
らない。更に付加容量の設置は工程を複雑にし開口率を
損じると言う問題も引き起こす。
When an asymmetric voltage is applied to the liquid crystal, flicker, image sticking, deterioration of the liquid crystal, etc. occur. However, in the conventional driving method, the capacitance between the pixel and the scanning line or the insufficient driving capability of the TFT causes the ON state and the OF
It is impossible to apply the symmetrical voltage to all the pixels in the F state or the intermediate gradation state. Further, although it is possible to reduce the direct current application by forming the additional capacitance, this does not solve the problem. Furthermore, the installation of the additional capacitance causes a problem that the process is complicated and the aperture ratio is impaired.

【0009】本発明の目的は工程を複雑にしたり開口率
等を損じる事なく容量結合による直流印加を低減する事
を目的としている。更にTFTの書き込み特性不足に起
因する直流印加も改善する事を目的とする。
An object of the present invention is to reduce the direct current application due to capacitive coupling without complicating the process or impairing the aperture ratio and the like. Further, it is intended to improve direct current application due to insufficient writing characteristics of the TFT.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成する為
に本発明のTFTアクティブマトリクス液晶表示装置の
駆動方法に於いては、データ線に供給されるデータ信号
は画素に正の電圧を書き込む期間の振幅と画素に負の電
圧を書き込む期間の振幅が異なる事を特徴としている。
In order to achieve the above object, in the driving method of the TFT active matrix liquid crystal display device of the present invention, the data signal supplied to the data line writes a positive voltage to the pixel. It is characterized in that the amplitude of the period and the amplitude of the period in which a negative voltage is written to the pixel are different.

【0011】すなわち、上記課題を解決するための本発
明の第1の手段は、複数のデータ線と複数のゲート線と
該データ線及び走査線に接続されたTFTと該TFTに
接続された画素を有するTFTアクティブマトリクス液
晶表示装置に於いて、前記データ線に供給されるデータ
信号は前記画素に第1の極性の電圧を書き込む期間の振
幅と該画素に該第1の極性と逆極性である第2の極性の
電圧を書き込む期間の振幅が異ならせてなり前記画素に
該第1の極性の電圧を書き込む期間の第1の振幅と該画
素に該第2の極性の電圧を書き込む期間の第2の振幅の
差は走査信号振幅VPP、走査線画素間容量CPR、画素容
量CPXに対しVPP×CPR{1/(CPR+CPXON)−1/
(CPR+CPXOFF )}におおよそ等しい事を特徴とす
る。
That is, the present invention for solving the above problems
The first means of clarity is to use multiple data lines and multiple gate lines.
The TFT connected to the data line and the scanning line and the TFT
TFT active matrix liquid with connected pixels
Data supplied to the data line in the crystal display device
The signal is changed during the period in which the voltage of the first polarity is written to the pixel.
The width and the second polarity of the pixel, which is opposite to the first polarity.
Since the amplitude of the voltage writing period is different,
The first amplitude and the image in the period for writing the voltage of the first polarity
Of the second amplitude during the period of writing the voltage of the second polarity to the element
Difference is scan signal amplitude VPP, scan line pixel capacitance CPR, pixel capacitance
VPP x CPR {1 / (CPR + CPXON) -1 / for quantity CPX
(CPR + CPXOFF)}
It

【0012】上記課題を解決するための本発明の第2の
手段は、複数のデータ線と複数のゲート線と該データ線
及び走査線に接続されたTFTと該TFTに接続された
画素を有するTFTアクティブマトリクス液晶表示装置
に於いて、前記データ線に供給されるデータ信号は前記
画素に第1の極性の電圧を書き込む期間の振幅と該画素
に該第1の極性と逆極性である第2の極性の電圧を書き
込む期間の振幅を異ならせてなり、前記TFTは、入力
される前記データ信号の電圧と、該TFTから画素電極
に与えられる書き込み電位とに相違が生じるものであ
り、前記画素に第1の極性の電圧を書き込む期間の振幅
を、該画素に第2の極性の電圧を書き込む期間の振幅よ
りも大きく設定することを特徴とする
A second aspect of the present invention for solving the above problems
The means includes a plurality of data lines, a plurality of gate lines, and the data lines.
And a TFT connected to the scanning line and connected to the TFT
TFT active matrix liquid crystal display device having pixels
The data signal supplied to the data line is
Amplitude during writing of voltage of first polarity to pixel and the pixel
Write the voltage of the second polarity which is the opposite polarity to the first polarity to
The amplitude of the plug-in period is different, and the TFT is
The voltage of the data signal to be generated and the pixel electrode from the TFT
The write potential applied to
The amplitude of the period during which the voltage of the first polarity is written to the pixel
Is the amplitude during the period of writing the voltage of the second polarity to the pixel.
The feature is that it is set to a larger value .

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】[0018]

【0019】[0019]

【0020】[0020]

【0021】[0021]

【0022】[0022]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。図1に本発明の駆動法の一実施
例を示す。図3と同様、極性20で示した如くフレーム
反転の一例である。(a)は駆動波形であり、n番目、
n+1番目の走査線に供給される1、2の走査信号φ
n、φn+1は図3の31、32と同様の時分割の選択
信号である。m番目のデータ線には表示内容に応じた3
のデータ信号ψmが印加されている。(b)、(c)は
ON状態及びOFF状態での画素に印加される電圧波形
である。容量結合電圧ドロップΔV1、ΔV2は9、1
2で示され、それぞれΔV1=VPP×CPR/(CPR+C
PXON)、ΔV2=VPP×CPR/(CPR+CPXOFF )であ
る。対向電極に与える4の対向信号αは正負両極性のデ
ータ信号の中央値に対し7、8と片寄った信号としてい
る。本発明の特徴はデータ振幅を正極性と負極性の書き
込みによって異なっている値に設定している点にある。
即ち正極性のフレームでは5の第1のデータ振幅ΔD
1、負極性のフレームでは6の第2のデータ振幅ΔD2
とそれぞれ異なる振幅を与えている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the driving method of the present invention. Similar to FIG. 3, this is an example of frame inversion as indicated by the polarity 20. (A) is a drive waveform, which is the n-th,
1, 2 scan signals φ supplied to the (n + 1) th scan line
n and φn + 1 are time-division selection signals similar to 31 and 32 in FIG. 3 on the m-th data line according to the display contents
Data signal ψm is applied. (B) and (c) are voltage waveforms applied to the pixel in the ON state and the OFF state. Capacitive coupling voltage drops ΔV1 and ΔV2 are 9,1
2 and ΔV1 = VPP × CPR / (CPR + C
PXON), ΔV2 = VPP × CPR / (CPR + CPXOFF). The counter signal α of 4 given to the counter electrode is a signal deviated to 7 or 8 from the median value of the positive and negative polarities of the data signal. The feature of the present invention resides in that the data amplitude is set to a different value depending on the positive polarity write and the negative polarity write.
That is, in the positive polarity frame, the first data amplitude ΔD of 5
1, the second data amplitude ΔD2 of 6 in the negative polarity frame
And different amplitudes are given respectively.

【0023】画素容量による直流印加を抑制する為の条
件は以下の如く設定される。対向信号電位αのON状態
での理想値α1とOFF状態での理想値α2が一致すれ
ば、一致した値に対向信号を設定する事により直流印加
を抑圧する事が可能である。本実施例の如く正極性のフ
レームの第1のデータ振幅ΔD1と負極性のフレームの
第2のデータ振幅ΔD2がそれぞれ異なる場合、α2−
α1はΔD2−ΔD1+ΔV1−ΔV2で与えられる。
よって(ΔD1−ΔD2)=(ΔV1−ΔV2)の条件
を満たせば直流印加を抑える事が可能となる。この関係
は走査信号振幅VPP、走査線画素間容量CPR、画素容量
CPXに対しΔD1−ΔD2がおおよそVPP×CPR{1/
(CPR+CPXON)−1/(CPR+CPXOFF )}の満足す
る事を意味する。この条件では、図1(b)のON状態
では正極性電圧10と負極性電圧11が等しく、(c)
のOFF状態では正極性電圧13と負極性電圧14が等
しく、両方で直流成分のない対称電圧を画素に印加する
事が可能である。
The conditions for suppressing the direct current application due to the pixel capacitance are set as follows. If the ideal value α1 in the ON state and the ideal value α2 in the OFF state of the counter signal potential α match, it is possible to suppress the DC application by setting the counter signal to the matched value. When the first data amplitude ΔD1 of the positive polarity frame and the second data amplitude ΔD2 of the negative polarity frame are different from each other as in the present embodiment, α2-
α1 is given by ΔD2-ΔD1 + ΔV1-ΔV2.
Therefore, if the condition of (ΔD1−ΔD2) = (ΔV1−ΔV2) is satisfied, the direct current application can be suppressed. In this relationship, ΔD1−ΔD2 is approximately VPP × CPR {1 / with respect to the scanning signal amplitude VPP, the scanning line pixel capacitance CPR, and the pixel capacitance CPX.
(CPR + CPXON) -1 / (CPR + CPXOFF)} is satisfied. Under this condition, the positive voltage 10 and the negative voltage 11 are equal in the ON state of FIG.
In the OFF state, the positive voltage 13 and the negative voltage 14 are equal, and it is possible to apply a symmetrical voltage having no DC component to the pixel in both.

【0024】図2は本発明の駆動法の他の実施例であ
る。本実施例は図1と異なり、極性21で示した如く行
毎反転の一例である。(a)は駆動波形であり、n番
目、n+1番目の走査線に供給される1、2の走査信号
φn、φn+1は図3の31、32と同様の時分割の選
択信号である。m番目のデータ線には表示内容に応じた
15のデータ信号ψmが印加されているが前実施例と異
なり21の極性に対応して極性が反転している。
(b)、(c)はON状態及びOFF状態での画素に印
加される電圧波形である。9、12の容量結合電圧ドロ
ップΔV1、ΔV2や対向電極に与える4の対向信号α
と正負両極性のデータ信号の中央値に対する値7、8は
前実施例と同様である。
FIG. 2 shows another embodiment of the driving method of the present invention. This embodiment is different from FIG. 1 in that it is an example of inversion for every row as indicated by the polarity 21. (A) is a drive waveform, and the 1 and 2 scanning signals φn and φn + 1 supplied to the nth and n + 1th scanning lines are time division selection signals similar to 31 and 32 in FIG. Fifteen data signals ψm corresponding to the display contents are applied to the m-th data line, but the polarity is inverted corresponding to the polarity of 21 unlike the previous embodiment.
(B) and (c) are voltage waveforms applied to the pixel in the ON state and the OFF state. Capacitive coupling voltage drops ΔV1 and ΔV2 of 9 and 12 and a counter signal α of 4 given to the counter electrode
The values 7 and 8 for the median value of the positive and negative polarities of the data signal are the same as in the previous embodiment.

【0025】本実施例でも前実施例と同様データ振幅を
正極性と負極性の書き込みによって異なっている値に設
定している。即ち21の極性で正極性のタイミングでは
5の第1のデータ振幅ΔD1、負極性のタイミングでは
6の第2のデータ振幅ΔD2とそれぞれ異なる振幅を与
えている。即ち画素容量の変化による直流印加を抑制す
る為に(ΔD1−ΔD2)=(ΔV1−ΔV2)=VPP
×CPR{1/(CPR+CPXON)−1/(CPR+CPXOFF
)}の振幅差を与えている。この結果、図2(b)の
ON状態では正極性電圧10と負極性電圧11が等し
く、(c)のOFF状態では正極性電圧13と負極性電
圧14が等しく、両方で直流成分のない対称電圧が画素
に印加されている。
In this embodiment as well, the data amplitude is set to a different value depending on the positive polarity write and the negative polarity write, as in the previous example. That is, with the polarity of 21, the first data amplitude ΔD1 of 5 is given at the positive polarity timing, and the second data amplitude ΔD2 of 6 is given at the negative polarity timing. That is, (ΔD1−ΔD2) = (ΔV1−ΔV2) = VPP in order to suppress direct current application due to changes in pixel capacitance.
× CPR {1 / (CPR + CPXON) -1 / (CPR + CPXOFF
)} Amplitude difference is given. As a result, the positive voltage 10 and the negative voltage 11 are equal in the ON state of FIG. 2B, and the positive voltage 13 and the negative voltage 14 are equal in the OFF state of FIG. 2C, both of which are symmetrical with no DC component. A voltage is applied to the pixel.

【0026】以上は画素容量による直流印加の抑制効果
に付いて述べたが、本発明はTFTの書き込み特性不足
による直流印加に対しても抑制効果がある。TFTでは
ゲート電位とソースあるいはドレイン電位の差の電圧で
電流が制御される。駆動能力が十分な場合にはある程度
以上の電圧が印加されていればスイッチとしてはON状
態となりデータ信号電位がそのまま画素電極に書き込ま
れる。ところが駆動能力が不十分な場合には書き込み特
性は走査信号電位(ゲート電位)とソースあるいはドレ
イン電圧(データ信号電位)の差に依存し画素電極に書
き込まれる電位とデータ信号電圧とには若干の相違が生
じる。図1(a)ではTFTはnチャネル素子でありゲ
ート電極である走査電極に加えられる走査信号φn 、φ
n+1 は選択区間では正極性の電位が印加されている。こ
の様な場合、正極性の書き込み状態と負極性の書き込み
状態で走査信号電位(ゲート電位)とソースあるいはド
レイン電圧(データ信号電位)の差を比較すると、正極
性の書き込み状態の方が負極性の書き込み状態と比べ差
が小さい。よって負極性の書き込み状態ではTFTは書
き込み能力が大きく十分ONし、画素電極に書き込まれ
る電位はデータ信号電位にほぼ一致する。ところが正極
性の書き込み状態では書き込み能力が不足し画素電極に
書き込まれる電位はデータ信号電位よりやや小さい値と
なる。本発明ではこの様な現象も補償可能である。この
ような場合には正極性のタイミングの第1のデータ振幅
ΔD1を負極性のタイミングの第2のデータ振幅ΔD2
よりやや大きめに設定する事によって補償する事が出来
る。
Although the effect of suppressing the direct current application due to the pixel capacitance has been described above, the present invention also has the effect of suppressing the direct current application due to insufficient writing characteristics of the TFT. In the TFT, the current is controlled by the voltage which is the difference between the gate potential and the source or drain potential. When the driving capability is sufficient, if a voltage higher than a certain level is applied, the switch is turned on, and the data signal potential is written as it is to the pixel electrode. However, when the driving capability is insufficient, the writing characteristics depend on the difference between the scanning signal potential (gate potential) and the source or drain voltage (data signal potential), and the potential written to the pixel electrode and the data signal voltage are slightly different. Differences occur. In FIG. 1A, the TFT is an n-channel element and the scanning signals φ n and φ applied to the scanning electrode which is the gate electrode.
A positive potential is applied to n + 1 in the selected section. In such a case, comparing the difference between the scanning signal potential (gate potential) and the source or drain voltage (data signal potential) in the positive writing state and the negative writing state, the positive writing state is more negative. The difference is small compared to the written state. Therefore, in the negative writing state, the TFT has a large writing ability and is sufficiently turned on, and the potential written in the pixel electrode substantially matches the data signal potential. However, in the positive writing state, the writing ability is insufficient and the potential written in the pixel electrode becomes a value slightly smaller than the data signal potential. The present invention can also compensate for such a phenomenon. In such a case, the first data amplitude ΔD1 of the positive polarity timing is set to the second data amplitude ΔD2 of the negative polarity timing.
It can be compensated by setting it to be slightly larger.

【0027】図5は本発明の駆動法の他の実施例の駆動
波形である。本実施例は図2の実施例と同様、極性21
で示した如く行毎反転の一例であるが54の対向信号α
が異なる。対向信号αは図1、図2の実施例と異なり一
定値ではなく54の様に極性21に対応して変動してい
る。その結果データ信号の中心値55は一定となり、m
番目のデータ線に印加される53のデータ信号はψmは
この値を中心に21の極性に対応して極性が反転してい
る。n番目、n+1番目の走査線に供給される1、2の
走査信号φn、φn+1は図1、図2の1、2と同様の
時分割の選択信号である。本実施例の様に対向信号αを
変動させるとデータ信号の全体振幅を低減する事が可能
である。例えば図2では全体振幅は7、8で表した電圧
に(ΔD1+ΔD2)/2を加えた電圧であったのに対
し、図5ではΔD2そのもので済む。データ線駆動回路
の電圧を低減したい場合は有効である。
FIG. 5 shows drive waveforms of another embodiment of the drive method of the present invention. This embodiment is similar to the embodiment of FIG.
The counter signal α of 54 is an example of inversion for each row as shown in FIG.
Is different. Unlike the embodiment shown in FIGS. 1 and 2, the opposed signal α does not have a constant value but fluctuates corresponding to the polarity 21 like 54. As a result, the central value 55 of the data signal becomes constant and m
In the 53 data signal applied to the th data line, ψm has its polarity inverted corresponding to the 21 polarity with this value as the center. The 1 and 2 scanning signals φn and φn + 1 supplied to the nth and n + 1th scanning lines are time-division selection signals similar to 1 and 2 in FIGS. 1 and 2. By changing the counter signal α as in the present embodiment, it is possible to reduce the overall amplitude of the data signal. For example, in FIG. 2, the total amplitude is a voltage obtained by adding (ΔD1 + ΔD2) / 2 to the voltage represented by 7, 8, whereas in FIG. 5, ΔD2 itself is sufficient. This is effective when it is desired to reduce the voltage of the data line drive circuit.

【0028】本実施例でも前実施例と同様データ振幅を
正極性と負極性の書き込みによって異なっている値に設
定している。即ち21の極性で正極性のタイミングでは
5の第1のデータ振幅ΔD1、負極性のタイミングでは
6の第2のデータ振幅ΔD2とそれぞれ異なる振幅を与
えている。本実施例でも容量結合やTFTの書き込み特
性不足に起因する直流印加が改善される。
In this embodiment as well, the data amplitude is set to a different value depending on the positive polarity and negative polarity writing as in the previous example. That is, with the polarity of 21, the first data amplitude ΔD1 of 5 is given at the positive polarity timing, and the second data amplitude ΔD2 of 6 is given at the negative polarity timing. Also in this embodiment, direct current application due to capacitive coupling and insufficient writing characteristics of the TFT is improved.

【0029】[0029]

【発明の効果】以上の実施例で明かな如く、本発明によ
れば工程を複雑にしたり開口率等を損じる事なく容量結
合による直流印加を低減する事が可能である。更にTF
Tの書き込み特性不足に起因する直流印加も改善する事
が可能である。
As is apparent from the above embodiments, according to the present invention, it is possible to reduce the direct current application by capacitive coupling without complicating the process or impairing the aperture ratio and the like. Further TF
It is also possible to improve the direct current application due to the insufficient writing characteristics of T.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の駆動方法の一実施例に於ける各電位波
形である。
FIG. 1 is each potential waveform in one embodiment of a driving method of the present invention.

【図2】本発明の駆動方法の他の実施例に於ける各電位
波形である。
FIG. 2 is each potential waveform in another embodiment of the driving method of the present invention.

【図3】従来の代表的は駆動方法に於ける各電位波形で
ある。
FIG. 3 is a typical representative waveform of each potential in a driving method.

【図4】TFTアクティブマトリクス液晶表示装置のブ
ロック図である。
FIG. 4 is a block diagram of a TFT active matrix liquid crystal display device.

【図5】本発明の駆動方法の他の実施例に於ける各電位
波形である。
FIG. 5 shows potential waveforms in another embodiment of the driving method of the present invention.

【符号の説明】[Explanation of symbols]

1、2 走査信号 3 データ信号 4 対向信号 5 第1のデータ振幅 6 第2のデータ振幅 22 TFT 23 画素 24 データ線 25 走査線 26 マトリクス部 1, 2 scan signal 3 data signals 4 Opponent signal 5 First data amplitude 6 Second data amplitude 22 TFT 23 pixels 24 data lines 25 scan lines 26 Matrix part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数のデータ線と複数のゲート線と該デ
ータ線及び走査線に接続されたTFTと該TFTに接続
された画素を有するTFTアクティブマトリクス液晶表
示装置に於いて、前記 データ線に供給されるデータ信号は前記画素に第1
の極性の電圧を書き込む期間の振幅と画素に該第1の
極性と逆極性である第2の極性の電圧を書き込む期間の
振幅が異ならせてなり前記画素に該第1の極性の電圧を
書き込む期間の第1の振幅画素に該第2の極性の電
圧を書き込む期間の第2の振幅の差は走査信号振幅VP
P、走査線画素間容量CPR、画素容量CPXに対しVPP×
CPR{1/(CPR+CPXON)−1/(CPR+CPXOFF
)}におおよそ等しい事を特徴とするTFTアクティ
ブマトリクス液晶表示装置。
1. A TFT active matrix liquid crystal display device having a plurality of data lines, a plurality of gate lines, TFTs connected to the data lines and scanning lines, and pixels connected to the TFTs, wherein the data lines are data signal supplied first to said pixel
First amplitude and said pixel period for writing the voltage polarity
Polarity and the first amplitude and the pixels of the pixel becomes so amplitude different periods of writing voltage of the second polarity is opposite the polarity period for writing the polarity of the voltage of the first second polarity The difference in the second amplitude during the voltage writing period is the scanning signal amplitude VP
P, the scanning line pixel capacitance CPR, V PP × Shi pair in the pixel capacitor CPX
CPR {1 / (CPR + CPXON) -1 / (CPR + CPXOFF
)} Is approximately equivalent to the TFT active matrix liquid crystal display device.
【請求項2】 複数のデータ線と複数のゲート線と該デ
ータ線及び走査線に接続されたTFTと該TFTに接続
された画素を有するTFTアクティブマトリクス液晶表
示装置に於いて、前記 データ線に供給されるデータ信号は前記画素に第1
の極性の電圧を書き込む期間の振幅と画素に該第1の
極性と逆極性である第2の極性の電圧を書き込む期間の
振幅を異ならせてなり、前記TFTは、入力される前記データ信号の電圧と、該
TFTから画素電極に与えられる書き込み電位とに相違
が生じるものであり、 前記画素に第1の極性の電圧を書き込む期間の振幅を、
該画素に第2の極性の電圧を書き込む期間の振幅よりも
大きく設定することを 特徴とするTFTアクティブマト
リックス液晶表示装置。
Wherein at the TFT active matrix liquid crystal display device having a plurality of data lines and a plurality of pixels connected to the connected TFT and the TFT to the gate lines and the data lines and the scanning lines, the data lines data signal supplied first to said pixel
First amplitude and said pixel period for writing the voltage polarity
The TFT has different amplitudes in a period for writing a voltage having a second polarity which is opposite to the polarity, and the TFT is
Different from the writing potential applied from the TFT to the pixel electrode
And the amplitude of the period for writing the voltage of the first polarity to the pixel is
Than the amplitude during the period of writing the voltage of the second polarity to the pixel
A TFT active matrix liquid crystal display device characterized by being set large .
JP29665092A 1992-10-09 1992-10-09 TFT active matrix liquid crystal display device and driving method thereof Expired - Lifetime JP3366354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29665092A JP3366354B2 (en) 1992-10-09 1992-10-09 TFT active matrix liquid crystal display device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29665092A JP3366354B2 (en) 1992-10-09 1992-10-09 TFT active matrix liquid crystal display device and driving method thereof

Publications (2)

Publication Number Publication Date
JPH06123875A JPH06123875A (en) 1994-05-06
JP3366354B2 true JP3366354B2 (en) 2003-01-14

Family

ID=17836293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29665092A Expired - Lifetime JP3366354B2 (en) 1992-10-09 1992-10-09 TFT active matrix liquid crystal display device and driving method thereof

Country Status (1)

Country Link
JP (1) JP3366354B2 (en)

Also Published As

Publication number Publication date
JPH06123875A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
EP0622772B1 (en) Method and apparatus for eliminating crosstalk in active matrix liquid crystal displays
JP4719330B2 (en) Liquid crystal display device and driving method thereof
JP3333138B2 (en) Driving method of liquid crystal display device
KR100627762B1 (en) Flat display panel driving method and flat display device
JP2505864B2 (en) Crosstalk reduction method and device for display
EP0767449B1 (en) Method and circuit for driving active matrix liquid crystal panel with control of the average driving voltage
US8552953B2 (en) Display device
JP4330059B2 (en) Liquid crystal display device and drive control method thereof
JPH0843795A (en) Liquid crystal display device
JPH1062811A (en) Liquid crystal display element and large-sized liquid crystal display element as well as method for driving liquid crystal display element
US7002543B2 (en) Method for driving active matrix type liquid crystal display
KR100783697B1 (en) Liquid Crystal Display device with a function of compensating a moving picture and driving apparatus and method thereof
JP3147104B2 (en) Active matrix type liquid crystal display device and driving method thereof
JPH07104246A (en) Liquid crystal display device
US6864872B2 (en) Driving method of bias compensation for TFT-LCD
JPH10111490A (en) Driving method for liquid crystal display device
US6344842B1 (en) Liquid crystal display device and a driving method therefor
JPH10161084A (en) Liquid crystal display device and driving method therefor
JP3366354B2 (en) TFT active matrix liquid crystal display device and driving method thereof
JP3548811B2 (en) Active matrix liquid crystal display device and method of driving active matrix liquid crystal display element
US6535193B1 (en) Display apparatus
JPH08297302A (en) Method for driving liquid crystal display device
JP3167135B2 (en) Two-terminal active matrix liquid crystal display device and driving method thereof
US6219018B1 (en) Active matrix type display device
JP3384953B2 (en) Drive circuit for liquid crystal display

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

EXPY Cancellation because of completion of term