JP3365588B2 - Chill prediction method for spheroidal graphite cast iron structure - Google Patents

Chill prediction method for spheroidal graphite cast iron structure

Info

Publication number
JP3365588B2
JP3365588B2 JP05621395A JP5621395A JP3365588B2 JP 3365588 B2 JP3365588 B2 JP 3365588B2 JP 05621395 A JP05621395 A JP 05621395A JP 5621395 A JP5621395 A JP 5621395A JP 3365588 B2 JP3365588 B2 JP 3365588B2
Authority
JP
Japan
Prior art keywords
chill
cast iron
graphite cast
spheroidal graphite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05621395A
Other languages
Japanese (ja)
Other versions
JPH08253803A (en
Inventor
克 小倉
益雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP05621395A priority Critical patent/JP3365588B2/en
Publication of JPH08253803A publication Critical patent/JPH08253803A/en
Application granted granted Critical
Publication of JP3365588B2 publication Critical patent/JP3365588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は球状黒鉛鋳鉄組織のチル
予測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chill prediction method for a spheroidal graphite cast iron structure.

【0002】[0002]

【従来の技術】球状黒鉛鋳鉄の凝固速度が速いと、急冷
セメンタイトであるチルが生成し易い。チルが生成した
組織は硬いが脆い。一方、チルが生成しなかった組織
は、一般的にはフェライト、パーライト、黒鉛からな
り、靭性を有する。そして産業界では従来より、鋳物等
の用途に応じて冷やし金等で溶湯の冷却速度を早めてチ
ルを積極的に生成したり、あるいは、鋳型の断熱性を高
める等して冷却速度を遅めてチルを積極的に抑止したり
している。しかしこれらの操作はトライアンドエラーに
大きく依存せざるを得ない。
2. Description of the Related Art When spheroidal graphite cast iron has a high solidification rate, chill, which is a rapidly cooled cementite, is likely to be formed. The structure produced by chill is hard but brittle. On the other hand, the structure in which chill is not formed generally consists of ferrite, pearlite, and graphite and has toughness. In the industry, the cooling rate of the molten metal has been conventionally increased by using a chiller or the like to actively generate chill, or the cooling rate of the mold is increased by increasing the heat insulating property of the mold, depending on the use such as casting. And actively deter chill. However, these operations must rely heavily on trial and error.

【0003】またチルを所望する組織にチルが生成して
いなかったら、鋳物製品の必要硬度が得られない問題が
生じる。あるいは、チルが所望されていない組織にチル
が生成していたら、加工時の刃具の折損等が生じる問題
がある。
If chills are not formed in the desired structure, a problem arises in that the required hardness of the cast product cannot be obtained. Alternatively, if chills are generated in a tissue in which chilling is not desired, there is a problem that breakage or the like of the cutting tool may occur during processing.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した実情
に鑑みなされたものであり、その課題は、チル予測パラ
メータを用いてチル生成を効果的に予測し得、トライア
ンドエラーの軽減、回避に有利な球状黒鉛鋳鉄組織のチ
ル予測方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and its object is to effectively predict chill generation by using a chill prediction parameter and reduce or avoid trial and error. Another object of the present invention is to provide a method for predicting the chill of a spheroidal graphite cast iron structure, which is advantageous for

【0005】[0005]

【課題を解決するための手段】本発明者は、球状黒鉛鋳
鉄の溶湯の凝固速度が速いと析出する球状黒鉛の粒数が
多くなること、また溶湯の凝固速度が速いとチル生成量
が多くなることから、黒鉛核生成速度とチル発生量との
相関性に着目した。そしてその相関性を試験で確認し、
請求項1に係る発明を開発した。
Means for Solving the Problems The present inventor has found that when the solidification rate of the molten spheroidal graphite cast iron is high, the number of spheroidal graphite particles that precipitate is large, and when the solidification rate of the molten metal is high, the amount of chill formation is large. from becoming, focusing on the correlation between the black Namarikaku production rate and chill emissions. And confirm the correlation in the test,
The invention according to claim 1 has been developed.

【0006】また本発明者は、球状黒鉛鋳鉄の溶湯の固
相率をFとし、0<F<1のときに、上記チル予測パラ
メータを求めれば、チル予測パラメータとチル発生量と
の相関性が高まる点に着目し、その相関性を試験で確認
し、請求項2に係る発明を開発した。即ち請求項1に係
る球状黒鉛鋳鉄組織のチル予測方法は、球状黒鉛鋳鉄の
溶湯における黒鉛核生成速度に基づいてチル予測パラメ
ータを求め、チル予測パラメータに応じて球状黒鉛鋳鉄
におけるチル発生量を予測することを特徴とするもので
ある。
Further, the present inventor sets the solid fraction of the molten spheroidal graphite cast iron to F, and when 0 <F <1, the chill prediction parameter and the chill generation amount are correlated if the chill prediction parameter is obtained. Attention was paid to the point of increasing the value, the correlation was confirmed by a test, and the invention according to claim 2 was developed. That chill prediction method of spheroidal graphite cast iron structure according to claim 1 obtains a chill prediction parameters based on the black Namarikaku generation speed that put the molten spheroidal graphite cast iron, chill in ductile iron in accordance with the chill prediction parameters It is characterized by predicting the amount of generation.

【0007】請求項2に係る球状黒鉛鋳鉄組織のチル予
測方法は、球状黒鉛鋳鉄の溶湯の固相率をFとし、0<
F<1のときに、球状黒鉛鋳鉄における黒鉛核生成速
基づいてチル予測パラメータを求め、チル予測パラメ
ータに応じて球状黒鉛鋳鉄におけるチル発生量を予測す
ることを特徴とするものである。ここでF=0は液相の
みの状態を意味し、ここでF=1は固相のみの状態を意
味する。
A chill prediction method for a spheroidal graphite cast iron structure according to a second aspect of the present invention is such that the solid phase ratio of the molten spheroidal graphite cast iron is F and 0 <
When F <1, black Namarikaku generation speed that put the spheroidal graphite cast iron
A chill prediction parameter is obtained based on the chill prediction parameter, and the chill generation amount in spheroidal graphite cast iron is predicted according to the chill prediction parameter. Where F = 0 is the liquid phase
Means the solid state, where F = 1 means the solid state only.
To taste.

【0008】[0008]

【作用及び発明の効果】請求項1の方法によれば、球状
黒鉛鋳鉄の溶湯における黒鉛核生成速度に関するチル予
測パラメータを求め、そのチル予測パラメータに基づい
てチル生成量を予測する。この方法によれば、チル予測
パラメータとチル発生量とが相関し、球状黒鉛鋳鉄にお
ける実際のチル生成量が効果的に予測される。
According to the method of claim 1, according to the action and the present invention, it obtains a chill prediction parameters related black Namarikaku production rate that put the molten spheroidal graphite cast iron, predicts the chill generation amount based on the chill prediction parameters. According to this method, the chill prediction parameter correlates with the chill generation amount, and the actual chill generation amount in spheroidal graphite cast iron is effectively predicted.

【0009】なお黒鉛核生成数と黒鉛核生成速度とは互
いに対応するものであり、黒鉛核生成速度が速いと黒鉛
核生成数も多くなる。請求項2の方法によれば、球状黒
鉛鋳鉄の溶湯の固相率Fが0<F<1のときに、上記し
たチル予測パラメータを求める。この様な請求項2によ
れば、チル予測パラメータとチル発生量との相関性が一
層向上し、球状黒鉛鋳鉄におけるチル生成量が効果的に
予測される。
The graphite nucleation number and the graphite nucleation rate correspond to each other, and if the graphite nucleation rate is high, the graphite nucleation number also increases. According to the method of claim 2, when the solid phase ratio F of the molten spheroidal graphite cast iron is 0 <F <1, the chill prediction parameter is obtained. According to the second aspect, the correlation between the chill prediction parameter and the chill generation amount is further improved, and the chill generation amount in the spheroidal graphite cast iron is effectively predicted.

【0010】この様に請求項1、2によれば球状黒鉛鋳
鉄におけるチル生成量を予測できるので、従来の様にト
ライアンドエラーに大きく依存する点を改善できる。よ
って、冷やし金等で溶湯の冷却速度を早めてチルを積極
的に生成させたりする際に、適切なチル生成操作を行い
得る。あるいは、鋳型の断熱性を高める等して冷却速度
を遅めてチルを積極的に抑止する際に、適切なチル抑止
操作を行い得る。
As described above, according to the first and second aspects, since the amount of chill formation in the spheroidal graphite cast iron can be predicted, it is possible to improve the point that largely depends on the trial and error as in the conventional case. Therefore, when the chill is used to accelerate the cooling rate of the molten metal to positively generate chill, an appropriate chill generation operation can be performed. Alternatively, when the cooling rate is slowed by, for example, increasing the heat insulating property of the mold to positively suppress the chill, an appropriate chill suppressing operation can be performed.

【0011】そのため本発明方法によれば、チルを生成
させる必要のある組織にチルが生成していなかったり、
あるいは、チルが所望されていない組織にチルが生成し
てしまう問題を軽減、回避するのに有利である。よって
球状黒鉛鋳鉄鋳物の不良率低減、生産性の向上に有利で
ある。またチル生成を避けるために鋳物肉厚を必要以上
に厚肉化する不具合を軽減、回避するのにも有利であ
り、球状黒鉛鋳鉄鋳物における軽量化、価格の低廉等に
も貢献できる。
Therefore, according to the method of the present invention, chill is not generated in the tissue in which chill needs to be generated,
Alternatively, it is advantageous in reducing or avoiding the problem that chills are generated in tissues where chills are not desired. Therefore, it is advantageous for reducing the defective rate and improving the productivity of the spheroidal graphite cast iron casting. It is also advantageous for reducing and avoiding the problem that the casting thickness is increased more than necessary in order to avoid chill formation, and can contribute to weight reduction and price reduction in the spheroidal graphite cast iron casting.

【0012】[0012]

【実施例】この実施例では共晶組成またはこれに類似す
る共晶組成系の球状黒鉛鋳鉄に適用した場合である。こ
の球状黒鉛鋳鉄によれば、図1に模式的に示す様な冷却
曲線を描く。溶湯は領域Aでは時間の経過に伴い降温す
る。共晶が生成する領域Bで温度が上昇するのは、球状
黒鉛鋳鉄の凝固による固相から発生した潜熱の影響であ
る。完全に凝固すれば、潜熱の発生は停止するので、領
域Cに示す様に時間の経過に伴い降温する。
EXAMPLE In this example, the eutectic composition or a similar eutectic composition system was applied to spheroidal graphite cast iron. This spheroidal graphite cast iron draws a cooling curve as schematically shown in FIG. In the region A, the temperature of the molten metal drops with time. The temperature rise in the region B where eutectic is generated is due to the effect of latent heat generated from the solid phase due to the solidification of spheroidal graphite cast iron. When completely solidified, the generation of latent heat is stopped, so that the temperature is lowered with the passage of time as shown in region C.

【0013】この例では差分法を採用して、分割した要
素ごとに処理を実行するものである。図2はコンピュー
タが実行するメインルーチンのフローチャートを示す。
なお小文字であるtは時刻を意味し、大文字であるTは
球状黒鉛鋳鉄の温度を意味する。ステップS2では球状
黒鉛鋳鉄の溶湯の注湯温度、鋳型の温度、球状黒鉛鋳鉄
におけるSi量などの初期条件がキーボード等の設定手
段から入力される。従ってステップS2は注湯温度設定
手段、鋳型温度設定手段及びSi含有量設定手段を構成
する。ステップS4では湯流れ演算処理サブルーチンが
実行される。湯流れ演算処理サブルーチンは鋳造方案に
応じて、溶湯の充填の程度、湯流れに応じて降温した溶
湯の温度を演算で求めるものである。
In this example, the difference method is adopted and the processing is executed for each of the divided elements. FIG. 2 shows a flowchart of a main routine executed by the computer.
In addition, the small letter t means time, and the upper case T means temperature of spheroidal graphite cast iron. In step S2, initial conditions such as the molten metal pouring temperature of the spheroidal graphite cast iron, the temperature of the mold, and the amount of Si in the spheroidal graphite cast iron are input from a setting means such as a keyboard. Therefore, step S2 constitutes the pouring temperature setting means, the mold temperature setting means, and the Si content setting means. In step S4, a molten metal flow calculation processing subroutine is executed. The molten metal flow calculation processing subroutine calculates the filling degree of the molten metal and the temperature of the molten metal that has been lowered according to the molten metal flow according to the casting method.

【0014】ステップS6では鋳型に充填を完了したか
否かを判定する。充填完了であれば、ステップS8で凝
固中の温度演算処理サブルーチンを実行し、球状黒鉛鋳
鉄(一般的には球状黒鉛鋳鉄の溶湯)の温度T、つまり
時刻tにおける温度T(t)を単位時間ごとに求める。
次にステップS10に進み、固相率Fが0を越え1未満
であるか否か、つまりO<F<1の領域、換言すれば固
相及び液相の共在状態であるか否か判定する。従ってス
テップS10は固液共存判別手段を構成する。なお固相
率『0』は液相のみの状態を意味し、固相率『1』は固
相のみの状態を意味する。
In step S6, it is determined whether or not the mold is completely filled. If the filling is completed, the temperature calculation processing subroutine during solidification is executed in step S8, and the temperature T of the spheroidal graphite cast iron (generally, the molten metal of spheroidal graphite cast iron), that is, the temperature T (t) at the time t is set as a unit time. Ask for each.
Next, in step S10, it is determined whether or not the solid fraction F is more than 0 and less than 1, that is, the region of O <F <1, in other words, the solid and liquid phases are coexisting. To do. Therefore, step S10 constitutes solid-liquid coexistence determining means. The solid phase ratio "0" means only the liquid phase, and the solid phase ratio "1" means only the solid phase.

【0015】NOであればステップS10からステップ
S14に進む。YESであればステップS10からステ
ップS12に進み、チル予測パラメータ演算処理サブル
ーチンを実行する。次にステップS14で演算終了か否
か判定し、つまり差分法における要素全部について演算
したか否か判定し、NOであれば、ステップS8に進
み、同じ操作を繰り返す。
If NO, the process proceeds from step S10 to step S14. If YES, the process proceeds from step S10 to step S12 to execute a chill prediction parameter calculation processing subroutine. Next, in step S14, it is determined whether or not the calculation is completed, that is, whether or not all the elements in the difference method have been calculated. If NO, the process proceeds to step S8 and the same operation is repeated.

【0016】YESであればステップS14からステッ
プS16に進み、チル評価について判定処理を行い、ス
テップS18でチル予測パラメータPの値及びチル発生
量評価点Mの双方をディスプレイやプリンタなどの出力
手段に出力する。図3は上記した温度演算処理サブルー
チンのフローチャートを示す。ステップS802では、
潜熱を無視した時刻(t+Δt)における球状黒鉛鋳鉄
の温度T’(t+Δt)を熱伝達式fから求める。ステ
ップS804では、θ=TLI−Tの式から、溶湯の過
冷度θを求める。ここで、TLIは安定平衡共晶温度を
示し、TLI=(1154.4+6.5×%Si)
〔℃〕に基づいてSi含有量に応じて求められる値であ
る。従ってステップS804は溶湯の過冷度を求める過
冷度演算手段を構成する。
If YES, the process proceeds from step S14 to step S16, a determination process is performed for chill evaluation, and in step S18, both the value of the chill prediction parameter P and the chill occurrence amount evaluation point M are output to an output means such as a display or a printer. Output. FIG. 3 shows a flowchart of the above temperature calculation processing subroutine. In step S802,
The temperature T ′ (t + Δt) of the spheroidal graphite cast iron at the time (t + Δt) ignoring the latent heat is obtained from the heat transfer equation f. In step S804, the degree of supercooling θ of the molten metal is calculated from the equation θ = TLI−T. Here, TLI indicates a stable equilibrium eutectic temperature, and TLI = (1154.4 + 6.5 ×% Si)
It is a value determined according to the Si content based on [° C]. Therefore, step S804 constitutes supercooling degree calculating means for obtaining the supercooling degree of the molten metal.

【0017】次にステップS806に進み、△F=(θ
2 ×△t/定数)の式から、固相率Fの変化、つまり固
相率変化ΔFを求める。ここで、定数は実験値により求
められた値である。従ってステップS806は固相率変
化演算手段を構成する。次にステップS808に進み、
△T=△F×Q/ρの式から、潜熱による溶湯の回復温
度△Tを求める。固化に伴い潜熱が発生し、その潜熱で
温度が上昇するからである。従ってステップS808は
球状黒鉛鋳鉄の溶湯の潜熱を求める潜熱による回復温度
演算手段を構成する。ここでQは液相が完全に凝固する
までに発生する全潜熱〔J/mol〕を示す。ρは比熱
〔J/mol/k〕を示す。
Next, in step S806, ΔF = (θ
2 × Δt / constant), the change in the solid fraction F, that is, the solid fraction change ΔF is obtained. Here, the constant is a value obtained by an experimental value. Therefore, step S806 constitutes a solid fraction change calculation means. Next, in step S808,
The recovery temperature ΔT of the molten metal due to latent heat is calculated from the formula ΔT = ΔF × Q / ρ. This is because latent heat is generated with solidification and the temperature rises due to the latent heat. Accordingly, step S808 constitutes a latent heat recovery temperature calculation means for obtaining the latent heat of the molten spheroidal graphite cast iron. Here, Q represents the total latent heat [J / mol] generated until the liquid phase is completely solidified. ρ indicates a specific heat [J / mol / k].

【0018】次にステップS810に進み、T(t+△
t)={T’(t+Δt)+△T}の式に、前記した
T’(t+Δt)及びΔTをそれぞれ代入し、これによ
り時刻(t)からの△t〔sec〕経過後、つまり時刻
(t+△t)における球状黒鉛鋳鉄の温度T(t+△
t)を求め、メインルーチンにリターンする。図4はチ
ル予測パラメータ演算処理サブルーチンのフローチャー
トを示す。ステップS1202では、E=定数×1/
(dF/dt)の式から黒鉛臨界核生成エネルギ−Eを
求める。従ってステップS1202は黒鉛臨界核生成エ
ネルギ−演算手段を構成する。
Next, in step S810, T (t + Δ
t) = {T ′ (t + Δt) + ΔT} is substituted with the above-mentioned T ′ (t + Δt) and ΔT, respectively, so that Δt [sec] has elapsed from the time (t), that is, the time ( Temperature of spheroidal graphite cast iron at t + Δt T (t + Δt
t) is obtained and the process returns to the main routine. FIG. 4 shows a flowchart of the chill prediction parameter calculation processing subroutine. In step S1202, E = constant × 1 /
The graphite critical nucleation energy-E is calculated from the equation (dF / dt). Therefore, step S1202 constitutes a graphite critical nucleation energy-calculation means.

【0019】ステップS1204では、Vc=定数×e
xp(−E/(R・T))の式から黒鉛核生成速度Vc
を求める。従ってステップS1204は球状黒鉛鋳鉄の
溶湯における黒鉛核の生成速度Vcを求める黒鉛核生成
速度演算手段を構成する。次にステップS1206に進
み、P=Σ(定数×黒鉛核生成速度Vc×△t)の式か
ら、チル予測パラメータPを求める。Σは差分した要素
を積算する意味である。従ってステップS1206は球
状黒鉛鋳鉄におけるチル生成に対応したチル予測パラメ
ータ演算手段を構成する。
In step S1204, Vc = constant × e
xp (−E / (R · T)) formula, the graphite nucleation rate Vc
Ask for. Therefore, step S1204 constitutes graphite nucleation rate calculation means for obtaining the rate Vc of graphite nucleation in the molten spheroidal graphite cast iron. Next, proceeding to step S1206, the chill prediction parameter P is obtained from the equation P = Σ (constant × graphite nucleation rate Vc × Δt). Σ means that the difference elements are integrated. Therefore, step S1206 constitutes a chill prediction parameter calculation means corresponding to chill formation in spheroidal graphite cast iron.

【0020】また図2に示すステップS16における判
定処理は、図5に示すグラフにおけるデータに基づいて
判定するものである。即ち、図5に示す様に、演算で求
めたチル予測パラメータPの値を横軸とし、実際に鋳造
した球状黒鉛鋳鉄の組織におけるチル発生量評価点Mを
縦軸とし、チル予測パラメータPとチル発生量評価点M
とを関係づけておき、特性線Kを規定する。そのグラフ
に関するデータをメモリ等の記憶手段に格納しておく。
そして判定処理では、特性線Kに基づいて、演算で求め
たチル予測パラメータPの値から、これに対応するチル
発生量評価点Mを求める。
The determination processing in step S16 shown in FIG. 2 is based on the data in the graph shown in FIG. That is, as shown in FIG. 5, the value of the chill prediction parameter P obtained by calculation is taken as the horizontal axis, the chill generation amount evaluation point M in the structure of the actually cast spheroidal graphite cast iron is taken as the vertical axis, and the chill prediction parameter P is Chill generation amount evaluation point M
Are associated with each other and the characteristic line K is defined. Data regarding the graph is stored in a storage unit such as a memory.
Then, in the determination process, based on the characteristic line K, from the value of the chill prediction parameter P obtained by the calculation, the chill occurrence amount evaluation point M corresponding thereto is obtained.

【0021】ここでチル発生量評価点Mの決定の仕方に
ついて述べる。即ち図6は実際に鋳造した球状黒鉛鋳鉄
の組織(光学顕微鏡;倍率100倍)に応じたチル発生
量評価点を示す。図6(A)では球状黒鉛は微細でその
粒数は多く、しかも多くのチルが生成しており、チル発
生量評価点は5である。図6(B)では球状黒鉛はやや
大きく、粒数はやや減少しており、そしてチル量は減少
しているものの、まだチルは残留しており、チル発生量
評価点は4である。図6(C)ではチルは大幅に減少し
ており、球状黒鉛の粒径も大きく、球状黒鉛の数もかな
り減少しており、チル発生量評価点は3である。図6
(D)ではチルは実質的に生成しておらず、球状黒鉛の
粒径は大きくなり、その粒数は減少しており、チル発生
量評価点は2である。
Here, how to determine the chill generation amount evaluation point M will be described. That is, FIG. 6 shows chill generation amount evaluation points according to the structure of the actually cast spheroidal graphite cast iron (optical microscope; magnification 100 times). In FIG. 6 (A), the spheroidal graphite is fine and has a large number of grains, and more chills are produced, and the chill generation amount evaluation point is 5. In FIG. 6 (B), the spheroidal graphite is slightly large, the number of particles is slightly reduced, and the chill amount is reduced, but the chill still remains, and the chill generation amount evaluation point is 4. In FIG. 6 (C), chill is significantly reduced, the particle size of spheroidal graphite is also large, and the number of spheroidal graphite is also considerably reduced, and the chill generation amount evaluation point is 3. Figure 6
In (D), chill is not substantially generated, the particle size of the spherical graphite is large, the number of particles is decreasing, and the chill generation amount evaluation point is 2.

【0022】なお球状黒鉛鋳鉄の炭素量が変更されたと
きには、変更された炭素量に応じた球状黒鉛鋳鉄を実際
に鋳造して、実際の組織における球状黒鉛の状態やチル
の状態に対応させたチル発生評価点Mとチル予測パラメ
ータPとの関係を示すグラフ、つまり特性線Kを作製す
るものである。上記したチル予測工程においてチルが生
成するチル予測パラメータPまたはチル発生評価点Mの
値が出力されたときには、砂型や金型等の鋳型のうちチ
ルが生成する部位のキャビティの冷却速度をチルが生成
せね様に調整する冷却速度調整工程を施す。
When the carbon content of the spheroidal graphite cast iron was changed, spheroidal graphite cast iron corresponding to the changed carbon content was actually cast to correspond to the state of spheroidal graphite or the chill state in the actual structure. A graph showing the relationship between the chill occurrence evaluation point M and the chill prediction parameter P, that is, a characteristic line K is created. When the chill prediction parameter P generated by chill or the value of the chill occurrence evaluation point M is output in the chill prediction process described above, the chill indicates the cooling rate of the cavity of the portion of the mold such as a sand mold or a mold where chill is generated. A cooling rate adjusting step is performed to adjust the generation.

【0023】その後、鋳型のキャビティに球状黒鉛鋳鉄
の高温の溶湯を装填して鋳造し、固化し、チルが低減ま
たは回避された球状黒鉛鋳鉄の鋳物を得る溶湯鋳造工程
とを実施する。以上説明した様に本実施例によれば、球
状黒鉛鋳鉄の溶湯における黒鉛核生成速度Vcに基づく
チル予測パラメータPを用い、チル予測パラメータPに
応じて球状黒鉛鋳鉄におけるチル生成量を予測する。こ
の方法によれば、チル予測パラメータPとチル発生量と
が相関するので、実際に注湯したときの球状黒鉛鋳鉄に
おけるチル生成量が効果的に予測される。
After that, a molten metal casting step is carried out in which the cavity of the mold is charged with a high temperature molten spheroidal graphite cast iron, cast, and solidified to obtain a spheroidal graphite cast iron casting in which chill is reduced or avoided. As described above, according to the present embodiment, the chill prediction parameter P based on the graphite nucleation rate Vc in the molten spheroidal graphite cast iron is used to predict the chill generation amount in the spheroidal graphite cast iron according to the chill prediction parameter P. According to this method, since the chill prediction parameter P correlates with the chill generation amount, the chill generation amount in the spheroidal graphite cast iron when the molten metal is actually poured can be predicted effectively.

【0024】更に本実施例によれば球状黒鉛鋳鉄の溶湯
の固相率Fが0<F<1の領域にあるときに、上記した
チル予測パラメータPを求めるので、チル予測パラメー
タPとチル発生量との相関性が一層向上し、実際に注湯
したときの球状黒鉛鋳鉄におけるチル生成量が効果的に
予測される。この様に本実施例によればチル生成量を効
果的に予測できるので、従来の様にトライアンドエラー
に大きく依存する点を改善できる。よって、冷やし金等
で溶湯の冷却速度を早めてチルを積極的に生成させたり
する際に適切なチル生成操作を行うのに有利である。あ
るいは、鋳型の断熱性を高める等して冷却速度を遅めて
積極的にチルを抑止する際に、適切なチル抑止操作を行
うのに有利である。
Further, according to the present embodiment, when the solid fraction F of the molten spheroidal graphite cast iron is in the region of 0 <F <1, the chill prediction parameter P and the chill occurrence are obtained because the chill prediction parameter P is obtained. The correlation with the amount is further improved, and the amount of chill formation in spheroidal graphite cast iron when actually pouring is predicted effectively. As described above, according to the present embodiment, the amount of chill formation can be effectively predicted, so that it is possible to improve the point that is largely dependent on the trial and error as in the conventional case. Therefore, it is advantageous to perform an appropriate chill generation operation when the chill is used to accelerate the cooling rate of the molten metal to positively generate chill. Alternatively, it is advantageous to perform an appropriate chill suppressing operation when the cooling rate is slowed by positively suppressing the chill by increasing the heat insulating property of the mold.

【0025】加えて固相率変化ΔFを、△F=(θ2 ×
△t/定数)と設定している本実施例によれば、潜熱に
伴う温度の回復がある場合あっても、適切なチル予測パ
ラメータPの値を得るのに有利であることが、本発明者
による試験により確認されている。なお上記した実施例
によれば、図2に示すステップS10から理解できる様
に、固相率Fが0を越えかつ1未満であるか否か、つま
り固相及び液相の混在状態であるか否か判定し、0<F
<1であれば、ステップS12に進み、チル予測パラメ
ータ演算処理を実行することにしているが、これに代え
て、ステップS10において、溶湯の温度が準安定共晶
温度TLJ以下でかつ凝固完了温度(FT:Final
Temperature=固相率1のときの温度)以
上か否かを判定し、YESのときにステップS12に進
むことにしても良い。
In addition, the solid phase ratio change ΔF is ΔF = (θ 2 ×
According to the present embodiment in which Δt / constant) is set, it is advantageous to obtain an appropriate value of the chill prediction parameter P even when there is a temperature recovery due to latent heat. It is confirmed by the test by the person. According to the above-described embodiment, as can be understood from step S10 shown in FIG. 2, whether the solid phase ratio F exceeds 0 and is less than 1, that is, whether the solid phase and the liquid phase are mixed. It is judged whether or not 0 <F
If <1, the process proceeds to step S12 and the chill prediction parameter calculation process is executed, but instead of this, in step S10, the temperature of the molten metal is equal to or lower than the metastable eutectic temperature TLJ and the solidification completion temperature. (FT: Final
It is also possible to determine whether or not (Temperature = temperature when the solid fraction is 1) or more, and if YES, proceed to step S12.

【0026】なお、ここでTLJは、 TLJ=1104.0+9.8×(%C−1.23×%Si−3.0×%P) に基づいて求められる値である。 ○次に上記した演算式の導出形態を以下の(A)(B)
において説明する。 (A)チル予測パラメータPについて チル予測パラメータPは(1)式に基づいた。 チル予測パラメータP≡Σ(定数×黒鉛核生成速度Vc×△t) …(1) ここで△tは差分法における熱計算タイムステップ〔s
ec〕である。(1)式における黒鉛核生成速度Vcは
(2)式に基づいた。 黒鉛核生成速度Vc≡定数×exp(−E/(R・T)) …(2) ここでRは気体定数、Eは黒鉛臨界核生成エネルギー
〔J〕である。この黒鉛臨界核生成エネルギーEは
(3)式に基づいた。
Here, TLJ is a value obtained based on TLJ = 11104.0 + 9.8 × (% C−1.23 ×% Si−3.0 ×% P). ○ Next, the derivation form of the above-mentioned arithmetic expression is as follows (A) (B)
Will be explained. (A) Chill prediction parameter P The chill prediction parameter P is based on the equation (1). Chill prediction parameter P≡Σ (constant × graphite nucleation rate Vc × Δt) (1) where Δt is a thermal calculation time step [s in the difference method
ec]. The graphite nucleation rate Vc in the equation (1) was based on the equation (2). Graphite nucleation rate Vc≡constant × exp (−E / (R · T)) (2) where R is a gas constant and E is a graphite critical nucleation energy [J]. This graphite critical nucleation energy E was based on the equation (3).

【0027】 黒鉛臨界核生成エネルギーE〔J〕 =(16・π)/(3・γ3 )/(Gv2 )≒定数1/θ2 …(3) ここでGvは単位体積当たり凝固エネルギ−変化量〔J
/cm3 〕であり、(4)式に基づいた。 Gv=(θ/TLI)・(単位体積当たり凝固潜熱)≒定数×θ…(4) ここでγ:表面張力エネルギ−〔J/cm2 〕≒一定 …(5) θは過冷度であり、(TLI−T)であり、 TLI:準安定平衡共晶温度(=1154.4+6.5
×%Si〔℃〕) T:要素温度〔℃〕 dF/dt≒定数×θ2 …(6) 従って前記した黒鉛臨界核生成エネルギーEは(7)式
に換算できる。
Graphite critical nucleation energy E [J] = (16 · π) / (3 · γ 3 ) / (Gv 2 ) ≈constant 1 / θ 2 (3) where Gv is the solidification energy per unit volume− Amount of change [J
/ Cm 3 ], which is based on the equation (4). Gv = (θ / TLI) · (latent heat of solidification per unit volume) ≈constant × θ ... (4) where γ: surface tension energy− [J / cm 2 ] ≈constant (5) θ is supercooling , (TLI-T), and TLI: metastable equilibrium eutectic temperature (= 1154.4 + 6.5).
X% Si [° C]) T: Element temperature [° C] dF / dt≅constant × θ 2 (6) Therefore, the above-mentioned graphite critical nucleation energy E can be converted into the equation (7).

【0028】 黒鉛臨界核生成エネルギーE〔J〕≒定数×1/(dF/dt) …(7) 故に上記した式(1)は式(8)に変換できる。 チル予測パラメータP= Σ〔〔exp{−〔定数/(dF/dt)〕/〔R・T〕}〕×△t〕…(8) (B)溶湯凝固中における温度演算 △t〔sec〕後の溶湯の温度T(t+△t)を導出す
る形態は以下の様である。温度T(t+△t)は(9)
式に基づく。
Graphite critical nucleation energy E [J] ≈constant × 1 / (dF / dt) (7) Therefore, the above equation (1) can be converted into equation (8). Chill prediction parameter P = Σ [[exp {-[constant / (dF / dt)] / [R · T]}] × Δt] (8) (B) Temperature calculation during solidification of molten metal Δt [sec] The form of deriving the temperature T (t + Δt) of the subsequent molten metal is as follows. The temperature T (t + Δt) is (9)
Based on the formula.

【0029】 T(t+△t)=T’(t+Δt)+△T …(9) T’(t+△t)は潜熱を無視した場合において、熱伝
達式fから演算した△t〔sec〕後の溶湯の温度を示
す。ΔTは潜熱による回復温度を示し、(10)式に基
づく。 潜熱による回復温度△T=△Q/ρ=△F×Q/ρ …(10) ここで△Qは△t〔sec〕間で発生した潜熱を示し、
ρは比熱〔J/mol/k〕を示し、Qは液相が完全に
凝固するまでに発生する全潜熱〔J/mol〕を示し、
△Fは固相率Fの変化、つまり固相率変化を示す。
T (t + Δt) = T ′ (t + Δt) + ΔT (9) T ′ (t + Δt) is Δt [sec] calculated from the heat transfer equation f when latent heat is ignored. It shows the temperature of the molten metal. ΔT represents the recovery temperature due to latent heat and is based on the equation (10). Recovery temperature due to latent heat ΔT = ΔQ / ρ = ΔF × Q / ρ (10) where ΔQ is the latent heat generated during Δt [sec],
ρ represents the specific heat [J / mol / k], Q represents the total latent heat [J / mol] generated until the liquid phase is completely solidified,
ΔF represents a change in the solid phase ratio F, that is, a change in the solid phase ratio.

【0030】固相率変化△Fは(11)式に基づく。 固相率変化△F=θ2 ×△t/定数 …(11) ここで、定数=Σ(θ×△t)=35125.0(実験値に基づく)…(12) 従って上記した式(9)を変形して、 T(t+△t)=T’(t+△t)+θ2 ×△t×定数 …(13) なお従来技術によれば、一般的に固相率変化ΔFは(1
4)式に基づいている。 固相率変化△F=〔{液相線温度−(液相線温度−固相線温度) ×F(t)}−T’(t+△t)〕×比熱/全潜熱…(14) この様に従来技術によれば、式(14)の分子項に位置
するT’(t+Δt)は、時刻(t)から時刻(t+Δ
t)に至って降温したときにおける潜熱を無視した温度
を意味する。この様に従来技術に係る固相率変化ΔFに
よれば、過冷時(チル発生時)の潜熱を無視しているも
のであり、本実施例に係る固相率変化ΔFによれば、過
冷時(チル発生時)の潜熱による回復温度ΔTを考慮し
ているものである。 ○ブロック図 図7は上記した実施例に係るブロック図を示す。図7に
示す様に、溶湯温度設定手段からの注湯温度データは上
記湯流れ演算処理を経て、熱伝達式温度演算手段に入力
される。そしてこの温度演算手段で、潜熱を無視した温
度T’が求められる。更にTLIの値に影響するSi含
有量に関するデータはSi含有量設定手段から過冷度演
算手段に入力される。過冷度演算手段で溶湯の過冷度θ
が求められる。過冷度θは固相率変化演算手段に入力さ
れ、固相率変化ΔFが求められる。
The solid phase ratio change ΔF is based on the equation (11). Solid phase change ΔF = θ 2 × Δt / constant (11) Here, constant = Σ (θ × Δt) = 35125.0 (based on experimental value) (12) Therefore, the above equation (9) ), T (t + Δt) = T ′ (t + Δt) + θ 2 × Δt × constant (13) According to the prior art, in general, the solid phase change ΔF is (1
It is based on equation 4). Change in solid fraction ΔF = [{liquidus temperature− (liquidus temperature−solidus temperature) × F (t)} − T ′ (t + Δt)] × specific heat / total latent heat (14) As described above, according to the conventional technique, T ′ (t + Δt) located in the numerator of Expression (14) is calculated from time (t) to time (t + Δt).
It means the temperature ignoring the latent heat when the temperature is lowered to t). As described above, according to the solid-phase-ratio change ΔF according to the conventional technique, the latent heat at the time of supercooling (at the time of chill generation) is ignored. The recovery temperature ΔT due to the latent heat when cold (when a chill occurs) is taken into consideration. Block Diagram FIG. 7 shows a block diagram according to the above embodiment. As shown in FIG. 7, the pouring temperature data from the molten metal temperature setting means is inputted to the heat transfer type temperature calculating means through the above-mentioned molten metal flow calculating processing. Then, the temperature calculation means obtains the temperature T'ignoring the latent heat. Further, data relating to the Si content that affects the TLI value is input from the Si content setting means to the supercooling degree calculating means. Degree of supercooling of molten metal θ
Is required. The degree of supercooling θ is input to the solid-phase-ratio change calculating means, and the solid-phase-ratio change ΔF is obtained.

【0031】そして潜熱を無視した温度T’、潜熱によ
る回復温度ΔT、固相率変化ΔFは、凝固中の温度演算
手段に入力される。凝固中の温度演算手段により、潜熱
回復を考慮した時刻(t+Δt)における溶湯の温度T
(t+Δt)が求められる。固液共存判定手段が固液共
存状態であることを判定すると、パラメータ演算処理を
開始する開始指令がチル予測パラメータ演算手段に入力
される。
The temperature T'ignoring the latent heat, the recovery temperature ΔT due to the latent heat, and the solid fraction change ΔF are input to the temperature calculating means during solidification. The temperature T of the molten metal at the time (t + Δt) considering the latent heat recovery is calculated by the temperature calculating means during solidification.
(T + Δt) is obtained. When the solid-liquid coexistence determining means determines that the solid-liquid coexistence state is present, a start command for starting the parameter arithmetic processing is input to the chill prediction parameter arithmetic means.

【0032】黒鉛臨界核生成エネルギ−演算手段から求
められた黒鉛臨界核生成エネルギ−E、黒鉛核生成速度
演算手段から求められた黒鉛核生成速度Vcは、チル予
測パラメータ演算手段に入力される。そしてチル予測パ
ラメータ演算手段から求められたチル予測パラメータP
は、判定手段によりチル発生量評価点Mに変換され、チ
ル予測パラメータPはチル発生量評価点Mと共にディス
プレイやプリンタ等の出力手段に出力される。
The graphite critical nucleation energy E obtained from the graphite critical nucleation energy calculating means and the graphite nucleation rate Vc obtained from the graphite nucleation rate calculating means are input to the chill prediction parameter calculating means. Then, the chill prediction parameter P obtained from the chill prediction parameter calculation means
Is converted into a chill occurrence amount evaluation point M by the determination means, and the chill prediction parameter P is output together with the chill occurrence amount evaluation point M to output means such as a display or a printer.

【0033】(付記)上記した実施例から次の技術的思
想も把握できる。 ○付記項1 熱伝達式温度演算手段で潜熱を無視した温度T’を求
め、固相率変化演算手段で固相率変化ΔFを求め、潜熱
による回復温度演算手段で回復温度ΔTを求め、これら
の温度T’、ΔF、ΔTを凝固中の温度演算手段に入力
すると共に、固液共存判定手段により溶湯が固液共存領
域か否か判定し、固液共存領域であれば、チル予測パラ
メータ演算手段によりチル予測パラメータPを求める請
求項1に係る方法。 ○付記項2 黒鉛臨界核生成エネルギ−演算手段で黒鉛臨界核生成エ
ネルギ−Eを求め、黒鉛核生成速度演算手段で黒鉛核生
成速度Vcを求め、黒鉛臨界核生成エネルギ−E及び黒
鉛核生成速度Vcの双方に基づいて、チル予測パラメー
タ演算手段でチル予測パラメータPを求める請求項1に
係る方法。 ○付記項3 注湯温度データが入力される溶湯温度設定手段と、注湯
温度データに基づいて、熱伝達式により潜熱を無視した
溶湯の温度T’を演算する熱伝達式温度演算手段と、熱
伝達式温度演算手段で求められた潜熱を無視した温度
T’、固相率変化演算手段で求められた固相率変化Δ
F、潜熱による回復温度演算手段で求められた回復温度
ΔTとに基づいて、潜熱回復を考慮した凝固中の温度T
(t+Δt)を求める凝固中の温度演算手段と、固相率
Fに基づいて固液共存状態か否か判定すると共に、固液
共存状態のときにチル予測パラメータを求める開始指令
を出力する固液共存状態判定手段と、黒鉛臨界核生成エ
ネルギ−Eを求める黒鉛臨界核生成エネルギ−演算手段
と、黒鉛核生成速度Vcを求める黒鉛核生成速度演算手
段と、開始指令が出されたときに黒鉛臨界核生成エネル
ギ−E及び黒鉛核生成速度Vcに基づいてチル予測パラ
メータPを求めるチル予測パラメータ演算手段と、チル
予測パラメータ演算手段から求められたチル予測パラメ
ータPの値に応じてチル発生量評価点Mを判定する判定
手段と、チル予測パラメータP及びチル発生量評価点M
の少なくとも一方を出力する出力手段とを備えている球
状黒鉛鋳鉄のチル予測装置。 ○付記項4 準安定共晶温度をTLIとし、潜熱に伴う温度回復を含
めた温度をTとし、過冷度をθとすると、過冷度演算手
段により、過冷度θを(θ=TLI−T)で規定する請
求項1に係る方法。 ○付記項5 過冷度をθとすると、固相率変化ΔFはθ2 に比例する
値に設定する付記項4に係る方法。 ○付記項6 球状黒鉛鋳鉄の溶湯における黒鉛核生成数及び黒鉛核生
成速度の少なくとも一方に基づいてチル予測パラメータ
Pを求め、チル予測パラメータPに応じて球状黒鉛鋳鉄
におけるチル発生量を予測するチル予測工程と、チル予
測工程においてチルが生成するチル予測パラメータPの
値が出力されたときには、鋳型のうちチルが生成する部
位のキャビティの冷却速度を調整する冷却速度調整工程
を施し、その後、鋳型のキャビティに球状黒鉛鋳鉄の溶
湯を装填して鋳造し、固化し、チルが低減または回避さ
れた球状黒鉛鋳鉄の鋳物を得る溶湯鋳造工程とを順に実
施することを特徴とする球状黒鉛鋳鉄鋳物の鋳造方法。
(Supplementary Note) The following technical idea can be understood from the above-described embodiments. -Appendix 1 The temperature T'ignoring the latent heat is calculated by the heat transfer type temperature calculating means, the solid fraction change ΔF is calculated by the solid fraction change calculating means, and the recovery temperature ΔT is calculated by the latent heat recovery temperature calculating means. The temperatures T ′, ΔF, and ΔT are input to the temperature calculating means during solidification, and the solid-liquid coexistence determining means determines whether the molten metal is in the solid-liquid coexisting area. The method according to claim 1, wherein the chill prediction parameter P is obtained by means. -Appendix 2 Graphite critical nucleation energy-E is calculated by the graphite critical nucleation energy calculating means, and graphite nucleation rate Vc is calculated by the graphite nucleation rate calculating means. The method according to claim 1, wherein the chill prediction parameter P is obtained by the chill prediction parameter calculation means based on both Vc. Supplementary Note 3 A melt temperature setting means for inputting the melt temperature data, and a heat transfer type temperature calculating means for calculating the melt temperature T ′ ignoring latent heat by a heat transfer method based on the melt temperature data. The temperature T'ignoring the latent heat obtained by the heat transfer type temperature calculating means, and the solid fraction change Δ calculated by the solid fraction change calculating means
F, the temperature T during solidification in consideration of latent heat recovery, based on the recovery temperature ΔT obtained by the recovery temperature calculation means by latent heat
A solid-liquid temperature calculating means for obtaining (t + Δt) and whether or not the solid-liquid coexistence state is determined based on the solid phase ratio F, and a start command for outputting a chill prediction parameter in the solid-liquid coexistence state is output. Coexistence state determining means, graphite critical nucleation energy calculating means for determining graphite critical nucleation energy-E, graphite nucleation rate calculating means for determining graphite nucleation rate Vc, and graphite critical when a start command is issued. A chill prediction parameter calculation means for obtaining a chill prediction parameter P based on the nucleation energy E and the graphite nucleation rate Vc, and a chill generation amount evaluation point according to the value of the chill prediction parameter P obtained from the chill prediction parameter calculation means. Judgment means for judging M, chill prediction parameter P, and chill occurrence amount evaluation point M
A chill predicting device for spheroidal graphite cast iron, comprising: (Appendix 4) When the metastable eutectic temperature is TLI, the temperature including the temperature recovery due to latent heat is T, and the degree of supercooling is θ, the degree of supercooling θ is calculated by the supercooling degree calculating means (θ = TLI -T) The method according to claim 1 defined by (Appendix 5) The method according to Appendix 4, wherein the solid fraction change ΔF is set to a value proportional to θ 2, where the degree of supercooling is θ. Supplementary Note 6 A chill prediction parameter P is calculated based on at least one of the number of graphite nucleation and the rate of graphite nucleation in the molten spheroidal graphite cast iron, and the chill generation amount is predicted in the spheroidal graphite cast iron according to the chill prediction parameter P. When the prediction step and the value of the chill prediction parameter P generated by chill in the chill prediction step are output, a cooling rate adjustment step of adjusting the cooling rate of the cavity of the portion of the mold where chill is generated is performed, and then the mold The spheroidal graphite cast iron casting is characterized in that the cavity is filled with molten spheroidal graphite cast iron, cast, and solidified to obtain a spheroidal graphite cast iron casting in which chill is reduced or avoided Casting method.

【0034】上記した冷却速度調整工程は、チルが生成
する部分のキャビティの厚肉化して溶湯の冷却速度を遅
延させる厚肉化、チルが生成する部分のキャビティの形
状を変更して溶湯の冷却速度を遅延させる形状変更、チ
ルが生成する部分のキャビティの曲率半径を大きくして
溶湯の冷却速度を遅延させる曲率半径変更、チルが生成
する部分に対応する位置に溶湯溜まり部を形成して該位
置における溶湯の冷却速度を遅延させる溶湯溜まり部形
成、チルが生成する部分に対応する位置に断熱材を配置
して該位置における溶湯の冷却速度を遅延させる断熱材
配置うちの少なくとも一方からなる。
In the cooling rate adjusting step described above, the cavity in the portion where the chill is generated is made thicker to delay the cooling rate of the molten metal, and the shape of the cavity in the portion where the chill is generated is changed to cool the molten metal. The shape is changed to delay the speed, the radius of curvature of the cavity of the portion where the chill is generated is increased to delay the cooling rate of the molten metal, and the molten metal pool is formed at a position corresponding to the portion where the chill is generated. At least one of forming a molten metal pool portion that delays the cooling rate of the molten metal at a position, and disposing a heat insulating material at a position corresponding to the portion where the chill is generated to delay the cooling rate of the molten metal at the position.

【0035】この鋳造方法によれば、チルが軽減または
回避された健全な球状黒鉛鋳鉄の鋳物を得るのに有利で
ある。
This casting method is advantageous in obtaining a sound spheroidal graphite cast iron casting in which chill is reduced or avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】球状黒鉛鋳鉄の冷却曲線を模式的に示すグラフ
である。
FIG. 1 is a graph schematically showing a cooling curve of spheroidal graphite cast iron.

【図2】コンピュータが実行するメインルーチンのフロ
ーチャートである。
FIG. 2 is a flowchart of a main routine executed by a computer.

【図3】温度演算処理サブルーチンのフローチャートで
ある。
FIG. 3 is a flowchart of a temperature calculation processing subroutine.

【図4】チル予測パラメータ演算処理のフローチャート
である。
FIG. 4 is a flowchart of a chill prediction parameter calculation process.

【図5】チル予測パラメータとチル発生量評価点との相
関性を示すグラフである。
FIG. 5 is a graph showing a correlation between a chill prediction parameter and a chill generation amount evaluation point.

【図6】光学顕微鏡による球状黒鉛鋳鉄の金属組織とチ
ル発生量評価点との関係を示す図である。
FIG. 6 is a diagram showing a relationship between a metal structure of spheroidal graphite cast iron and an evaluation point of chill generation amount by an optical microscope.

【図7】実施例に係るブロック図である。FIG. 7 is a block diagram according to an embodiment.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−276036(JP,A) 特開 平8−333650(JP,A) 特開 平8−122324(JP,A) 特開 平7−113771(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 27/20 B22D 46/00 ─────────────────────────────────────────────────── --Continued from the front page (56) Reference JP-A-7-276036 (JP, A) JP-A-8-333650 (JP, A) JP-A-8-122324 (JP, A) JP-A-7- 113771 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22D 27/20 B22D 46/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】球状黒鉛鋳鉄の溶湯における黒鉛核生成速
度に基づいてチル予測パラメータを求め、 該チル予測パラメータに応じて該球状黒鉛鋳鉄における
チル発生量を予測することを特徴とする球状黒鉛鋳鉄組
織のチル予測方法。
1. A black Namarikaku generation speed that put the molten spheroidal graphite cast iron
A chill prediction method for a spheroidal graphite cast iron structure, characterized in that a chill prediction parameter is obtained based on a degree , and a chill generation amount in the spheroidal graphite cast iron is predicted according to the chill prediction parameter.
【請求項2】球状黒鉛鋳鉄の溶湯の固相率をFとし、0
<F<1のときに、該球状黒鉛鋳鉄における黒鉛核生成
度に基づいてチル予測パラメータを求め、 該チル予測パラメータに応じて該球状黒鉛鋳鉄における
チル発生量を予測することを特徴とする球状黒鉛鋳鉄組
織のチル予測方法。ここでF=0は液相のみの状態を意
味し、F=1は固相のみの状態を意味する。
2. A solid phase ratio of the molten spheroidal graphite cast iron is defined as F, and 0
<When F <1, obtains a chill prediction parameters based on the put that black Namarikaku product <br /> speed in spherical graphite cast iron, a chill emissions for the spherical graphite cast iron according to the chill prediction parameters A method for predicting chill in a spheroidal graphite cast iron structure characterized by predicting. Here, F = 0 means only the liquid phase.
Taste, F = 1 means the state of solid phase only.
JP05621395A 1995-03-15 1995-03-15 Chill prediction method for spheroidal graphite cast iron structure Expired - Fee Related JP3365588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05621395A JP3365588B2 (en) 1995-03-15 1995-03-15 Chill prediction method for spheroidal graphite cast iron structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05621395A JP3365588B2 (en) 1995-03-15 1995-03-15 Chill prediction method for spheroidal graphite cast iron structure

Publications (2)

Publication Number Publication Date
JPH08253803A JPH08253803A (en) 1996-10-01
JP3365588B2 true JP3365588B2 (en) 2003-01-14

Family

ID=13020835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05621395A Expired - Fee Related JP3365588B2 (en) 1995-03-15 1995-03-15 Chill prediction method for spheroidal graphite cast iron structure

Country Status (1)

Country Link
JP (1) JP3365588B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914429B2 (en) * 2008-12-05 2012-04-11 株式会社豊田中央研究所 Solidification analysis method and solidification analysis program for molten alloy
WO2019087435A1 (en) * 2017-11-06 2019-05-09 株式会社I2C技研 Casting solidification analysis method, casting method, and electronic program

Also Published As

Publication number Publication date
JPH08253803A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
Mitchell Solidification in remelting processes
SR et al. Numerical simulation of microstructure evolution of Al alloys in centrifugal casting
US7140419B2 (en) Semi-solid concentration processing of metallic alloys
JP5051636B2 (en) Casting method and casting apparatus used therefor.
Han Ablation casting: solidification characteristics, microstructure formation, and mechanical properties
Ahmadein et al. Prediction of the as-cast structure of Al-4.0 Wt Pct Cu ingots
JP3365588B2 (en) Chill prediction method for spheroidal graphite cast iron structure
US6269321B1 (en) Method for optimizing mechanical strength of a casting using microstructure predictions
Li et al. Solidification structure simulation and casting process optimization of GCr15 bloom alloy
Huang et al. Hot tearing behavior of ZL205A alloy cylindrical low-pressure castings with slit gating and feeding system
Niu et al. Numerical modeling of the effect of mechanical vibration on 10 kg C45 steel ingot solidification
Zhang et al. Numerical and Experimental Investigation of Solidification Structure and Macrosegregation in Continuously Cast 2311 Die Steel Slab
Wu et al. Premature melt solidification during mold filling and its influence on the as-cast structure
Pedersen et al. Undercooling and nodule count in thin walled ductile iron castings
Uddagiri et al. Columnar-equiaxed transition in continuous casting based on a micro-macro solidification model with long-range solutal mixing
JP3053063B2 (en) Manufacturing method of aluminum alloy casting material suitable for semi-solid molding
Wu et al. Simulation of the as-cast structure of Al-4.0 wt.% Cu ingots with a 5-phase mixed columnar-equiaxed solidification model
Górny et al. Effect of Modification and Cooling Rate on Primary Grain in Al-Cu Alloy
Drożdż The influence of the superheat temperature on the slab structure in the continuous steel casting process
Ranjan et al. Computational Modeling of Partial Phase Change in the Hypoeutectic Binary Alloy Al–7Si Melt over a Cooled Tilted Plate
Javaid Effect of Different Mold Materials on the Solidification Rate and Microstructure of Magnesium Alloy Plate Castings
Tuttle Effect of NbO additions on the grain size of 1010 steel castings
Fu et al. Microstructure selection of Fe–Cr–Ni alloy during directional solidification
Grong et al. A model for predicting weld metal grain refinement in GV space
Yang et al. Validation of CAFE model with experimental macroscopic grain structures in a 36-ton steel ingot

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees