JP3365348B2 - Rolling method of metal tube - Google Patents
Rolling method of metal tubeInfo
- Publication number
- JP3365348B2 JP3365348B2 JP14857299A JP14857299A JP3365348B2 JP 3365348 B2 JP3365348 B2 JP 3365348B2 JP 14857299 A JP14857299 A JP 14857299A JP 14857299 A JP14857299 A JP 14857299A JP 3365348 B2 JP3365348 B2 JP 3365348B2
- Authority
- JP
- Japan
- Prior art keywords
- stand
- rolling
- roll
- metal tube
- stands
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、サイザ等の定径圧
延機で金属管の外径圧下をおこなう際の圧延方法に関す
る。詳しくは、本発明は、六角張りや噛み出し疵を防止
し、同じ孔型ロールを用いて異なる肉厚の金属管に仕上
げることが可能な圧延方法に関する。
【0002】
【従来の技術】一般に継目無金属管(以下、金属管とも
いう)の製造工程においては、ピアサにより穿孔された
中空素管をマンドレルミルなどの延伸圧延機を用いて減
肉圧延し、次いでサイザあるいはストレッチレデューサ
などの定径圧延機を用いて所要の外径に圧延する。上記
サイザおよびストレッチレデューサはほぼ同様の構成で
あり、以下サイザにより説明する。
【0003】図1はサイザのロール配置を模式的に示す
概要図である。図2は3ロール式サイザのロールスタン
ドの断面図で、同図(a)は図1のA−A断面図、同図
(b)は図1のB−B断面図である。図1および図2で
符号1はロールスタンド、2は孔型ロール、3は金属
管、Oはパスセンタである。
【0004】定径圧延機であるサイザは、図2(a)、
(b)に示すように同一面内に一般に3個の孔型ロール
がパスセンタOの回りに120°の間隔を隔てて放射状
に組み込まれた複数のロールスタンド(以下、単にスタ
ンドともいう、通常4〜15スタンド)を、図1に示す
ように連接配置して構成される。隣り合うスタンドは、
相互の孔型ロールの配置が図2(a)と図2(b)の関
係になるように、パスセンタの回りに60°位相を異な
らせて連接される。圧延時の使用スタンド数は金属管の
仕上げ外径によってきまる。サイザの最終1〜数スタン
ドでは定径仕上げのため円弧形状の孔型ロールが用いら
れ、それ以外のスタンドでは楕円弧状の孔型ロールが用
いられる。実際の孔型ロールは、図2(a)、(b)に
示すように、ロール相互の間隙があり、フランジ端Fは
溝底点Eに対して正60°の位置ではないが、以後はフ
ランジ端位置を正60°の点Fにあるものとして説明す
る。
【0005】サイザの圧延では、管内面の拘束がないた
め、一つのスタンドの圧延では、孔型の溝底部とフラン
ジ部での増肉量が異なり、不均一な変形が生じる。被圧
延材は溝底とフランジの角度が交互に60゜ずつ変化す
る中で圧延されるため、溝底とフランジの中間点(溝底
またはフランジから30゜の位置をいう)の肉厚は溝底
部またはフランジ部より厚くなったり薄くなったりす
る。これを六角張り、または角張りと称し、特に厚肉管
で発生しやすい。
【0006】この六角張りの発生を防止するには孔型形
状を真円形状に近づけ、フランジ部で押さえ込むように
圧延し、周方向の偏肉を小さくする必要がある。ところ
が孔型形状を真円に近づけたものを薄肉材の圧延に適用
すると、フランジ部で噛み出しが発生し、噛み出し疵が
問題となる。
【0007】したがって、肉厚に応じて孔型ロールを保
有する必要があり、ロール保有数が多くなって設備コス
トの増加やロール置場不足などの問題が生じる。また、
肉厚に応じて頻繁なロール交換が必要で、その為に多大
な時間と労力を費やさなければならず、生産性の面でも
問題である。
【0008】ロール保有数の削減、ロール交換頻度の削
減に関して、特開平7−16616号公報には、全スタ
ンドをパスセンタとロール回転軸間距離が最大の開状態
で所定形状のカリバーロール(孔型ロール)となし、管
の肉厚、外径に応じてパスセンタとロール軸間距離を調
整し、孔型ロールの楕円度、平均外径を変更し管の内面
角張率を抑制する圧延方法が開示されている。
【0009】
【発明が解決しようとする課題】上記公報に開示された
方法は、孔型ロールの楕円度に注目してパスセンタとロ
ール軸間距離を調整するものであるが、六角張りや噛み
出し疵の改善効果が不十分であることが判った。
【0010】本発明の課題は、サイザなどの定径圧延機
において、上記従来技術の不備を解決し、同じ孔型ロー
ルで広範囲の肉厚の製品を噛み出し疵および六角張りの
発生を抑制して圧延することができる金属管の圧延方法
を提供することにある。
【0011】
【課題を解決するための手段】本発明者は、六角張りと
噛み出し疵の防止には、隣接するスタンド間での孔型ロ
ール形状の関係が重要であるとの認識に立ち、種々の圧
延実験をおこない、以下の知見を得た。
【0012】(a)厚肉材の圧延時に発生しやすい六角
張りや薄肉材の圧延時に発生しやすい噛み出し疵は、第
1スタンドや最終スタンドに比べ圧下率の高い中間スタ
ンドでの圧延時に発生する。
【0013】(b)六角張りは、当該スタンドのパスセ
ンタと孔型ロールのフランジ端間の距離(A)と直前ス
タンドのパスセンタと孔型ロールの溝底間の距離(B)
との差(A−B)を小さくすることにより抑制される。
すなわち、上記差を小さくすることによりフランジ部で
の被圧延材の拘束が大きくなり周方向の偏肉の発生が抑
制される。
【0014】(c)噛み出し疵は、当該スタンドのパス
センタと孔型ロールのフランジ端間の距離(A)と直前
スタンドのパスセンタと孔型ロールの溝底間の距離
(B)との差(A−B)を大きくすることにより抑制さ
れる。すなわち、上記差を大きくすることによりフラン
ジ部での被圧延材の拘束が減少し噛み出しが防止され
る。
【0015】(d)六角張りと噛み出し疵の発生の防止
は、各スタンドのサイドリリーフ係数を適正範囲に管理
することにより可能である。(i)番目のスタンドのサ
イドリリーフ係数Si は下記式で表される。
【0016】
【数2】
【0017】(e)サイドリリーフ係数は金属管の製品
の肉厚(t)と外径(D)の比(t/D)で決定され下
記式で表されるSmin 以上、Smax 以下の範囲とするこ
とで六角張りとエッジ疵の発生が防止できる。
【0018】
【数3】
【0019】本発明は、上記知見に基づき完成されたも
ので、その要旨は以下のとおりである。
(1)1スタンド内に3または4個の孔型ロールを同一
面内に有する複数のスタンドからなる定径圧延機を用い
た金属管の圧延方法であって、定径圧延機を上流から下
流に向かって第1スタンド、複数の中間スタンドおよび
最終スタンドとしたときの全ての中間スタンドにおい
て、金属管の製品の肉厚(t)と外径(D)に応じてパ
スセンタと孔型ロール溝底間の距離を調整して、下記
(1)式で表される(i)番目のスタンドのサイドリリ
ーフ係数Si を下記(2)、(3)式でそれぞれ表され
るSmin 以上、Smax 以下の範囲とすることを特徴とす
る金属管の圧延方法。
【0020】
【数4】
【0021】
【発明の実施の形態】本発明で用いる定径圧延機は、公
知のサイザやストレッチレデューサなどの圧延機でよ
く、図2(a)、(b)に示すように同一面内に3個あ
るいは4個(図示無し)の孔型ロールがパスセンタOの
回りにそれぞれ120°、90°の間隔を隔てて放射状
に組み込まれた複数のスタンド(通常、サイザ:4〜1
5スタンド、ストレッチレデューサ:4〜28スタン
ド)を連接配置した圧延機が用いられる。3ロール式あ
るいは4ロール式の定径圧延機のロールは、隣り合うス
タンド間でそれぞれ60°、45°位相を変えて配列さ
れる。
【0022】図3は、孔型ロールの要部断面で、パスセ
ンタOと孔型ロールのフランジ端F間の距離Aならびに
パスセンタOと孔型ロールの溝底E間の距離Bを説明す
る模式図である。
【0023】本発明では、製品の肉厚tと外径Dに応じ
てパスセンタと孔型ロールの溝底間の距離(図3のB)
を調整して、(1)式で表される(i)スタンドのサイ
ドリリーフ係数Si を(2)、(3)式でそれぞれ表さ
れるSmin 以上、Smax 以下の範囲とする。
【0024】図4は、本発明に係るサイドリリーフ係数
の適正範囲を示すグラフである。
【0025】同図で、線1、2はそれぞれ(2)式のS
max と(3)式のSmin を表し、線1と線2で囲まれた
領域がサイドリリーフ係数の適正範囲である。すなわ
ち、サイドリリーフ係数がSmax を超えると六角張りの
発生により製品形状が不良となり、Smin 未満では噛み
出し疵が発生し品質不良となる。したがって、サイドリ
リーフ係数はSmin 以上、Smax 以下とする。好ましく
は、(Smax +3・Smin )/4以上、(3・Smax +
Smin )/4以下である。以下、パスセンタと孔型ロー
ルの溝底間の距離を溝底距離ともいう。
【0026】溝底距離の調整は、電動式あるいは油圧式
の圧下装置をスタンドに設けることにより、オフライ
ン、オンラインのいずれでも可能であるが、オンライン
でおこなうことが望ましい。
【0027】ここで、サイドリリーフ係数を適正範囲に
設定するためにおこなう溝底距離の調整は、定径圧延機
を上流から下流に向かって第1スタンド、複数の中間ス
タンドならびに真円化のために用いられる最終スタンド
としたときの全ての中間スタンドの孔型ロールのみを対
象におこなえば十分であるが、第1スタンドと最終スタ
ンドを含む全てのスタンドの孔型ロールを対象におこな
ってもよい。
【0028】一般に、第1スタンドと最終スタンドの圧
延では中間スタンドの圧延に比べ圧下率が低く設定され
ており、六角張りや噛み出し疵の発生に伴う問題は少な
い。
【0029】なお、第1スタンドのサイドリリーフ係数
S1 は、(1)式でi=1としたときのB0 が第1スタ
ンド入側の被圧延材(素管)の半径で定義される数値で
ある。
【0030】次ぎに、具体的に圧延方法を、製品の外径
(D)が230mmで肉厚(t)が8mmと45mmの
2種類の金属管をスタンド数11基(第1スタンド、中
間スタンド9基、最終スタンド)で圧延する例で説明す
る。
【0031】肉厚8mmの金属管の圧延では、(2)式
と(3)式からSmin は−3.25、Smax は1.84
となる。同様に肉厚45mmの金属管の圧延では、Smi
n は−4.86、Smax は−0.24となる。
【0032】したがって、肉厚8mmの金属管を圧延す
る場合は、中間スタンドでの圧延におけるサイドリリー
フ係数が−3.25〜1.84の範囲内の数値となるよ
うに中間スタンドの各孔型ロールを昇降して溝底距離の
調整をおこなうことにより六角張りと噛み出し疵を防止
することができる。第1スタンドと最終スタンドでの圧
延におけるサイドリリーフ係数も上記範囲内の数値とな
るようにそれぞれ第1スタンドと最終スタンドの溝底距
離を調整してもよい。
【0033】肉厚45mmの金属管を圧延する場合は、
同様に中間スタンドでの圧延におけるサイドリリーフ係
数が−4.86〜−0.24の範囲内の数値となるよう
にすればよい。
【0034】上記方法により、同じ孔型ロールを用いて
肉厚の異なる金属管を六角張りと噛み出し疵の発生を抑
制して圧延することができる。
【0035】
【実施例】第1スタンド、中間スタンド9基および最終
スタンドで構成される総スタンド数11基で、全スタン
ドに油圧圧下方式による溝底距離の調整機能を有する3
ロール式サイザを用い、外径300φ、肉厚7mm、2
3mm、44mmの素管を、外径が230mmで肉厚が
それぞれ8mm、25mm、45mmの金属管に圧延し
た。表1に溝底距離の基準設定時における各スタンドの
孔型ロール寸法A、Bを示す。
【0036】
【表1】
【0037】溝底距離を調整することにより各スタンド
のサイドリリーフ係数を変化させて圧延をおこなった。
表2に各スタンドのサイドリリーフ係数の設定値を示
す。
【0038】
【表2】
【0039】圧延により得られた製品の噛み出し疵と六
角張りの発生状況を調査した。噛み出し疵については、
表面に全く疵が認められない場合が◎、長手方向の一部
に薄く現れる程度で製品上問題ない場合が〇、疵の手入
れが必要な場合が×で評価した。六角張りについては、
その発生の度合いを下記式で定義される六角張り率Pで
評価し、六角張り率Pが5.0%未満を◎、5.0%以
上10.0%未満を○、10.0%以上を×として表し
た。総合評価としては、噛み出し疵と六角張りの双方が
◎または○のものを合格と判定した。表3に調査結果を
示す。
【0040】
【数5】
【0041】
【表3】
【0042】表3に示すように、肉厚8mmの場合で
は、中間スタンドのサイドリリーフ係数が−2.9〜
1.0の範囲内にある試験No.3〜6の本発明例が合
格となった。特に、上記サイドリリーフ係数が−1.0
〜−0.1の試験No.5は噛み出し疵と六角張りの双
方の評価が◎となり、極めて良好であった。一方、試験
No.1、2の比較例は噛み出し疵で不良となり、試験
No.7の比較例は六角張り率が10%以上となった。
【0043】肉厚25mmの場合では、中間スタンドの
サイドリリーフ係数が−3.9〜−0.1の範囲内にあ
る試験No.9〜12の本発明例が合格となった。特
に、上記サイドリリーフ係数が−1.9〜−1.0の試
験No.11は噛み出し疵と六角張りの双方の評価が◎
となり、極めて良好であった。一方、試験No.8の比
較例は噛み出し疵で不良となり、試験No.13、14
の比較例は六角張り率が10%以上となった。
【0044】肉厚45mmの場合では、中間スタンドの
サイドリリーフ係数が−3.9〜−1.0の範囲内にあ
る試験No.16〜18の本発明例が合格となった。特
に、上記サイドリリーフ係数が−2.9〜−2.0の試
験No.17は噛み出し疵と六角張りの双方の評価が◎
となり、極めて良好であった。一方、試験No.15の
比較例は噛み出し疵で不良となり、試験No.19〜2
1の比較例は六角張り率が10%以上となった。
【0045】
【発明の効果】本発明によれば、同じ孔型ロールを用い
て広範囲の肉厚の金属管を噛み出し疵および六角張りの
発生を抑制して圧延することができる。従って、孔型ロ
ール数の削減による設備コストの低減やロール交換時間
の短縮などによる生産性の向上を図ることができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling method for reducing the outer diameter of a metal tube with a constant diameter rolling mill such as a sizer. More specifically, the present invention relates to a rolling method capable of preventing hexagonal tension and biting flaws and finishing metal pipes having different wall thicknesses using the same hole type roll. 2. Description of the Related Art Generally, in a process of manufacturing a seamless metal pipe (hereinafter, also referred to as a metal pipe), a hollow shell pierced by a piercer is reduced in thickness using a stretching rolling machine such as a mandrel mill. Then, it is rolled to a required outer diameter by using a constant diameter rolling machine such as a sizer or a stretch reducer. The sizer and the stretch reducer have substantially the same configuration, and will be described below with the sizer. FIG. 1 is a schematic diagram schematically showing a roll arrangement of a sizer. 2A and 2B are cross-sectional views of a roll stand of a three-roll type sizer. FIG. 2A is a cross-sectional view taken along line AA of FIG. 1, and FIG. 2B is a cross-sectional view taken along line BB of FIG. 1 and 2, reference numeral 1 denotes a roll stand, 2 denotes a hole-shaped roll, 3 denotes a metal tube, and O denotes a pass center. [0004] The sizer, which is a constant diameter rolling mill, is shown in FIG.
As shown in (b), a plurality of roll stands (hereinafter, also referred to simply as a stand, usually referred to as a stand), in which three hole-type rolls are generally incorporated radially around the pass center O at an interval of 120 ° around the pass center O, as shown in FIG. To 15 stands) are connected and arranged as shown in FIG. The adjacent stands are
The holes are rolled and connected around the path center with a phase difference of 60 ° so that the mutual arrangement of the grooved rolls is as shown in FIG. 2 (a) and FIG. 2 (b). The number of stands used during rolling depends on the finished outer diameter of the metal tube. In the last one to several stands of the sizer, an arcuate hole-shaped roll is used for constant-diameter finishing, and in other stands, an elliptical arc-shaped hole-shaped roll is used. As shown in FIGS. 2 (a) and 2 (b), the actual grooved roll has a gap between the rolls, and the flange end F is not at a position of 60 ° with respect to the groove bottom point E. The description will be made on the assumption that the flange end position is located at a point F of 60 °. In rolling a sizer, there is no constraint on the inner surface of the tube. Therefore, in rolling of one stand, the wall thickness increases at the bottom of the groove and the flange, resulting in uneven deformation. Since the material to be rolled is rolled while the angle between the groove bottom and the flange is alternately changed by 60 °, the thickness of the intermediate point between the groove bottom and the flange (meaning the position at 30 ° from the groove bottom or the flange) is Becomes thicker or thinner than the bottom or flange. This is called hexagonal tension or square tension, and is particularly likely to occur in thick-walled pipes. In order to prevent the occurrence of the hexagonal tension, it is necessary to reduce the circumferential wall thickness by rolling the hole so as to have a shape close to a perfect circle and pressing down the flange. However, when a material having a hole shape close to a perfect circle is applied to the rolling of a thin material, biting occurs at a flange portion, and a biting flaw is a problem. [0007] Therefore, it is necessary to hold the roll in accordance with the wall thickness, and the number of rolls to be held increases, causing problems such as an increase in equipment cost and a shortage of roll storage space. Also,
Frequent roll replacement is required depending on the wall thickness, and therefore a great deal of time and effort must be spent, which is also a problem in terms of productivity. Japanese Patent Application Laid-Open No. Hei 7-16616 discloses a technique for reducing the number of rolls and reducing the frequency of roll exchange. Rolling method that adjusts the distance between the path center and the roll axis in accordance with the wall thickness and outer diameter of the pipe, changes the ellipticity and average outer diameter of the hole-shaped roll, and suppresses the inner surface angularity of the pipe Have been. [0009] The method disclosed in the above publication adjusts the distance between the path center and the roll axis by paying attention to the ellipticity of the hole-type roll. It was found that the effect of improving the flaw was insufficient. [0010] An object of the present invention is to solve the above-mentioned deficiencies of the prior art in a size rolling mill such as a sizer and to suppress the occurrence of flaws and hexagonal tension by biting a wide range of products with the same hole-shaped roll. To provide a method of rolling a metal tube that can be rolled. The inventor of the present invention has recognized that the relationship between the hole-shaped roll shape between adjacent stands is important for preventing hexagonal tension and biting flaws. Various rolling experiments were performed, and the following findings were obtained. (A) Hexagonal tension which tends to occur when rolling a thick material and biting flaws which tend to occur when rolling a thin material occur during rolling on an intermediate stand having a higher rolling reduction than the first stand and the final stand. I do. (B) The hexagonal tension is determined by the distance between the pass center of the stand and the flange end of the grooved roll (A) and the distance between the pass center of the immediately preceding stand and the groove bottom of the grooved roll (B).
Is suppressed by reducing the difference (A−B) from
That is, by reducing the difference, the restraint of the material to be rolled at the flange portion is increased, and occurrence of uneven thickness in the circumferential direction is suppressed. (C) The biting flaw is the difference between the distance (A) between the pass center of the stand and the flange end of the grooved roll and the distance (B) between the path center of the immediately preceding stand and the groove bottom of the grooved roll. It is suppressed by increasing AB). In other words, by increasing the difference, the restraint of the material to be rolled at the flange portion is reduced, and biting is prevented. (D) Prevention of hexagonal tension and biting flaws can be achieved by controlling the side relief coefficient of each stand within an appropriate range. The (i) side relief coefficient S i of the stand is expressed by the following equation. [Equation 2] (E) The side relief coefficient is determined by the ratio (t / D) between the thickness (t) of the product of the metal tube and the outer diameter (D), and is in the range from Smin to Smax expressed by the following equation. By doing so, the occurrence of hexagonal tension and edge flaws can be prevented. [Equation 3] The present invention has been completed based on the above findings, and the gist thereof is as follows. (1) A method for rolling a metal tube using a constant-diameter rolling mill comprising a plurality of stands having three or four hole-shaped rolls in the same plane in one stand, wherein the constant-diameter rolling mill is moved from upstream to downstream. In the first stand, the plurality of intermediate stands, and all the intermediate stands when the final stand is formed, the path center and the hole-shaped roll groove bottom are set according to the thickness (t) and the outer diameter (D) of the product of the metal tube. By adjusting the distance between them, the side relief coefficient S i of the (i) th stand expressed by the following equation (1) is set to a value not less than Smin and not more than Smax expressed by the following equations (2) and (3). A method for rolling a metal tube, characterized in that it is within the range. [Equation 4] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The constant diameter rolling mill used in the present invention may be a known rolling mill such as a sizer or a stretch reducer, and may be in the same plane as shown in FIGS. 2 (a) and 2 (b). A plurality of stands (usually sizers: 4-1) in which three or four (not shown) hole type rolls are radially assembled around the path center O at intervals of 120 ° and 90 °, respectively.
(5 stands, stretch reducer: 4 to 28 stands) are used. The rolls of the three-roll type or four-roll type constant-diameter rolling mill are arranged so as to change the phase between adjacent stands by 60 ° and 45 °, respectively. FIG. 3 is a schematic cross-sectional view of a main part of the grooved roll, schematically illustrating a distance A between the path center O and the flange end F of the grooved roll and a distance B between the path center O and the groove bottom E of the grooved roll. It is. In the present invention, the distance between the path center and the groove bottom of the hole-shaped roll is determined according to the thickness t of the product and the outer diameter D (FIG. 3B).
Is adjusted so that the side relief coefficient S i of the stand (i) expressed by the equation (1) is in the range from Smin to Smax expressed by the equations (2) and (3), respectively. FIG. 4 is a graph showing an appropriate range of the side relief coefficient according to the present invention. In the figure, lines 1 and 2 respectively correspond to S in equation (2).
max and Smin in equation (3), and the area surrounded by line 1 and line 2 is the appropriate range of the side relief coefficient. In other words, if the side relief coefficient exceeds Smax, the product shape becomes poor due to the occurrence of hexagonal tension, and if it is less than Smin, biting flaws occur and the quality becomes poor. Therefore, the side relief coefficient is not less than Smin and not more than Smax. Preferably, (Smax + 3 · Smin) / 4 or more, (3 · Smax +
Smin) / 4 or less. Hereinafter, the distance between the pass center and the groove bottom of the hole type roll is also referred to as a groove bottom distance. The groove bottom distance can be adjusted either off-line or on-line by providing an electric or hydraulic pressure-reducing device on the stand, but it is desirable to perform the on-line. Here, the adjustment of the groove bottom distance to set the side relief coefficient to an appropriate range is performed by moving the constant diameter rolling mill from the upstream to the downstream from the first stand, the plurality of intermediate stands, and the rounding. It is sufficient to perform only the hole-shaped rolls of all the intermediate stands when the final stand is used for the above, but it may be performed on the hole-shaped rolls of all the stands including the first stand and the final stand. . Generally, in the rolling of the first stand and the final stand, the rolling reduction is set lower than that of the rolling of the intermediate stand, and there are few problems associated with the occurrence of hexagonal tension and biting flaws. As for the side relief coefficient S 1 of the first stand, B 0 when i = 1 in the equation (1) is defined by the radius of the material to be rolled (raw tube) on the first stand entry side. It is a numerical value. Next, the rolling method is specifically described in which two types of metal tubes having an outer diameter (D) of 230 mm and a wall thickness (t) of 8 mm and 45 mm are provided with 11 stands (first stand, intermediate stand). An example in which rolling is performed at nine (the last stand) will be described. In the rolling of a metal tube having a thickness of 8 mm, Smin is -3.25 and Smax is 1.84 according to equations (2) and (3).
It becomes. Similarly, in rolling of a 45 mm thick metal tube, Smi
n is -4.86 and Smax is -0.24. Therefore, when rolling a metal tube having a thickness of 8 mm, each hole shape of the intermediate stand is set so that the side relief coefficient in rolling at the intermediate stand is a value within the range of -3.25 to 1.84. By adjusting the groove bottom distance by raising and lowering the roll, hexagonal tension and biting flaws can be prevented. The groove bottom distance between the first stand and the last stand may be adjusted so that the side relief coefficient in rolling at the first stand and the last stand also has a numerical value within the above range. When rolling a 45 mm thick metal tube,
Similarly, the side relief coefficient in rolling at the intermediate stand may be set to a value within the range of -4.86 to -0.24. According to the above-mentioned method, metal tubes having different thicknesses can be rolled using the same hole-type roll while suppressing hexagonal tension and biting flaws. EXAMPLE A total of 11 stands including a first stand, nine intermediate stands and a final stand, and all the stands have a function of adjusting a groove bottom distance by a hydraulic pressure reduction method.
Using a roll sizer, outer diameter 300φ, wall thickness 7mm, 2
The base tubes of 3 mm and 44 mm were rolled into metal tubes having an outer diameter of 230 mm and wall thicknesses of 8 mm, 25 mm and 45 mm, respectively. Table 1 shows the hole-shaped roll dimensions A and B of each stand when the groove bottom distance is set as a reference. [Table 1] Rolling was performed by adjusting the groove bottom distance to change the side relief coefficient of each stand.
Table 2 shows the set values of the side relief coefficient of each stand. [Table 2] The state of occurrence of biting flaws and hexagonal tension of the product obtained by rolling was investigated. As for the scratches,
The case where no flaw was observed on the surface was evaluated as ◎, the case where it appeared to be thin in a part of the longitudinal direction and there was no problem on the product, and the case where flaw care was required was evaluated as x. For hexagonal tension,
The degree of the occurrence is evaluated by the hexagonal tension ratio P defined by the following formula, and the hexagonal tension ratio P is less than 5.0% ◎, 5.0% or more and less than 10.0% is ○, 10.0% or more Is represented as x. As the overall evaluation, both the bleeding flaw and the hexagonal tension were judged to be acceptable if they were ◎ or ○. Table 3 shows the survey results. [Equation 5] [Table 3] As shown in Table 3, when the wall thickness is 8 mm, the side relief coefficient of the intermediate stand is −2.9 to −2.9.
Test No. 1.0 within the range of 1.0 Examples 3 to 6 of the present invention passed. In particular, when the side relief coefficient is -1.0
-No. In the case of No. 5, the evaluation of both the scratching out and the hexagonal tension was ◎, which was extremely good. On the other hand, Test No. The comparative examples 1 and 2 were defective due to the biting flaws. Comparative Example 7 had a hexagonal tension ratio of 10% or more. In the case of the thickness of 25 mm, the test No. in which the side relief coefficient of the intermediate stand is in the range of -3.9 to -0.1. 9 to 12 of the present invention examples passed. In particular, the test Nos. Having the side relief coefficients of -1.9 to -1.0. 11 is the evaluation of both the scratches and hexagonal tension.
It was extremely good. On the other hand, Test No. The comparative example of No. 8 was defective due to a scratching out, and the test No. 8 was defective. 13, 14
In Comparative Example 2, the hexagonal tension ratio was 10% or more. In the case of a wall thickness of 45 mm, test No. 3 in which the side relief coefficient of the intermediate stand is in the range of -3.9 to -1.0. 16 to 18 examples of the present invention passed. In particular, the test No. with the side relief coefficient of -2.9 to -2.0. 17 is the evaluation of both the scratches and hexagonal tension.
It was extremely good. On the other hand, Test No. The comparative example of No. 15 was defective due to a scratching out and the test no. 19-2
Comparative Example 1 had a hexagonal tension ratio of 10% or more. According to the present invention, a metal pipe having a wide range of thickness can be rolled by using the same hole type roll while suppressing the occurrence of flaws and hexagonal tension. Therefore, the productivity can be improved by reducing the equipment cost by reducing the number of hole-shaped rolls and shortening the roll replacement time.
【図面の簡単な説明】
【図1】サイザのロール配置を模式的に示す概要図であ
る。
【図2】3ロール式サイザのロールスタンドの断面図
で、同図(a)は図1のA−A断面図、同図(b)は図
1のB−B断面図である。
【図3】孔型ロールの要部断面で、パスセンタと孔型ロ
ールのフランジ端間の距離ならびにパスセンタと孔型ロ
ールの溝底間の距離を説明する模式図である。
【図4】本発明に係るサイドリリーフ係数の適正範囲を
示すグラフである。
【符号の説明】
1:ロールスタンド、2:孔型ロール、3:金属管、
O:パスセンタ、F:フランジ端、E:溝底点。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram schematically showing a roll arrangement of a sizer. 2A and 2B are cross-sectional views of a roll stand of a three-roll type sizer. FIG. 2A is a cross-sectional view taken along line AA of FIG. 1, and FIG. 2B is a cross-sectional view taken along line BB of FIG. FIG. 3 is a schematic diagram for explaining a distance between a path center and a flange end of the hole-shaped roll and a distance between a path center and a groove bottom of the hole-shaped roll in a cross section of a main part of the hole-shaped roll. FIG. 4 is a graph showing an appropriate range of a side relief coefficient according to the present invention. [Description of Signs] 1: Roll stand, 2: Roll type roll, 3: Metal tube,
O: pass center, F: flange end, E: groove bottom point.
Claims (1)
ルを同一面内に有する複数のスタンドからなる定径圧延
機を用いた金属管の圧延方法であって、定径圧延機を上
流から下流に向かって第1スタンド、複数の中間スタン
ドおよび最終スタンドとしたときの全ての中間スタンド
において、金属管の製品の肉厚(t)と外径(D)に応
じてパスセンタと孔型ロール溝底間の距離を調整して、
下記(1)式で表される(i)番目のスタンドのサイド
リリーフ係数Si を下記(2)、(3)式でそれぞれ表
されるSmin 以上、Smax 以下の範囲とすることを特徴
とする金属管の圧延方法。 【数1】 (57) [Claim 1] A method for rolling a metal tube using a constant diameter rolling mill comprising a plurality of stands having three or four hole-shaped rolls in one stand in the same plane. The thickness (t) and outer diameter (D) of the product of the metal tube in all the intermediate stands when the constant diameter rolling mill is a first stand, a plurality of intermediate stands, and a final stand from upstream to downstream. ) To adjust the distance between the pass center and the bottom of the roll groove,
The side relief coefficient S i of the (i) th stand represented by the following equation (1) is set to be in a range of Smin to Smax represented by the following equations (2) and (3). Rolling method of metal tube. (Equation 1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14857299A JP3365348B2 (en) | 1999-05-27 | 1999-05-27 | Rolling method of metal tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14857299A JP3365348B2 (en) | 1999-05-27 | 1999-05-27 | Rolling method of metal tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000334504A JP2000334504A (en) | 2000-12-05 |
JP3365348B2 true JP3365348B2 (en) | 2003-01-08 |
Family
ID=15455754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14857299A Expired - Fee Related JP3365348B2 (en) | 1999-05-27 | 1999-05-27 | Rolling method of metal tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3365348B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7192120B2 (en) | 1998-06-09 | 2007-03-20 | Silverbrook Research Pty Ltd | Ink printhead nozzle arrangement with thermal bend actuator |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005070574A1 (en) * | 2004-01-21 | 2005-08-04 | Sumitomo Metal Industries, Ltd. | Tube reducing apparatus and roll for tube reducing apparatus |
BRPI0810055B1 (en) | 2007-02-08 | 2016-10-18 | Nippon Steel & Sumitomo Metal Corp | ribbed roller for a reducer and reducer |
JPWO2011148613A1 (en) * | 2010-05-25 | 2013-07-25 | 住友金属工業株式会社 | Seamless pipe diameter rolling method |
JP5765190B2 (en) * | 2011-10-31 | 2015-08-19 | Jfeスチール株式会社 | Diameter reduction method for seamless steel pipes |
-
1999
- 1999-05-27 JP JP14857299A patent/JP3365348B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7192120B2 (en) | 1998-06-09 | 2007-03-20 | Silverbrook Research Pty Ltd | Ink printhead nozzle arrangement with thermal bend actuator |
Also Published As
Publication number | Publication date |
---|---|
JP2000334504A (en) | 2000-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3365348B2 (en) | Rolling method of metal tube | |
US4685320A (en) | Method of rolling steel rods and wires with grooveless rolls and grooveless rolling entry guide | |
JPWO2008123121A1 (en) | Seamless pipe manufacturing method and perforated roll | |
EP1018378A1 (en) | Pipe and molding equipment array and pipe molding method | |
JP3260640B2 (en) | Rolling equipment and method for rolling round bars and wires | |
JP3228868B2 (en) | Sizing rolling device and rolling method | |
JP3339434B2 (en) | Rolling method of metal tube | |
JP2973851B2 (en) | Tube continuous rolling method and three-roll mandrel mill | |
JPH0441021A (en) | Device for manufacturing welded pipe | |
JP3309807B2 (en) | Method and apparatus for manufacturing metal material having a circular outer peripheral section | |
JP2742846B2 (en) | Rolling method of steel bars by 4 roll mill | |
JP2021098215A (en) | Seamless steel pipe manufacturing method | |
JP2582705B2 (en) | Mandrel mill | |
JP2940393B2 (en) | Vertical roll with caliber for slab width rolling | |
JP2812213B2 (en) | Tube rolling method | |
JP2682387B2 (en) | Cold rolling method of steel pipe | |
JP3098886B2 (en) | Free rolling method of profile with flange | |
JP2976831B2 (en) | Tube rolling method | |
JP3266062B2 (en) | Method and apparatus for manufacturing metal material having circular cross section | |
JP2897653B2 (en) | Tube rolling method | |
JP3056627B2 (en) | Free rolling method for shaped steel with flange | |
JP2661491B2 (en) | Cold rolling method of steel pipe | |
JPH07100501A (en) | Sizing rolling method for round bar steel | |
JPH06142718A (en) | Method for cold-rolling electric resistance welded tube | |
JPH0716616A (en) | Reducing rolling method for steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021001 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081101 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091101 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091101 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101101 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111101 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121101 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131101 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131101 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131101 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |