JP3363477B2 - Imaging device - Google Patents

Imaging device

Info

Publication number
JP3363477B2
JP3363477B2 JP17775992A JP17775992A JP3363477B2 JP 3363477 B2 JP3363477 B2 JP 3363477B2 JP 17775992 A JP17775992 A JP 17775992A JP 17775992 A JP17775992 A JP 17775992A JP 3363477 B2 JP3363477 B2 JP 3363477B2
Authority
JP
Japan
Prior art keywords
circuit
aperture
luminance signal
gain
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17775992A
Other languages
Japanese (ja)
Other versions
JPH05347730A (en
Inventor
正史 乾谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP17775992A priority Critical patent/JP3363477B2/en
Publication of JPH05347730A publication Critical patent/JPH05347730A/en
Application granted granted Critical
Publication of JP3363477B2 publication Critical patent/JP3363477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】この発明は,固体電子撮像素子を使用する
スチル・ビデオ・カメラおよびムービ・ビデオ・カメラ
を含む撮像装置に関する。
TECHNICAL FIELD The present invention relates to an image pickup apparatus including a still video camera and a movie video camera using a solid-state electronic image pickup device.

【0002】[0002]

【背景技術】近年,固体電子撮像素子としてCCDセン
サを用いたいわゆるCCDカメラが普及している。そし
て,このCCDカメラの小型化の傾向に伴って,内蔵す
るレンズ,絞りおよびCCDセンサ等の小型化が要求さ
れてきている。
BACKGROUND ART In recent years, a so-called CCD camera using a CCD sensor as a solid-state electronic image pickup device has become widespread. With the trend toward miniaturization of this CCD camera, miniaturization of the built-in lens, diaphragm, CCD sensor, etc. has been demanded.

【0003】しかし,これらレンズ,絞りおよびCCD
センサの小型化に伴い,レンズの絞り開口における光の
回折の影響が大きくなり,解像度が低下してしまうとい
う問題が生じてきている。
However, these lenses, diaphragms and CCDs
Along with the miniaturization of the sensor, the influence of the diffraction of light at the aperture opening of the lens becomes large, and the problem that the resolution deteriorates has arisen.

【0004】表1は,1/4インチCCDセンサ(有効
画面サイズ3.6mm×2.7mm)における絞り開口値(Fナン
バ)と空間周波数特性(モジュレーション・トランスフ
ァ・ファンクション)(以下MTFという;MTF=Mo
dulation Transfer Function)の関係を示している。表
1においてSは規格化された空間周波数である。
Table 1 shows a diaphragm aperture value (F number) and a spatial frequency characteristic (modulation transfer function) (hereinafter referred to as MTF; MTF = Mo) in a 1/4 inch CCD sensor (effective screen size 3.6 mm × 2.7 mm).
dulation transfer function). In Table 1, S is a standardized spatial frequency.

【0005】[0005]

【表1】 [Table 1]

【0006】また,図7は表1をグラフに表わしたもの
である。なお,表1および図7の1/4インチCCDの
設計時の解像度は,1000TV本(=185.3 本/mm)であ
る。
FIG. 7 is a graph of Table 1. The resolution at the time of designing the 1/4 inch CCD in Table 1 and FIG. 7 is 1000 TV lines (= 185.3 lines / mm).

【0007】この表1および図7から分る通り,絞りの
開口値(Fナンバ)が大きくなるほど光の回折の影響が
大きくなり,解像度の低下が急激となる。例えば,FNO.
32の絞りでは,解像度が約330 TV本の位置で絞りの開
口を通過する光量に対するCCDのレスポンスH(S) が
ほぼ零になる。
As can be seen from Table 1 and FIG. 7, the larger the aperture value (F number) of the diaphragm, the greater the influence of light diffraction, and the sharper the reduction in resolution. For example, FNO.
With the 32 aperture, the response H (S) of the CCD with respect to the amount of light passing through the aperture of the aperture becomes approximately zero at the position of about 330 TV lines.

【0008】[0008]

【発明の概要】この発明は,レンズ,絞りおよび固体電
子撮像素子を小型化しても鮮明な画像を撮影できる撮像
装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an image pickup apparatus capable of taking a clear image even if the lens, diaphragm and solid-state electronic image pickup element are downsized.

【0009】この発明による撮像装置は,上記目的を達
成するために,絞りと,絞りの開口を通して入射する光
像を映像信号に変換して出力する固体電子撮像素子とを
含む撮像光学系を備えた撮像装置において,上記固体電
子撮像素子から出力される映像信号から輝度信号成分を
抽出する輝度信号抽出回路,上記輝度信号抽出回路から
出力される輝度信号に輪郭強調処理を施す輪郭強調回
路,上記輪郭強調回路の出力信号を増幅する可変ゲイン
増幅回路,上記可変ゲイン増幅回路におけるゲインを,
上記絞りの開口値に応じて絞りの開口値が大きくなるほ
ど大きくして絞りの開口を通過する光量に対する固体電
子撮像素子の周波数レスポンスが上記絞りの開口値にか
かわらずほぼ同じになるように制御するゲイン制御手
段,および上記輝度信号抽出回路から出力される輝度信
号と上記可変ゲイン増幅回路から出力される信号とを合
成する合成回路を備えている。
In order to achieve the above object, an image pickup device according to the present invention comprises an image pickup optical system including a diaphragm and a solid-state electronic image pickup device which converts an optical image incident through an aperture of the diaphragm into a video signal and outputs the video signal. In the image pickup device, a luminance signal extraction circuit for extracting a luminance signal component from a video signal output from the solid-state electronic image pickup device, a contour enhancement circuit for performing a contour enhancement process on the luminance signal output from the luminance signal extraction circuit, A variable gain amplifier circuit that amplifies the output signal of the contour emphasis circuit, and a gain in the variable gain amplifier circuit,
According to the aperture value of the diaphragm, the aperture value of the diaphragm is increased as the aperture value is increased, and the frequency response of the solid-state electronic image pickup device with respect to the amount of light passing through the aperture of the diaphragm is controlled to be substantially the same regardless of the aperture value of the diaphragm. The gain control means is provided with a synthesizing circuit for synthesizing the luminance signal output from the luminance signal extracting circuit and the signal output from the variable gain amplifying circuit.

【0010】上記撮像装置は,可変ゲイン増幅回路のゲ
インがゲイン制御手段によって絞りの開口値が大きくな
るほど大きくなり,絞りの開口を通過する光量に対する
固体電子撮像素子の周波数レスポンスが開口値にかかわ
らずほぼ一定に保たれるように制御される。そして,輝
度信号抽出回路によって映像信号から抽出され,輪郭強
調回路によって輪郭強調処理された輝度信号が上記のよ
うにゲイン制御される可変ゲイン増幅回路によって増幅
される。
In the above image pickup apparatus, the gain of the variable gain amplifier circuit increases as the aperture value of the diaphragm is increased by the gain control means, and the frequency response of the solid-state electronic image pickup device with respect to the amount of light passing through the aperture of the diaphragm is irrespective of the aperture value. It is controlled so that it is kept almost constant. Then, the luminance signal extracted from the video signal by the luminance signal extraction circuit and subjected to the contour enhancement processing by the contour enhancement circuit is amplified by the variable gain amplification circuit whose gain is controlled as described above.

【0011】従って,絞りにおける光の回折により,固
体電子撮像素子からの映像信号のレベルが低下する場合
でも,その時の絞りの開口値が大きくなるに従って輪郭
強調された輝度信号を増幅するためのゲインを大きくす
ることにより,絞りの開口値に対応した映像信号のレベ
ル低下の補償が可能となる。
Therefore, even when the level of the video signal from the solid-state electronic image pickup device is lowered due to the diffraction of light in the diaphragm, the gain for amplifying the brightness signal whose contour is emphasized as the aperture value of the diaphragm at that time increases. By increasing, it becomes possible to compensate for the drop in the level of the video signal corresponding to the aperture value of the diaphragm.

【0012】この発明の好ましい実施態様においては,
上記ゲイン制御手段が,解像度1TV本から200 TV本
前後の範囲において上記周波数レスポンスがほぼ一定に
保たれるように,上記可変ゲイン増幅回路のゲインが制
御される。
In a preferred embodiment of the present invention,
The gain control means controls the gain of the variable gain amplifier circuit so that the frequency response is kept substantially constant in the range of about 1 TV line to about 200 TV lines.

【0013】これは,上記のような輪郭強調された輝度
信号を用いたレベル低下補償を,人間が視覚的に最も鮮
鋭感を感じる解像度200 TV本前後までの範囲において
行えば,最も効果的であるからである。
This is most effective if the level drop compensation using the edge-enhanced luminance signal as described above is performed within a range of up to about 200 TV resolutions at which humans visually feel the sharpest. Because there is.

【0014】以上のように,この発明による撮像装置に
よれば,CCD等の固体電子撮像素子が小型化して絞り
開口における光の回折の影響が増大して固体電子撮像素
子から出力される映像信号のレベルが低下する場合で
も,絞りの開口値に対応した輪郭強調を行うことによ
り,鮮明な画像の撮影が可能となる。
As described above, according to the image pickup device of the present invention, the solid-state electronic image pickup device such as a CCD is downsized, the influence of diffraction of light in the aperture is increased, and the video signal output from the solid-state electronic image pickup device is increased. Even if the level of is reduced, it is possible to capture a clear image by performing edge enhancement corresponding to the aperture value of the diaphragm.

【0015】[0015]

【実施例】以下,この発明を,図面に示す実施例に基づ
いてさらに詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail based on the embodiments shown in the drawings.

【0016】図1は,この発明による撮像装置の実施例
を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an image pickup apparatus according to the present invention.

【0017】図1において,撮像光学系10は撮像レンズ
11,絞り12およびCCDセンサ(固体電子撮像素子)13
から構成され,このCCDセンサ13から出力される映像
信号は,前置増幅回路14を介して色分離回路(輝度信号
抽出回路)15に入力される。色分離回路15は映像信号を
輝度信号(Y信号)と色度信号(C信号)に分離する。
色分離回路15から出力される輝度信号は,輝度信号用ガ
ンマ補正回路16,水平方向輪郭強調回路(輪郭強調回
路)17および垂直方向輪郭強調回路(輪郭強調回路)18
に入力される。
In FIG. 1, an image pickup optical system 10 is an image pickup lens.
11, aperture 12 and CCD sensor (solid-state electronic image sensor) 13
The video signal output from the CCD sensor 13 is input to the color separation circuit (luminance signal extraction circuit) 15 via the preamplification circuit 14. The color separation circuit 15 separates the video signal into a luminance signal (Y signal) and a chromaticity signal (C signal).
The luminance signal output from the color separation circuit 15 includes a gamma correction circuit 16 for luminance signal, a horizontal edge enhancement circuit (edge enhancement circuit) 17, and a vertical edge enhancement circuit (edge enhancement circuit) 18.
Entered in.

【0018】水平方向輪郭強調回路17で水平方向輪郭強
調されることにより得られる信号および垂直方向輪郭強
調回路18で垂直方向輪郭強調されることにより得られる
信号は第1合成回路19で互いに加算されて合成される。
この合成信号は可変ゲイン増幅回路(以下AGC回路と
いう)20で増幅され.第2合成回路21に与えられる。
A signal obtained by horizontal edge enhancement by the horizontal edge enhancement circuit 17 and a signal obtained by vertical edge enhancement by the vertical edge enhancement circuit 18 are added to each other by a first synthesizing circuit 19. Are synthesized.
This combined signal is amplified by a variable gain amplifier circuit (hereinafter referred to as AGC circuit) 20. It is given to the second synthesis circuit 21.

【0019】第2合成回路21では,AGC回路20からの
合成信号とガンマ補正回路16でガンマ補正された輝度信
号とが互いに加算されて合成される。
In the second combining circuit 21, the combined signal from the AGC circuit 20 and the luminance signal gamma-corrected by the gamma correction circuit 16 are added together and combined.

【0020】また,色分離回路15から出力される色度信
号(C信号)は,色度信号用ガンマ補正回路22に与えら
れてガンマ補正された後,マトリックス回路23で色差信
号R−Y,B−Yに変換され変調回路24に入力される。
The chromaticity signal (C signal) output from the color separation circuit 15 is applied to the chromaticity signal gamma correction circuit 22 to be gamma-corrected, and then the matrix circuit 23 applies the color difference signals RY, It is converted into BY and input to the modulation circuit 24.

【0021】色差信号R−Y,B−Yは変調回路24で変
調された後,第3合成回路22に与えられ,この第3合成
回路25で同期信号発生回路(図示せず)から与えられる
同期信号および第2合成回路21から与えられる合成信号
と加算される。変調回路24,第3合成回路25および同期
信号発生回路からNTSCエンコーダが構成される。そ
して,この第3合成回路25からNTSC方式の映像信号
が出力される。
The color difference signals R-Y and B-Y are modulated by the modulation circuit 24 and then applied to the third synthesizing circuit 22. In the third synthesizing circuit 25, a synchronism signal generating circuit (not shown) is applied. The synchronization signal and the combined signal provided from the second combining circuit 21 are added. The modulation circuit 24, the third synthesizing circuit 25 and the synchronizing signal generating circuit constitute an NTSC encoder. Then, an NTSC video signal is output from the third synthesis circuit 25.

【0022】CPU(ゲイン制御手段)30は,測光素子
33の測光値に基づいて絞りの開口値(Fナンバ)を決定
し,撮像光学系10の絞り12を制御するアイリス・コント
ロール回路31に指令信号を出力する。アイリス・コント
ロール回路31は,この指令信号に応答して絞り12の開口
値がCPU30で設定された値になるように絞り12を制御
する。CPU30はまた,設定した開口値に対応するAG
C回路20のゲインをLUT(ルック・アップ・テーブ
ル)32から検索してそのゲインとなるようにAGC回路
20のゲイン制御を行う。
The CPU (gain control means) 30 is a photometric element.
The aperture value (F number) of the diaphragm is determined based on the photometric value of 33, and a command signal is output to the iris control circuit 31 which controls the diaphragm 12 of the imaging optical system 10. In response to this command signal, the iris control circuit 31 controls the aperture 12 so that the aperture value of the aperture 12 becomes the value set by the CPU 30. The CPU 30 also sets the AG corresponding to the set opening value.
The gain of the C circuit 20 is searched from the LUT (look-up table) 32, and the gain is set to that gain.
20 gain control.

【0023】LUT32に記憶されるAGC回路20のゲイ
ンは,以下のように設定される。
The gain of the AGC circuit 20 stored in the LUT 32 is set as follows.

【0024】図2は,解像度200 TV本において,MT
FレスポンスH(S) 対絞り開口値(Fナンバ)の関係を
実測しプロットしたものである。この図2から求められ
る関数の逆数をプロットしたものが図3である。この図
3の横軸は絞りの開口値を,縦軸はAGC回路20のゲイ
ンを示している。LUT32には,図3のような関数から
求められる絞り開口値にそれぞれ対応するゲインを記憶
する。
FIG. 2 shows MT at a resolution of 200 TV lines.
The relationship between F response H (S) and aperture value (F number) is measured and plotted. FIG. 3 is a plot of the reciprocal of the function obtained from FIG. The horizontal axis of FIG. 3 represents the aperture value of the diaphragm, and the vertical axis represents the gain of the AGC circuit 20. The LUT 32 stores the gains corresponding to the aperture values obtained from the function shown in FIG.

【0025】ここで,上述のように,ゲインの設定を解
像度200 TV本を基準に行ったのは,人間が視覚的に最
も鮮鋭感を感じるのが解像度200 TV本前後だからであ
る。
As described above, the reason why the gain is set based on the resolution of 200 TV lines is that it is around 200 TV lines of resolution that humans visually feel the sharpest.

【0026】AGC回路20では,CPU30によって設定
されたゲインにしたがって第1合成回路19から与えられ
る合成された輪郭強調信号の増幅を行う。すなわち,A
GC回路20から出力される輪郭強調信号βは,図5に示
すように解像度が増加するにしたがって増加し解像度20
0 TV本付近で最大値をとりその後減少するような大き
さの信号になるとともに,絞り開口値が大きいほどレベ
ルが大きくなる。
The AGC circuit 20 amplifies the combined contour emphasizing signal given from the first combining circuit 19 according to the gain set by the CPU 30. That is, A
The contour enhancement signal β output from the GC circuit 20 increases as the resolution increases as shown in FIG.
The signal has a magnitude that takes a maximum value near 0 TV lines and then decreases, and the level increases as the aperture value increases.

【0027】従って,輝度信号用ガンマ補正回路16から
出力される図4に示す特性をもつ輝度信号αと図5に示
す特性をもつAGC回路20からの輪郭強調信号βとが第
2合成回路21で加算されると,図6に示すように解像度
200 TV本までは絞り開口値にかかわらず絞りの開口を
通過する光量に対するCCDのレスポンスがほぼ一定の
MTF特性を得ることができる。
Therefore, the luminance signal α having the characteristic shown in FIG. 4 and the contour enhancement signal β from the AGC circuit 20 having the characteristic shown in FIG. , The resolution is as shown in FIG.
Up to 200 TV lines, it is possible to obtain an MTF characteristic in which the CCD response with respect to the amount of light passing through the aperture of the aperture is almost constant regardless of the aperture value of the aperture.

【0028】以上のように,絞り開口値に対応して輪郭
強調信号の増幅を行うことにより,小型の固体電子撮像
素子を用いた場合にも絞りの開口における光の回折の影
響を除くことができる。
As described above, by amplifying the contour emphasis signal corresponding to the aperture value, it is possible to eliminate the influence of light diffraction at the aperture of the diaphragm even when a small solid-state electronic image pickup device is used. it can.

【0029】輪郭強調された信号のゲインの制御は,厳
密に解像度200 TV本で行う必要は無く,解像度200 T
V本前後であればよい。さらに言えば,人間が視覚的に
最も鮮鋭度を感じる鮮鋭度付近まで行えばよい。
It is not necessary to strictly control the gain of the edge-enhanced signal at a resolution of 200 TV lines, and a resolution of 200 T is required.
It may be around V lines. Furthermore, it suffices to go up to near the sharpness at which humans visually feel the sharpest.

【0030】また,上記実施例は絞り12の開口値がCP
U30およびアイリス・コントロール回路31によって自動
的に制御される自動露出のCCDカメラについて説明を
行ったが,この発明は絞りの開口値を手動で設定するC
CDカメラについても適用できるのは言うまでもない。
絞りの開口値を手動で設定するCCDカメラの場合に
は,設定された絞りの開口値をCPU30によって検出
し,これに基づいて上述したのと同様な輪郭強調信号の
増幅制御を行う。
In the above embodiment, the aperture value of the diaphragm 12 is CP.
Although the automatic exposure CCD camera which is automatically controlled by the U30 and the iris control circuit 31 has been described, the present invention describes a method of manually setting the aperture value of the diaphragm C
It goes without saying that it can be applied to a CD camera.
In the case of a CCD camera in which the aperture value of the aperture is manually set, the CPU 30 detects the aperture value of the aperture that has been set, and based on this, the same amplification control of the contour emphasis signal as described above is performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】1/4インチCCDの解像度200 TV本におけ
る絞り開口値とMTFレスポンスとの関係を示すグラフ
である。
FIG. 2 is a graph showing a relationship between an aperture value and an MTF response in 200 TV lines with a resolution of 1/4 inch CCD.

【図3】絞り開口値とAGC回路のゲインとの関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between an aperture value and a gain of an AGC circuit.

【図4】絞り開口値をパラメータとしてガンマ補正され
た輝度信号のレベルの解像度に対する変化を示すグラフ
である。
FIG. 4 is a graph showing a change in the level of the luminance signal gamma-corrected with the aperture value as a parameter with respect to the resolution.

【図5】増幅後の輪郭強調信号のレベルの解像度に対す
る変化を示すグラフである。
FIG. 5 is a graph showing a change in the level of the contour emphasis signal after amplification with respect to the resolution.

【図6】図4に示す特性をもつ輝度信号と図5に示す特
性をもつ輪郭強調信号とが加算されることにより得られ
る合成信号のMTF特性を示すグラフである。
6 is a graph showing an MTF characteristic of a combined signal obtained by adding a luminance signal having the characteristic shown in FIG. 4 and an edge enhancement signal having the characteristic shown in FIG.

【図7】1/4インチCCDのMTF特性を示すグラフ
である。
FIG. 7 is a graph showing the MTF characteristic of a 1/4 inch CCD.

【符号の説明】[Explanation of symbols]

12 絞り 13 CCD(固体電子撮像素子) 17 水平方向輪郭強調回路(輪郭強調信号回路) 18 垂直方向輪郭強調回路(輪郭強調回路) 19 第1合成回路 20 AGC回路(可変ゲイン増幅回路) 21 第2合成回路 30 CPU(ゲイン制御手段) 31 アイリス・コントロール回路 32 LUT 12 aperture 13 CCD (solid-state electronic image sensor) 17 Horizontal edge enhancement circuit (edge enhancement signal circuit) 18 Vertical direction edge enhancement circuit (edge enhancement circuit) 19 First synthesis circuit 20 AGC circuit (variable gain amplifier circuit) 21 Second synthesis circuit 30 CPU (gain control means) 31 Iris control circuit 32 LUT

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04N 5/222 - 5/257 G02B 7/11 H04N 9/68 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H04N 5/222-5/257 G02B 7/11 H04N 9/68

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絞りと,絞りの開口を通して入射する光
像を映像信号に変換して出力する固体電子撮像素子とを
含む撮像光学系を備えた撮像装置において, 上記固体電子撮像素子から出力される映像信号から輝度
信号成分を抽出する輝度信号抽出回路, 上記輝度信号抽出回路から出力される輝度信号に輪郭強
調処理を施す輪郭強調回路, 上記輪郭強調回路の出力信号を増幅する可変ゲイン増幅
回路, 上記可変ゲイン増幅回路におけるゲインを,上記絞りの
開口値に応じて絞りの開口値が大きくなるほど大きくし
て絞りの開口を通過する光量に対する固体電子撮像素子
周波数レスポンスが上記絞りの開口値にかかわらずほ
ぼ同じになるように制御するゲイン制御手段,および上
記輝度信号抽出回路から出力される輝度信号と上記可変
ゲイン増幅回路から出力される信号とを合成する合成回
路, を備えた撮像装置。
1. An imaging device comprising an imaging optical system including a diaphragm and a solid-state electronic imaging device for converting a light image incident through an aperture of the diaphragm into a video signal and outputting the video signal. Luminance signal extraction circuit for extracting a luminance signal component from a video signal, a contour enhancement circuit for subjecting the luminance signal output from the luminance signal extraction circuit to contour enhancement processing, and a variable gain amplification circuit for amplifying the output signal of the contour enhancement circuit. , The gain in the variable gain amplifier circuit is increased as the aperture value of the aperture increases according to the aperture value of the aperture, and the frequency response of the solid-state electronic image pickup device with respect to the amount of light passing through the aperture of the aperture becomes the aperture value of the aperture. Regardless of the gain control means for controlling so as to be substantially the same, the luminance signal output from the luminance signal extraction circuit and the variable gain Combining circuit for combining the signals output from the width circuit, an imaging device provided with a.
【請求項2】 上記ゲイン制御手段が,解像度1TV本
から200 TV本前後の範囲において上記周波数レスポン
スがほぼ一定に保たれるように,上記可変ゲイン増幅回
路のゲインを制御する請求項1に記載の撮像装置。
2. The gain control means controls the gain of the variable gain amplifier circuit so that the frequency response is kept substantially constant in the range of about 1 TV line to about 200 TV lines of resolution. The image pickup apparatus according to claim 1.
JP17775992A 1992-06-12 1992-06-12 Imaging device Expired - Lifetime JP3363477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17775992A JP3363477B2 (en) 1992-06-12 1992-06-12 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17775992A JP3363477B2 (en) 1992-06-12 1992-06-12 Imaging device

Publications (2)

Publication Number Publication Date
JPH05347730A JPH05347730A (en) 1993-12-27
JP3363477B2 true JP3363477B2 (en) 2003-01-08

Family

ID=16036635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17775992A Expired - Lifetime JP3363477B2 (en) 1992-06-12 1992-06-12 Imaging device

Country Status (1)

Country Link
JP (1) JP3363477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153983A1 (en) 2008-06-18 2009-12-23 パナソニック株式会社 Image processing device, imaging device, method, and program

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298683A (en) * 1996-04-26 1997-11-18 Sony Corp Video signal processing method and video signal processor
JP3072988B1 (en) 1999-02-22 2000-08-07 オリンパス光学工業株式会社 Imaging device
US7170559B2 (en) 1999-02-25 2007-01-30 Olympus Corporation Image pickup apparatus having a beam limiting member
JP2002218295A (en) 2001-01-18 2002-08-02 Olympus Optical Co Ltd Image pickup device
EP2523459B1 (en) 2010-01-07 2017-02-08 Panasonic Intellectual Property Management Co., Ltd. Image processing device, image generating system, method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153983A1 (en) 2008-06-18 2009-12-23 パナソニック株式会社 Image processing device, imaging device, method, and program
EP2312858A1 (en) 2008-06-18 2011-04-20 Panasonic Corporation Image processing apparatus, imaging apparatus, image processing method, and program

Also Published As

Publication number Publication date
JPH05347730A (en) 1993-12-27

Similar Documents

Publication Publication Date Title
US7057653B1 (en) Apparatus capable of image capturing
US7102669B2 (en) Digital color image pre-processing
JP3207313B2 (en) Imaging device and control method thereof
KR20080102117A (en) Image signal processing device and image signal processing method
US20100033596A1 (en) Solid-state image-capturing apparatus, camera, and method of processing signal
US5523785A (en) Image pickup apparatus for a video camera
JP3363477B2 (en) Imaging device
JP3943719B2 (en) Color imaging device
JP3105334B2 (en) Automatic focusing device
CN101646015B (en) Video signal processing apparatus, and video signal processing method
JPH11155108A (en) Video signal processor and processing method and video camera using the same
JP4003246B2 (en) Video camera equipment
JP3609138B2 (en) Video camera
JPH05103256A (en) Image pickup device
JPH01218178A (en) Image pickup device
JPH07143509A (en) Chromanoise suppressing method for video camera
JP4217494B2 (en) Electronic imaging device
JP2952488B2 (en) Image quality correction method for imaging device
KR20040089885A (en) Apparatus for compensating a low intensity of illumination image and method thereof
JPS6179378A (en) Image pickup device
JP2667721B2 (en) Video camera
JP2729336B2 (en) Aperture control device
JPH11113012A (en) Electronic image pickup device
JPH1146368A (en) Television camera device
JP2947861B2 (en) Image processing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10