JP3359137B2 - Method for photographing and creating a stereoscopic image of the entire circumference of a hole wall, and a stereoscopic prism and its device - Google Patents

Method for photographing and creating a stereoscopic image of the entire circumference of a hole wall, and a stereoscopic prism and its device

Info

Publication number
JP3359137B2
JP3359137B2 JP34346293A JP34346293A JP3359137B2 JP 3359137 B2 JP3359137 B2 JP 3359137B2 JP 34346293 A JP34346293 A JP 34346293A JP 34346293 A JP34346293 A JP 34346293A JP 3359137 B2 JP3359137 B2 JP 3359137B2
Authority
JP
Japan
Prior art keywords
image
prism
central axis
plane
hole wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34346293A
Other languages
Japanese (ja)
Other versions
JPH07168124A (en
Inventor
俊一 亀和田
Original Assignee
株式会社レアックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レアックス filed Critical 株式会社レアックス
Priority to JP34346293A priority Critical patent/JP3359137B2/en
Publication of JPH07168124A publication Critical patent/JPH07168124A/en
Application granted granted Critical
Publication of JP3359137B2 publication Critical patent/JP3359137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は地中のボーリング孔等の
孔壁全周の立体視が可能な立体画像の撮影方法及び立体
画像の作成方法並びにそれに用いる円筒状プリズムと立
体画像の撮影装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic image photographing method and a stereoscopic image producing method capable of stereoscopically observing the entire circumference of a hole wall such as an underground boring hole, and a cylindrical prism and a stereoscopic image photographing apparatus used therefor. It is.

【0002】[0002]

【従来の技術】従来から地質調査では、地層面、節理
面、亀裂面等の面要素の方向の連続状態を知ることが必
要である。このため上記の地質調査では、ボーリングに
よって掘削された孔内にゾンデを昇降させ、該ゾンデ内
に孔壁を直接観察できるボアホールテレビカメラを設置
したものが使用されていた。この装置は孔壁をその孔壁
面に対して45°の角度に傾けた平面鏡に写してこれをボ
アホールテレビカメラで撮影するものである。
2. Description of the Related Art Conventionally, in geological surveys, it is necessary to know the continuous state of the direction of a surface element such as a stratum surface, a joint surface, and a crack surface. For this reason, in the above-mentioned geological survey, a probe was used in which a sonde was raised and lowered in a hole excavated by boring, and a borehole television camera capable of directly observing a hole wall in the sonde was used. In this apparatus, the hole wall is projected on a plane mirror inclined at an angle of 45 ° with respect to the hole wall surface and photographed by a borehole television camera.

【0003】また他の装置としては図30に示すように、
円筒状昇降プローブ(31)の側壁の一部の全周を透明窓
(39)に形成し、その内側に中央に軸方向に貫通する貫
通孔(20)を形成し且つ側面である円錐面をメッキ等に
より鏡面加工した円錐台ブロックからなる円錐台鏡(6
1)を、上記透明窓(39)を通して入射するボーリング
孔壁全周からの入射光を軸方向に反射するように取り付
け、該円錐台鏡(61)の下方にその軸上に磁方位コンパ
ス(35)を設け、さらに該円錐台鏡(61)の上方に上記
反射光及び上記貫通孔(20)を通して上記方位コンパス
(35)を撮影するテレビカメラ(34)を設置したものも
開発された。
[0003] As another device, as shown in FIG.
The entire circumference of a part of the side wall of the cylindrical lifting probe (31) is formed in a transparent window (39), and a through hole (20) is formed in the center of the transparent window in the center in the axial direction. A frusto-conical mirror (6
1) is mounted so as to axially reflect the incident light from the entire periphery of the borehole wall incident through the transparent window (39), and the magnetic compass (35) is provided below the truncated cone mirror (61) on its axis. And a television camera (34) for photographing the azimuth compass (35) through the reflected light and the through hole (20) above the truncated cone mirror (61) has also been developed.

【0004】[0004]

【発明が解決しようとする課題】上記従来の孔壁観察手
段ではいずれも孔壁の平面画像しか得られなかった。そ
のため孔壁に空洞や割れ目が存在したり、該孔が地盤応
力で変形したり、せん断されているような場合でも、そ
れらの情報が不明確で実際にそのような欠陥が存在する
のか判りにくかった。
The above conventional hole wall observation means can only obtain a plane image of the hole wall. Therefore, even if there are cavities or cracks in the hole wall, or if the hole is deformed or sheared by ground stress, the information is unclear and it is difficult to tell whether such a defect actually exists. Was.

【0005】[0005]

【課題を解決するための手段】本発明は上記の問題点に
鑑み検討の結果、孔壁全周の立体視のできる立体画像を
撮影する方法とそのような画像の作成方法、及びそれに
用いる円筒状フレネルプリズムを開発した。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and as a result, a method of capturing a stereoscopic image capable of stereoscopically viewing the entire circumference of a hole wall, a method of creating such an image, and a cylindrical Fresnel used therefor Prism was developed.

【0006】即ち本発明の撮影方法は、孔壁内周の全周
像を該内周に沿った円周上に配置した円筒状プリズムに
より異なる2方向からそれぞれ該プリズムの内側に導入
してそれぞれの全周画像を各別に撮影することを特徴と
するものである。
That is, according to the photographing method of the present invention, the entire peripheral image of the inner periphery of the hole wall is introduced into the inside of the prism from two different directions by cylindrical prisms arranged on a circumference along the inner periphery. Is photographed separately.

【0007】そしてこの場合、透明円筒材の中心軸を含
む平面と、該平面と該円筒材の肉厚部内で交わり該平面
に対して一方の側で中心軸側を挟む該中心軸に平行な平
面とで切除される略直角三角柱状の軸方向の鋸歯形凹溝
を全周に連続して設けた円筒状直線正フレネルプリズム
と、透明円筒材の中心軸を含む平面と、該平面と該円筒
材の肉厚部内で交わり該平面に対して他方の側で中心軸
側を挟む該中心軸に平行な平面とで切除される略直角三
角柱状の軸方向の鋸歯形凹溝を全周に連続して設けた円
筒状直線逆フレネルプリズムとを軸方向に重ねて配置し
てこれらフレネルプリズムをその軸方向に孔内を移動さ
せることにより、孔壁内周の全周像を上記円筒状直線正
フレネルプリズムを通した画像と上記円筒状直線逆フレ
ネルプリズムを通した画像とを各別に撮影する方法を用
いるのは有効である。
In this case, a plane including the center axis of the transparent cylindrical member intersects the plane within the thick portion of the cylindrical member and is parallel to the center axis sandwiching the central axis on one side of the plane. A cylindrical straight positive Fresnel prism having a substantially right-angled triangular prism-shaped axial sawtooth-shaped groove continuously cut all around the plane, a plane including the central axis of a transparent cylindrical material, A substantially right-angled triangular prism-shaped sawtooth-shaped groove in the entire circumference cut along a plane intersecting within the thick portion of the cylindrical material and a plane parallel to the center axis and sandwiching the center axis side on the other side with respect to the plane. By continuously arranging the cylindrical straight-line inverted Fresnel prisms provided in the axial direction and moving these Fresnel prisms in the axial direction in the axial direction, the entire circumferential image of the inner circumference of the hole wall is converted into the cylindrical straight line. The image passed through the normal Fresnel prism and the cylindrical straight inverted Fresnel prism Was the use a method for capturing an image to each other is effective.

【0008】またこの場合において透明円筒材の中心軸
を含む平面に対して対称であって該円筒材の肉厚部内で
交わり該中心軸を挟む中心軸に平行な2平面で切除され
る略二等辺三角柱状の軸方向の山形凹溝を全周に連続し
て設けた円筒状直線両フレネルプリズムを用い、上記中
心軸を含む各平面に対して一方の側の平面で切除され形
成されたプリズム面を通して得た周方向に分割された孔
壁内周の全周画像と同時に他方の側の平面で切除され形
成されたプリズム面を通して得た周方向に分割された孔
壁内周の全周画像とを各別に撮影する方法を用いるのも
有効である。
Further, in this case, approximately two planes which are symmetrical with respect to a plane including the central axis of the transparent cylindrical member, intersect within a thick portion of the cylindrical member, and are cut off in two planes parallel to the central axis sandwiching the central axis. A prism formed by cutting off a plane on one side with respect to each plane including the central axis, using a cylindrical linear bi-Fresnel prism having an equilateral triangular prism-shaped axial concave groove continuously provided on the entire circumference. Full-circumferential image of the circumferentially divided hole wall inner periphery obtained through the surface and simultaneously with the circumferentially divided hole wall inner periphery obtained through the prism surface cut and formed on the other side plane It is also effective to use a method of separately capturing the images.

【0009】また本発明の立体画像の作成方法は、孔壁
内周の全周像を該内周に沿った円周上に配置した円筒状
プリズムにより異なる2方向からそれぞれ該プリズムの
内側に導入してそれぞれの全周画像を該プリズム内側に
設置した円錐鏡面で孔の軸方向に反射して得られる2種
類のリング状全周画像をそれぞれ周方向と径方向に細分
割し、周方向の分割画素を順次横方向に再配列する操作
を径方向に繰り返し行いこれらを縦方向に配列すること
により右目用孔壁展開画像と左目用孔壁展開画像を得る
ことを特徴とするものである。
In the method of producing a three-dimensional image according to the present invention, the whole peripheral image of the inner periphery of the hole wall is introduced into the inside of the prism from two different directions by cylindrical prisms arranged on a circumference along the inner periphery. Then, two types of ring-shaped full-circumferential images obtained by reflecting each full-circumferential image in the axial direction of the hole with a conical mirror surface installed inside the prism are subdivided in the circumferential direction and the radial direction, respectively. An operation of sequentially rearranging the divided pixels in the horizontal direction is repeated in the radial direction, and these are arranged in the vertical direction to obtain a right eye hole wall developed image and a left eye hole wall developed image.

【0010】そしてこの場合において、透明円筒材の中
心軸を含む平面と、該平面と該円筒材の肉厚部内で交わ
り該平面に対して一方の側で中心軸側を挟む該中心軸に
平行な平面とで切除される略直角三角柱状の軸方向の鋸
歯形凹溝を全周に連続して設けた円筒状直線正フレネル
プリズムと、透明円筒材の中心軸を含む平面と、該平面
と該円筒材の肉厚部内で交わり該平面に対して他方の側
で中心軸側を挟む該中心軸に平行な平面とで切除される
略直角三角柱状の軸方向の鋸歯形凹溝を全周に連続して
設けた円筒状直線逆フレネルプリズムとを軸方向に重ね
て配置してこれら正及び逆フレネルプリズムを軸方向に
移動し同時にこれらフレネルプリズムを通った孔壁内周
のそれぞれの全周像をこれらフレネルプリズムの内側に
配置した円錐鏡面で軸方向に反射して得られる2種類の
リング状全周画像として右目用孔壁展開画像と左目用孔
壁展開画像を得る方法は有効である。
In this case, a plane including the central axis of the transparent cylindrical member is parallel to the central axis intersecting the plane within the thick portion of the cylindrical member and sandwiching the central axis on one side of the plane. A cylindrical straight positive Fresnel prism having a substantially right-angled triangular prism-shaped axial saw-tooth concave groove continuously provided on the entire circumference and a plane including the central axis of a transparent cylindrical material, A substantially right-angled triangular prism-shaped sawtooth-shaped concave groove cut along a plane that intersects within the thick portion of the cylindrical material and that is parallel to the central axis on the other side of the plane and sandwiches the central axis side. A cylindrical linear inverted Fresnel prism provided continuously in the axial direction is arranged in an axial direction, and these forward and reverse Fresnel prisms are moved in the axial direction, and at the same time, the entire circumference of the hole wall inner circumference passing through these Fresnel prisms. Conical mirror with image placed inside these Fresnel prisms How to obtain two kinds of eye hole wall expansion image and the hole wall expanded image for the left eye as a ring-shaped all around image obtained by reflection in the axial direction it is effective.

【0011】またこの場合において、透明円筒材の中心
軸を含む平面に対して対称であって該円筒材の肉厚部内
で交わり該中心軸を挟む中心軸に平行な2平面で切除さ
れる略二等辺三角柱状の軸方向の山形凹溝を全周に連続
して設けた円筒状直線両フレネルプリズムを用い、上記
の中心軸を含む各平面に対して一方の側の平面で切除さ
れ形成されたプリズム面を通して得た周方向に分割され
た孔壁内周の全周画像と同時に他方の側の平面で切除さ
れ形成されたプリズム面を通して得た周方向に分割され
た孔壁内周の全周画像とを該フレネルプリズムの内側に
設置した円錐鏡面で軸方向に反射して得られる周方向に
交互に分割されて配置された2種類のリング状分割全周
画像によりそれぞれ右目用孔壁展開画像と左目用孔壁展
開画像を得る方法も有効である。
Further, in this case, the transparent cylindrical member is cut substantially in two planes which are symmetrical with respect to a plane including the central axis, intersect in the thick portion of the cylindrical member, and are parallel to the central axis sandwiching the central axis. Using a cylindrical linear double Fresnel prism provided with an isosceles triangular prism-shaped axially-shaped concave groove continuously on the entire circumference, each plane including the central axis is cut out and formed on one side plane. Of the inner periphery of the hole wall divided in the circumferential direction obtained through the prism surface, and simultaneously with the whole of the inner periphery of the hole wall divided in the circumferential direction obtained through the prism surface cut out and formed on the other side plane. The peripheral wall image is reflected by the conical mirror surface set inside the Fresnel prism in the axial direction, and two types of ring-shaped divided peripheral images alternately divided and arranged in the peripheral direction are obtained. To obtain an image and a left-eye hole wall development image It is effective.

【0012】次に本発明の立体画像撮影及び作成に用い
る円筒状プリズムとしては、透明円筒材の中心軸を含む
平面と、該平面と該円筒材の肉厚部内で交わり該平面に
対して一方の側で中心軸側を挟む該中心軸に平行な平面
とで切除される略直角三角柱状の軸方向の鋸歯形凹溝を
全周に連続して設けたことを特徴とするもの、または透
明円筒材の中心軸を含む平面に対して対称であって該円
筒材の肉厚部内で交わり該中心軸を挟む中心軸に平行な
2平面で切除される略二等辺三角柱状の軸方向の山形凹
溝を全周に連続して設けたことを特徴とするものであ
る。
Next, as the cylindrical prism used for capturing and creating a stereoscopic image of the present invention, a plane including the center axis of the transparent cylindrical material, and the plane intersects the thick part of the cylindrical material and one side of the plane is formed. Characterized in that a substantially right-angled triangular prism-shaped axial sawtooth-shaped groove cut continuously with a plane parallel to the central axis sandwiching the central axis side is continuously provided on the entire circumference, or transparent. A substantially isosceles triangular prism-shaped chevron, which is symmetrical with respect to a plane including the central axis of the cylindrical material, intersects within the thick portion of the cylindrical material, and is cut in two planes parallel to the central axis sandwiching the central axis. The groove is provided continuously over the entire circumference.

【0013】また本発明の立体画像撮影装置は、透明円
筒材の中心軸を含む平面と、該平面と該円筒材の肉厚部
内で交わり該平面に対して一方の側で中心軸側を挟む該
中心軸に平行な平面とで切除される略直角三角柱状の軸
方向の鋸歯形凹溝を全周に連続して設けた円筒状直線正
フレネルプリズムと、透明円筒材の中心軸を含む平面
と、該平面と該円筒材の肉厚部内で交わり該平面に対し
て他方の側で中心軸側を挟む該中心軸に平行な平面とで
切除される略直角三角柱状の軸方向の鋸歯形凹溝を全周
に連続して設けた円筒状直線逆フレネルプリズムとを軸
方向に重ねて孔内を該孔の長手方向に移動自在な観察部
本体内に設置し、これら正及び逆フレネルプリズムの内
側に軸方向を一致させた円錐鏡を設置し、かつこれら正
及び逆フレネルプリズムを通して円錐鏡でそれぞれ軸方
向に反射されるリング状の2方向からの2種類の孔壁内
周の全周像を撮影するカメラを観察部本体内に設置し、
さらにカメラで得られたリング状の孔壁内周の全周画像
をそれぞれ矩形の右目用孔壁展開画像と左目用孔壁展開
画像に変換する画像処理部と、観察部本体を移動する駆
動部と、方位指示計とを備えたことを特徴とするもので
ある。そして円筒状直線正及び逆フレネルプリズムの内
側に少なくともこれらフレネルプリズムの軸方向の長さ
の合計寸法より大きい高さを有する一体円錐鏡を用い、
該円錐鏡の頂点方向に1台のカメラを設置するのは効果
がある。
Further, in the stereoscopic image photographing apparatus of the present invention, a plane including the central axis of the transparent cylindrical member intersects the plane within the thick portion of the cylindrical member, and the central axis is sandwiched on one side with respect to the plane. A plane including the center axis of a transparent cylindrical material, and a cylindrical straight positive Fresnel prism having a substantially right-angled triangular prism-shaped axial sawtooth-shaped groove continuously cut all around the plane parallel to the central axis; And a substantially right-angled triangular prism-shaped axial sawtooth cut at a plane that intersects the thick portion of the cylindrical material and intersects with the plane and is parallel to the center axis on the other side of the plane and sandwiching the center axis side. A cylindrical linear inverted Fresnel prism having a concave groove continuously provided on the entire circumference is overlapped in the axial direction, and the inside of the hole is installed in the observation portion main body movable in the longitudinal direction of the hole, and these forward and reverse Fresnel prisms are installed. An axially matched conical mirror is installed inside the A camera for capturing two types of hole wall inner periphery of all Shuzo from the ring-shaped two directions are reflected in the axial direction by the conical mirror observation unit installed in the main body through beam,
Further, an image processing unit that converts the entire peripheral image of the inner circumference of the ring-shaped hole wall obtained by the camera into a rectangular right-eye hole wall developed image and a left-eye hole wall developed image, respectively, and a driving unit that moves the observation unit body. And a direction indicator. And using an integral conical mirror having a height larger than the total dimension of the axial length of at least these Fresnel prisms inside the cylindrical straight positive and reverse Fresnel prisms,
It is effective to install one camera in the vertex direction of the conical mirror.

【0014】また本発明撮影装置の他のものは、透明円
筒材の中心軸を含む平面に対して対称であって該円筒材
の肉厚部内で交わり該中心軸を挟む中心軸に平行な2平
面で切除される略二等辺三角柱状の軸方向の山形凹溝を
全周に連続して設けた円筒状直線両フレネルプリズム
を、孔内を該孔の長手方向に移動自在な観察部本体内に
設置し、該フレネルプリズムの内側に軸方向を一致させ
た円錐鏡を設置し、かつ該フレネルプリズムを通して円
錐鏡で軸方向に反射される周方向に交互に分割されて配
置された2方向からの孔壁内周の2種類のリング状分割
全周像を同時に撮影するカメラを観察部本体内に設置
し、さらにカメラで得られたリング状の周方向に交互に
分割配置された各別の全周像をそれぞれ矩形の右目用孔
壁展開画像と左目用孔壁展開画像に変換する画像処理部
と、観察部本体を移動する駆動部と、方位指示計とを備
えたことを特徴とするものである。
Another aspect of the photographing apparatus according to the present invention is a photographic apparatus which is symmetrical with respect to a plane including the central axis of the transparent cylindrical member, intersects within the thick portion of the cylindrical member and is parallel to the central axis sandwiching the central axis. A cylindrical linear double Fresnel prism provided with an approximately isosceles triangular prism-shaped axially-shaped concave groove continuously cut all around the plane, inside the observation unit main body that is movable in the longitudinal direction of the hole. And a conical mirror whose axial direction is matched to the inside of the Fresnel prism is installed, and from two directions arranged alternately in the circumferential direction, which are axially reflected by the conical mirror through the Fresnel prism. A camera that simultaneously captures two types of ring-shaped divided full-circumferential images of the inner circumference of the hole wall is installed in the observation unit main body, and further, each of the cameras is separately divided and arranged alternately in a ring-shaped circumferential direction obtained by the camera. All right images are rectangular right eye hole wall development image and left eye hole image respectively. An image processing unit for converting the developed image, a driving unit for moving the observation main body, is characterized in that a bearing indicator.

【0015】そしてこれらの撮影装置において、カメラ
の撮影レンズと円錐鏡との間に補正レンズを設置するこ
とにより、円筒状フレネルプリズムを通る視線をすべて
円錐鏡の中心軸に対して直交させたり、あるいは円錐鏡
面を回転放物面鏡とすることにより円筒状フレネルプリ
ズムを通る視線をすべて円錐鏡の中心軸に対して直交さ
せるのは有効である。さらにいずれの撮影装置において
も円錐鏡がその中心軸に沿って円柱状の透孔または透明
材からなる円錐台鏡であり、該透孔または透明材を通し
て方位コンパスをカメラにて同時に撮影するのは有効で
ある。
In these photographing apparatuses, by providing a correction lens between the photographing lens of the camera and the conical mirror, all lines of sight passing through the cylindrical Fresnel prism can be made orthogonal to the central axis of the conical mirror, Alternatively, it is effective to make all the lines of sight passing through the cylindrical Fresnel prism orthogonal to the central axis of the conical mirror by using a conical mirror as a rotating parabolic mirror. Further, in any of the photographing devices, the conical mirror is a cylindrical truncated conical mirror formed of a through-hole or a transparent material along a central axis thereof, and simultaneously photographing an azimuth compass with the camera through the through-hole or the transparent material is difficult. It is valid.

【0016】[0016]

【作用】円筒状のボーリング孔や下水道管のような構造
物内周面の立体画像を得るには該内周面のすべての部分
について視差角のある2種類の画像が必要である。そし
てこのような2種類の孔壁展開画像を得るためには単に
2台のカメラを同時に使用することが考えられるがその
構造は極めて複雑になり、且つ装置的にも大きなものと
なるので現実的ではない。また全周画像撮影の目的で円
錐鏡のみを使って孔壁全周を撮影する装置の場合、その
構成上孔壁上の各点に向かう視線は、必ず円錐鏡の中心
から放射方向に進むため、視差のある画像を得ることは
不可能である。
In order to obtain a three-dimensional image of the inner peripheral surface of a structure such as a cylindrical boring hole or a sewer pipe, two types of images having a parallax angle are required for all portions of the inner peripheral surface. In order to obtain these two types of hole wall developed images, it is conceivable to simply use two cameras at the same time. However, the structure becomes extremely complicated and the apparatus becomes large, so that it is practical. is not. In addition, in the case of a device that captures the entire circumference of the hole wall using only a conical mirror for the purpose of full-circle image capturing, the line of sight going to each point on the hole wall always travels in the radial direction from the center of the conical mirror, so parallax It is impossible to obtain an image with a shadow.

【0017】そこで本発明では以下のような円筒状プリ
ズムを用いることで異なった2方向から孔壁内周の全周
像を別々に得ることにより、立体視のための視差のある
2種類の画像を得ることが可能となった。
In the present invention, two types of images having a parallax for stereoscopic vision are obtained by separately obtaining the entire image of the inner circumference of the hole wall from two different directions by using the following cylindrical prism. It became possible to obtain.

【0018】即ち図1に示すようにガラスあるいはプラ
スチック製の透明円筒材(1)の中心軸(C)を含む平
面(A)と、該平面(A)と円筒材(1)の肉厚部内で
交わり該平面(A)と常に一方の側(図では時計針の進
行方向側)で中心軸(C)側を挟む該中心軸(C)に平
行な平面(B)とで切除される内周面側の略直角三角柱
形状(T)の鋸歯形凹溝(3)を全周に連続して形成し
た図2に示すような円筒状直線フレネルプリズム(2)
を用いることにより異なった方向からの画像を得ること
が可能となった。なおこのような凹溝(3)は透明円筒
材(1)の外周面全周に設けてもよい。
That is, as shown in FIG. 1, a plane (A) including a central axis (C) of a transparent cylindrical member (1) made of glass or plastic, and the plane (A) and a thick portion of the cylindrical member (1). The plane (A) intersects with the plane (A) and the plane (B) that is always parallel to the center axis (C) sandwiching the center axis (C) on one side (the direction of movement of the clock hand in the figure). A cylindrical straight Fresnel prism (2) as shown in FIG. 2 in which a sawtooth-shaped concave groove (3) of a substantially right-angled triangular prism shape (T) on the peripheral surface is formed continuously around the entire circumference.
It has become possible to obtain images from different directions by using. Note that such a concave groove (3) may be provided on the entire outer peripheral surface of the transparent cylindrical member (1).

【0019】即ちこのような円筒状直線フレネルプリズ
ムを使用すると、図3(a)のようにこれを通過する画
像の大きさを変化させることなく、この光軸のみを変化
させることができる。即ち目で一定方向を見るとき、こ
の視線の途中に該フレネルプリズム置くことで、視線方
向を変化させることなく、当初とはある角(θ)をなす
別の方向を見ることができる。さらに図3(a)(b)
に示すように凹溝(3)を切除するときの平面(A)に
対する平面(B)の設置位置により視線方向は入射光線
に対して反対側に変更される。
That is, when such a cylindrical linear Fresnel prism is used, only the optical axis can be changed without changing the size of an image passing therethrough as shown in FIG. That is, when viewing a certain direction with the eyes, by placing the Fresnel prism in the middle of this line of sight, it is possible to see another direction forming a certain angle (θ) from the initial without changing the line of sight. 3 (a) and 3 (b)
As shown in (2), the direction of the line of sight is changed to the opposite side to the incident light beam depending on the installation position of the plane (B) with respect to the plane (A) when cutting the concave groove (3).

【0020】従って図3(a)のような凹溝を全周に形
成した円筒状直線正フレネルプリズムと図3(b)のよ
うな凹溝を全周に形成した円筒状直線逆フレネルプリズ
ム(この場合例えば上記正フレネルプリズムを軸方向で
反転させたものでもよい)を軸方向に重ね合わせ、これ
らプリズムをその円周方向を例えばボーリング孔の内周
方向に合わせて(即ちこれらプリズムの中心軸と孔の軸
方向とを合わせて)孔内に設置すると、図4に示すよう
に縦方向の孔の孔壁(4)に対して異なった方向から見
た2種類の像が得られる。
Therefore, a cylindrical linear positive Fresnel prism having a concave groove formed over the entire circumference as shown in FIG. 3A and a cylindrical linear inverted Fresnel prism having a concave groove formed over the entire circumference as shown in FIG. In this case, for example, the above-mentioned positive Fresnel prism may be inverted in the axial direction, and the prisms may be overlapped in the axial direction, and their circumferential direction may be adjusted to the inner circumferential direction of the boring hole (that is, the central axis of these prisms). When placed in the hole (with the hole and the axial direction of the hole together), two images are obtained as seen from different directions with respect to the hole wall (4) of the vertical hole as shown in FIG.

【0021】即ち孔壁(4)の縦方向に設けた直線
(M)上のm1 の位置から上部の円筒状直線正フレネル
プリズム(5)の側面を通って該プリズムの中心軸
(C)に向う視線(r1 )は孔壁縦方向の直線(M)と
該プリズムの中心軸(C)を含む平面に対して常にθの
角度を有しているものとする。このような正フレネルプ
リズム(5)によれば孔壁上のm1 を通り中心軸(C)
に直交する平面と交わる孔壁内周の全周は常に中心軸
(C)から見た方向に対してθの角度方向から見た像と
して該正フレネルプリズム(5)内側に得られる。他方
下部に設置した円筒状直線逆フレネルプリズム(6)に
おいては、例えばこの逆フレネルプリズムが上記正フレ
ネルプリズム(5)を全く反転した形状のものとする
と、上記正フレネルプリズム(5)とは全く逆の光学特
性を有しているので、上記孔壁(4)の直線(M)上の
1 より下方のm2 からの視線(r2)は上記の直線
(M)と中心軸(C)を含む平面に対して常に−θの角
度を有していることになる。よってこの逆フレネルプリ
ズム(6)の内側ではm2 を通る孔壁の全周は常に中心
軸(C)から見た方向に対して−θの角度方向から見た
像として得られる。
That is, from the position of m 1 on the straight line (M) provided in the longitudinal direction of the hole wall (4), the central axis (C) of the prism passes through the side surface of the upper cylindrical straight Fresnel prism (5). sight (r 1) towards the shall always have an angle of θ relative to a plane containing Anakabetate direction of the straight line (M) and the center axis of the prism (C). According to such a positive Fresnel prism (5), the central axis (C) passes through m 1 on the hole wall.
Is always obtained inside the positive Fresnel prism (5) as an image viewed from the angle θ with respect to the direction viewed from the central axis (C). On the other hand, in the cylindrical linear inverted Fresnel prism (6) installed at the lower part, if the inverted Fresnel prism has a completely inverted shape of the normal Fresnel prism (5), for example, the normal Fresnel prism (5) is completely different from the normal Fresnel prism (5). Since it has the opposite optical characteristics, the line of sight (r 2 ) from m 2 below m 1 on the straight line (M) of the hole wall (4) is the same as the straight line (M) and the central axis (C ) Always has an angle of -θ. Thus obtained as an image viewed from the angle direction of -θ with respect to the direction in the inside as viewed from the entire circumference is always the central axis of the hole wall through the m 2 (C) of the inverse Fresnel prism (6).

【0022】従ってこの正及び逆フレネルプリズムを連
結したフレネルプリズムを例えばLだけ下に移動させる
と、m2 の深さ位置に正フレネルプリズム(5)が対応
するようになるので上記m2 を通る孔壁の全周の像が該
正フレネルプリズム(5)の内側に中心軸(C)から見
た方向に対してθの角度方向から見た像として得られ
る。よってm2 を通る孔壁の全周像について、2θの視
差をもった像が各別に得られるのでこれをそれぞれに右
目用画像及び左目用画像として平面画像とすればその孔
壁内周の立体視が可能となる。さらに正及び逆フレネル
プリズムを得らる像を別々に連続してビデオ装置で得ら
れれば、距離Lで定まる移動時間だけ遅れて同じ場所を
異なる2方向から見た2種類の画像が作成でき、孔壁の
全内周の全周立体像が得られる。
[0022] Thus by moving the Fresnel prism formed by connecting the positive and reverse Fresnel prisms under example only L, since positive Fresnel prism to a depth position of the m 2 (5) comes to correspond through said m 2 An image of the entire circumference of the hole wall is obtained inside the positive Fresnel prism (5) as an image viewed from an angle θ with respect to a direction viewed from the central axis (C). Accordingly, for the entire circumference image of the hole wall passing through m 2 , an image having a parallax of 2θ can be obtained separately. If these images are plane images as the right-eye image and the left-eye image, respectively, It becomes possible to see. Furthermore, if images obtained from the forward and reverse Fresnel prisms can be separately and continuously obtained by a video device, two types of images can be created in which the same place is viewed from two different directions with a delay of a moving time determined by the distance L, An all-around three-dimensional image of the entire inner periphery of the hole wall is obtained.

【0023】上記のように正及び逆フレネルプリズムの
内側に導入された孔壁像を全周にわたって撮影するため
には、例えば中心軸上に45°の角度で設置した平面鏡を
360°回転させてそれを撮影してもよいが、本発明では
以下のように円錐鏡を用いた。
In order to capture the hole wall images introduced inside the forward and reverse Fresnel prisms as described above over the entire circumference, for example, a plane mirror installed at an angle of 45 ° on the central axis is used.
The image may be taken by rotating it 360 °, but in the present invention, a conical mirror was used as follows.

【0024】即ち図5に示すように、正フレネルプリズ
ム(5)と逆フレネルプリズム(6)を軸方向で互いに
重ね合わせ、その内側に重ね合わせた軸方向の長さと少
なくとも等しい高さを有する円錐面が鏡面の円錐鏡
(7)を両者の中心軸(C)を一致させて設置する。こ
の円錐鏡によりこれらフレネルプリズム(5)(6)の
側面を貫通して中心軸(C)へ向う視線が軸方向に反射
した反射像をその中心軸(C)の延長上に置かれ光軸を
一致させたカメラ(写真機またはビデオカメラ)(8)
で撮影できる。また図5に示すこれら正及び逆フレネル
プリズムが置かれた深さ位置の全周像は、円錐鏡(7)
面の下部に逆フレネルプリズム(6)を通過した全周像
が、及び上部に正フレネルプリズム(5)を通過した全
周像が別々に得られる。従ってカメラ(8)でこの円錐
鏡面を撮影すれば図6に示すようにリング状画像の内側
に正フレネルプリズム(5)によるリング状上部画像
(9)が、外側に逆フレネルプリズム(6)によるリン
グ状下部画像(10)が得られる。
That is, as shown in FIG. 5, a forward Fresnel prism (5) and a reverse Fresnel prism (6) are overlapped with each other in the axial direction, and a cone having a height at least equal to the axial length of the overlapped inside. A conical mirror (7) having a mirror-finished surface is set so that the central axes (C) of the two mirrors coincide. The line of sight that passes through the side surfaces of the Fresnel prisms (5) and (6) toward the central axis (C) is reflected by the conical mirror on the extension of the central axis (C). Camera (camera or video camera) that matches (8)
You can shoot with. The full-circumference image of the depth position where these forward and reverse Fresnel prisms are placed as shown in FIG.
A full-circumference image passing through the inverse Fresnel prism (6) and a full-circumference image passing through the positive Fresnel prism (5) are separately obtained at the lower part of the surface. Accordingly, if this conical mirror surface is photographed by the camera (8), as shown in FIG. 6, a ring-shaped upper image (9) formed by a normal Fresnel prism (5) and a reverse Fresnel prism (6) formed outside the ring-shaped image. A ring-shaped lower image (10) is obtained.

【0025】なお他の例として図7に示すように正フレ
ネルプリズム(5)に対応させてその内側に正フレネル
プリズム用円錐鏡(11)を設置し、該正フレネルプリズ
ム用円錐鏡(11)の底面に対して対称に逆フレネルプリ
ズム用円錐鏡(12)を設置し、さらに正フレネルプリズ
ム用円錐鏡(11)と逆フレネルプリズム用円錐鏡(12)
とを別々に撮影するカメラ(8)を各別に設置する構成
とすることも可能である。この場合リング状画像は別々
に得られる。
As another example, as shown in FIG. 7, a conical mirror for a positive Fresnel prism (11) is installed inside a corresponding to the positive Fresnel prism (5), and the conical mirror for a positive Fresnel prism (11) is provided. A conical mirror for an inverse Fresnel prism (12) is installed symmetrically with respect to the bottom surface, and a conical mirror for a normal Fresnel prism (11) and a conical mirror for an inverse Fresnel prism (12)
It is also possible to adopt a configuration in which cameras (8) for separately photographing are installed. In this case, the ring images are obtained separately.

【0026】(展開画像の作成方法)以上のような方法
で撮影された孔壁の全周画像は、例えばケーブルを介し
て地上装置に送信されるが、展開処理前にモニターに表
示される画像は上記図6に示すようなものである。これ
を初期画像メモリに展開し、マトリックス上の画素群に
分解したあと、各スキャン円周上に存在する画素を、展
開開始位置から展開終了位置まで逐次取り出し、展開画
像メモリ上で直線状の一例に並べ変えて一回の展開処理
ルーチンとする。この過程を孔内の円錐鏡の移動にとも
なって、一定間隔ごとに繰り返し、行方向に逐次並べて
連続的な展開画像を作成する。なお円錐鏡の孔内での一
定距離の移動は、例えば深度測定機などで検出され、電
気パルスを発生させるとこの信号をトリガーとして上記
ルーチンを自動的に繰り返すことができる。
(Creation Method of Expanded Image) The entire circumference image of the hole wall photographed by the above method is transmitted to a ground device via a cable, for example, but is displayed on a monitor before the expansion processing. Is as shown in FIG. After developing this in the initial image memory and decomposing it into a group of pixels on the matrix, the pixels present on each scan circumference are sequentially extracted from the development start position to the development end position, and an example of a straight line on the development image memory To make a single expansion processing routine. This process is repeated at regular intervals in accordance with the movement of the conical mirror in the hole, and is sequentially arranged in the row direction to create a continuous developed image. The movement of the conical mirror within a predetermined distance within the hole is detected by, for example, a depth measuring instrument. When an electric pulse is generated, the signal can be used as a trigger to automatically repeat the above routine.

【0027】そして立体視可能な一組(左目用及び右目
用)の展開画像を作成するには具体的には以下の二つの
方法がとられる。
In order to create a set of stereoscopically visible images (for the left eye and for the right eye), the following two methods are specifically used.

【0028】 図8に示すように円錐鏡の撮影画像上
で、正フレネルプリズムに対応する画像上のスキャンラ
インPと逆フレネルプリズムに対応する画像上のスキャ
ンラインQを定める。するとこれらスキャンラインP、
Q上にはフレネルプリズム及び円錐鏡の移動に伴ない次
々と孔壁内周の全周像が画像の径方向に移動する。そし
て画像について得られる方位情報により、これらスキャ
ンライン上をS方位を起点に右回りでスキャンして直線
状に再配列することにより、次のようにして例えばスキ
ャンラインPからは左目用展開画像を、スキャンライン
Qからは右目用展開画像を得る。なお図中Dのラインは
正フレネルプリズムと逆フレネルプリズムで得られる画
像の境界線である。
As shown in FIG. 8, a scan line P on the image corresponding to the normal Fresnel prism and a scan line Q on the image corresponding to the reverse Fresnel prism are determined on the image captured by the conical mirror. Then, these scan lines P,
On Q, the entire circumferential image of the inner circumference of the hole wall moves in the radial direction of the image one after another as the Fresnel prism and the conical mirror move. Then, based on the azimuth information obtained for the image, these scan lines are scanned clockwise starting from the S azimuth and rearranged in a straight line. , A right-eye expanded image is obtained from the scan line Q. Note that the line D in the figure is a boundary between images obtained by the normal Fresnel prism and the reverse Fresnel prism.

【0029】即ちスキャンラインPとQに対応する孔壁
面の視線の方向は図9のように2θの視差角をもち、円
錐鏡には2αの角度差で入射してくる。従ってスキャン
ラインPの画像は、リング状画像上のS方位よりα分先
行しているので、図10(a)に示すように展開画像メモ
リ上のS位置よりα分に相当する距離だけ先行した位置
を展開開始位置とし、ここから展開画像の表示を開始し
て左目用展開画像(13)とする。同様に、スキャンライ
ンQの画像は、リング状画像上のS方位よりα分遅れて
いるので、図10(b)に示すように展開画像メモリ上の
S位置よりα分に相当する距離だけ遅れた位置を展開開
始位置とし、ここから展開画像の表示を開始して右目用
展開画像(14)とする。また、スキャンラインPの画像
は、スキャンラインQの画像より、例えば図4に示すよ
うに長さL分上位位置から撮影されているので、スキャ
ンラインQの画像は、展開画像メモリ上で、Lに相当す
る距離分先行させて表示を開始する。
That is, the direction of the line of sight of the hole wall surface corresponding to the scan lines P and Q has a parallax angle of 2θ as shown in FIG. 9 and enters the conical mirror with an angle difference of 2α. Therefore, since the image of the scan line P is ahead of the S direction on the ring-shaped image by α, as shown in FIG. 10A, it is ahead of the S position on the developed image memory by a distance corresponding to α. The position is set as the development start position, and the display of the developed image is started from this position, and is set as the left-eye developed image (13). Similarly, since the image of the scan line Q is delayed by α from the S direction on the ring-shaped image, the image is delayed by a distance corresponding to α from the S position on the developed image memory as shown in FIG. The developed position is set as the development start position, and the display of the developed image is started from this position, and is set as the right-eye developed image (14). Further, since the image of the scan line P is photographed from the position higher than the image of the scan line Q by, for example, the length L as shown in FIG. 4, the image of the scan line Q is The display is started ahead of the distance corresponding to.

【0030】 上記と同様リング状の撮影画像上でス
キャンラインP及びQを定める。そして次のようにして
同様に右回りでスキャンを行ないスキャンラインPから
は左目用及びスキャンラインQからは右目用の展開画像
を得る。即ち図11に示すようにスキャンラインPの画像
は、リング状画像上のS方位よりα分先行しているの
で、初期画像メモリ上のS位置よりα分に相当する角度
だけ後退した位置(反時計方向)を展開開始位置とし、
ここからスキャニングを開始する。得られた各画素を図
12(a)のように展開画像メモリのS位置(最も左)か
ら書き込み、モニタに表示して左目用展開画像(13)と
する。同様にスキャンラインQの画像は、リング状画像
上のS方位よりα分後退しているので、初期画像メモリ
上のS位置よりα分に相当する角度だけ先行した位置
(時計方向)を展開開始位置とし、ここからスキャニン
グを開始する。得られた各画素を図12(b)のように展
開画像メモリのS位置(最も左)から書き込み、モニタ
に表示して右目用展開画像(14)とする。また、スキャ
ンラインPの画像は、前記と同様スキャンラインQの画
像より、L分上位位置から撮影されているので、スキャ
ンラインQの画像は、展開画像メモリ上で、Lに相当す
る距離分先行させて表示を開始する。
As described above, scan lines P and Q are determined on a ring-shaped photographed image. Similarly, scanning is performed clockwise in the following manner to obtain left-eye developed images from the scan line P and right-eye developed images from the scan line Q. That is, as shown in FIG. 11, since the image of the scan line P is ahead of the S direction on the ring-shaped image by α, the position of the scan line P is retracted by an angle corresponding to α from the S position on the initial image memory (the reverse position). Clockwise) is the deployment start position,
Start scanning from here. Figure showing each pixel obtained
As shown in FIG. 12 (a), writing is performed from the S position (leftmost) of the developed image memory, and displayed on the monitor to obtain a left-eye developed image (13). Similarly, since the image of the scan line Q is receded by α from the S azimuth on the ring-shaped image, the position (clockwise) ahead of the S position on the initial image memory by an angle corresponding to α is started. And start scanning from here. Each obtained pixel is written from the S position (leftmost) of the developed image memory as shown in FIG. 12B, and is displayed on a monitor to be a right-eye developed image (14). Further, since the image of the scan line P is photographed from the position higher by L than the image of the scan line Q in the same manner as described above, the image of the scan line Q is located on the developed image memory by the distance corresponding to L. To start the display.

【0031】このように円錐鏡での撮影画像で画像の方
位が重要である場合、方位指示計により図8や図11のよ
うに画像の上方向が常にN方位となるようにカメラを軸
の回りに回転して自動的に方位制御を行う構造とするこ
ともできる。そして具体的には、図30の従来装置にも示
されているように中心軸に沿って貫通した貫通孔から方
位計を覗く構造とし、リング状画像の中心に写し出され
た方位コンパスの例えばN方向が常にモニタ画面の例え
ば上方向になるよう、内蔵したモータでTVカメラを軸
方向に回転させ、画像を一定方向に制御する。この場
合、展開基準点を初期画像メモリ上の一定の位置、例え
ばS方向に固定して展開を行う。あるいは上記展開基準
点を手動または自動で制御可能なものとし、リング状画
像上の例えばN方向を、リング状画像の中心に写し出さ
れた方位コンパス指針や、磁気方位センサ等の信号によ
って検出し、これを基準に展開基準点を一定方向に、手
動または自動で制御する。
As described above, when the orientation of the image is important in the image captured by the conical mirror, the azimuth indicator is used to set the camera so that the upward direction of the image is always in the N direction as shown in FIGS. It is also possible to adopt a structure in which the azimuth is controlled automatically by rotating around. More specifically, as shown in the conventional apparatus of FIG. 30, the compass has a structure in which the compass is viewed through a through-hole penetrating along the central axis. The TV camera is rotated in the axial direction by a built-in motor so that the direction is always on the monitor screen, for example, upward, and the image is controlled in a fixed direction. In this case, the development is performed with the development reference point fixed at a fixed position on the initial image memory, for example, in the S direction. Alternatively, the deployment reference point can be controlled manually or automatically, and for example, the N direction on the ring-shaped image is detected by a direction compass pointer projected at the center of the ring-shaped image, a signal from a magnetic direction sensor, or the like, Based on this, the development reference point is controlled manually or automatically in a fixed direction.

【0032】また本発明では図13に示すような円筒状直
線両フレネルプリズム(15)を用いることもできる。即
ち透明円筒材(11)の中心軸(C)を含む平面(A)に
対して対称な2平面E、E′であって、平面(A)と該
円筒材の肉厚部内で交わり、中心軸(C)を挟む平面E
及びE′で切除される略二等辺三角柱形状(S)の山形
凹溝を該円筒材(1)の内周の全周に形成したものであ
る。なおこの山形凹溝は円筒材の外周面に形成してもよ
い。
In the present invention, a cylindrical linear double-Fresnel prism (15) as shown in FIG. 13 can also be used. That is, the two planes E and E 'are symmetrical with respect to the plane (A) including the center axis (C) of the transparent cylindrical member (11), and intersects the plane (A) in the thick part of the cylindrical member to form the center. Plane E sandwiching axis (C)
And an approximately isosceles triangular prism-shaped (S) angled groove cut out at E 'and formed on the entire inner periphery of the cylindrical member (1). The chevron groove may be formed on the outer peripheral surface of the cylindrical member.

【0033】このような円筒状直線両フレネルプリズム
(15)によれば、これを孔の内周に沿って設置すると、
図14に示すように孔壁(4)の1点gの位置から両フレ
ネルプリズム(15)の側面を通ってその中心軸(C)に
向う視線はgと中心軸(C)を含む平面に対してδの角
度をなすn1 と−δの角度をなすn2 との異なる2方向
のものが存在することになる。これは図15のように両フ
レネルプリズム(15)の2種類のプリズム面、即ち図13
で平面Eで切除され形成されたプリズム面eと平面E′
で切除形成されたプリズム面e′とを通る視線がそれぞ
れ中心軸(C)と孔壁面のgとを結ぶ線に対して反対側
に光軸が変更されるからである。従って孔壁の位置gは
プリズム面eを通る像とプリズム面e′を通る像の2方
向から見た像が得られるので、これらを立体視用の右目
用及び左目用画像として用いることができる。
According to such a cylindrical linear double-Fresnel prism (15), when it is installed along the inner periphery of the hole,
As shown in FIG. 14, the line of sight from the position of one point g of the hole wall (4) to the central axis (C) through the side surfaces of both Fresnel prisms (15) is a plane including g and the central axis (C). two different directions in what will be present between the n 2 at an angle of n 1 and -δ an angle of δ for. This corresponds to the two types of prism surfaces of the two Fresnel prisms (15) as shown in FIG.
The prism surface e cut out at the plane E and the plane E '
This is because the optical axis is changed to the opposite side of the line of sight passing through the prism surface e 'cut away by the line connecting the central axis (C) and the hole wall surface g. Accordingly, since the position g of the hole wall can be obtained as an image viewed from two directions, an image passing through the prism surface e and an image passing through the prism surface e ', these images can be used as right-eye and left-eye images for stereoscopic vision. .

【0034】従ってこの両フレネルプリズム(15)の内
側に円錐鏡を設置し、前記と同様にこの円錐鏡面をカメ
ラで撮影すればプリズム面eを通った画像とプリズム面
e′を通った画像が交互に配置した2種類のリング状分
割画像が得られる。よってこのようなリング状分割画像
から立体視用の展開画像を得るには、例えば次のように
する。
Therefore, if a conical mirror is installed inside both Fresnel prisms (15) and the conical mirror surface is photographed by a camera in the same manner as described above, the image passing through the prism surface e and the image passing through the prism surface e 'can be obtained. Two types of ring-shaped divided images arranged alternately are obtained. Therefore, to obtain a developed image for stereoscopic viewing from such ring-shaped divided images, for example, the following is performed.

【0035】いま、 360個の山形凹溝を有する両フレネ
ルプリズムを孔内に設置し、その内側に配置した円錐鏡
を介して、上記2方向のそれぞれについて孔壁全周を 3
60分割した孔壁画像を取り出して展開画像を作成するこ
とができる。即ち図16に示すスキャンラインUからリン
グ状に 720分割された各画素を逐次取り出して番号をつ
け、この奇数番号の画素と偶数番号の画素を使用して別
々に展開画像を作成し、それぞれを右目画像、左目画像
とすればよい。この場合の展開メモリ上での画像の配置
方法は、図9と同様に一対の視線がなす角2α対応して
前記方法と同様にして奇数番号画素から右目用展開画像
(図17(a))、偶数番号画素から左目用展開画像(図
17(b))を得る。なお両フレネルプリズムを使用する
場合は、同一のスキャンラインによって同時に右目画
像、左目画像が得られるので、上下位置を変更する必要
はない。(図12におけるL=0) なお、展開された一対の展開画像のどちらが右目画像と
なるか、左目画像となるかは、展開開始点の位置によっ
て異なるが、この円筒状直線両フレネルプリズムを円周
画像の上下の範囲で 1/2周期分捻って作成すれば、スキ
ャン円周の半径の変更で微調整が可能である。
Now, both Fresnel prisms having 360 chevron-shaped grooves are set in the hole, and the entire circumference of the hole wall in each of the above two directions is set to 3 through a conical mirror disposed inside the hole.
A developed image can be created by taking out the hole wall image divided into 60 parts. That is, each pixel divided into 720 pieces in a ring shape is sequentially taken out from the scan line U shown in FIG. 16 and numbered, and a developed image is separately created using the odd-numbered pixels and the even-numbered pixels, and The right-eye image and the left-eye image may be used. In this case, the method of arranging the images on the development memory corresponds to the angle 2α formed by the pair of lines of sight, as in FIG. 9, and from the odd-numbered pixels to the development image for the right eye in the same manner as described above (FIG. 17A). , Left-eye expanded image from even-numbered pixels (Fig.
17 (b)). When both Fresnel prisms are used, the right and left eye images can be obtained at the same time by the same scan line, so there is no need to change the vertical position. (L = 0 in FIG. 12) It should be noted that which of the pair of developed images becomes the right-eye image or the left-eye image depends on the position of the development start point. If it is created by twisting it for 1/2 cycle in the upper and lower range of the circumferential image, fine adjustment can be made by changing the radius of the scan circumference.

【0036】(展開画像の立体視方法)以上のように展
開された右目用及び左目用展開画像を用いて立体視する
方法としては次のようなものがある。 図3(a)(b)に示すような正及び逆フレネルプ
リズムを円筒状ではなく平板状に形成した板状正フレネ
ルプリズム(16)と板状逆フレネルプリズム(17)をそ
れぞれ図18に示すようにメガネのレンズ部に装着した正
逆フレネルプリズム眼鏡(18)を用い、図19に示すよう
に右目用展開画像(14)と左目用展開画像(13)とをそ
れぞれ見る方法。
(Stereoscopic Viewing Method of Expanded Image) There are the following methods for stereoscopic viewing using the right-eye and left-eye developed images developed as described above. FIG. 18 shows a plate-like normal Fresnel prism (16) and a plate-like reverse Fresnel prism (17) in which the normal and reverse Fresnel prisms as shown in FIGS. A method of viewing the right-eye developed image (14) and the left-eye developed image (13) as shown in FIG. 19 using the normal / reverse Fresnel prism glasses (18) attached to the lens part of the glasses.

【0037】 左右眼用の立体展開画像を、モニタ上
の同一場所に交互に表示し、これに連動する液晶シャッ
ター付の眼鏡を使用して観察する。
The stereoscopically developed images for the left and right eyes are alternately displayed at the same location on the monitor, and are observed using glasses with a liquid crystal shutter interlocked with the images.

【0038】 左右眼用の立体展開画像を縦に再分割
して交互に表示し、モニタスクリーン上に設けた特殊レ
ンズを使用して観察する。
The stereoscopic developed images for the left and right eyes are vertically re-divided and alternately displayed, and observed using a special lens provided on a monitor screen.

【0039】[0039]

【実施例】【Example】

(実施例1)図20(a)(b)(c)に示すように円筒
状直線正フレネルプリズム(5)と円筒状直線逆フレネ
ルプリズム(6)とを上下で接合し、それらフレネルプ
リズムの内側に中心軸に沿って円形の貫通孔(20)を有
する円錐面鏡(7)を設置し、さらに円錐面鏡(7)の
頂点方向の上方に補正レンズ(21)をホルダー(22)に
てフレネルプリズムに連結した一体型立体画像撮影用プ
リズム体(23)を作成した。
(Example 1) As shown in FIGS. 20 (a), 20 (b) and 20 (c), a cylindrical linear normal Fresnel prism (5) and a cylindrical linear inverted Fresnel prism (6) are joined up and down, and A conical mirror (7) having a circular through hole (20) along the central axis is installed inside, and a correction lens (21) is mounted on the holder (22) above the vertex direction of the conical mirror (7). Thus, an integrated three-dimensional image capturing prism body (23) connected to a Fresnel prism was prepared.

【0040】この補正レンズは図21に示すようにカメラ
(8)の前方に置くことによって通常図5に示すような
円筒状フレネルプリズムでは通過する上下方向に広がっ
た視線をすべて平行に且つ常に中心軸(C)に対して直
角に保つように修正するものである。なおこのような効
果は図22に示す鏡面が回転放物面鏡である円錐面鏡(2
4)を用いても達成できる。さらに図23に示すように円
筒状直線正プリズム(5)の内側と逆フレネルプリズム
(6)の内側とで立体角の異なった円錐からなる円錐面
をこれらプリズム(5)(6)の接合位置で連続して連
結した二段円錐鏡(25)を用いても、正及び逆フレネル
プリズム(5)(6)を通過する視線のうち少なくとも
1本づつは平行にすることができる。
By placing this correction lens in front of the camera (8) as shown in FIG. 21, the vertical line of sight that passes through the vertical Fresnel prism normally shown in FIG. The correction is made so as to be kept perpendicular to the axis (C). Note that such an effect can be obtained by using a conical mirror (2
This can also be achieved using 4). Further, as shown in FIG. 23, the conical surfaces formed of cones having different solid angles between the inside of the cylindrical straight regular prism (5) and the inside of the inverted Fresnel prism (6) are joined to the prisms (5) and (6). Even if a two-stage conical mirror (25) connected in series is used, at least one of the lines of sight passing through the forward and reverse Fresnel prisms (5) and (6) can be made parallel.

【0041】このようなプリズム体(24)を図24に示す
ようにボーリング孔内観察部本体であるワイヤー(30)
により吊り下げられて図示していない駆動装置により孔
内を上下動するプローグ(31)内に設置した。このプロ
ーブ(31)内には該プリズム体(23)の軸方向の上方
に、磁気方位センサー(32)の信号によりカメラ方向制
御モータ(33)で軸の回りに回転するテレビカメラ(3
4)を設置し、さらに該プリズム体(23)の下方には貫
通孔を通してカメラでとらえられる磁方位コンパス(3
5)を設置した。なお図中(36)電源ユニット、(37)
は孔壁面照明ランプ、(38)はコンパス照明装置及びバ
ッテリーである。またプローブのプリズム体(23)の設
置してある側面は透明窓(39)とした。
As shown in FIG. 24, such a prism body (24) is connected to a wire (30) which is a main body of the observation unit in the borehole.
It was installed in a prog (31) which was hung up and moved up and down in the hole by a driving device (not shown). In the probe (31), a television camera (3) rotated around an axis by a camera direction control motor (33) by a signal from a magnetic direction sensor (32) is provided above the prism body (23) in the axial direction.
4), and a magnetic compass (3) captured by a camera through a through hole below the prism body (23).
5) was installed. In the figure, (36) power supply unit, (37)
Is a hole wall illumination lamp, and (38) is a compass illumination device and a battery. The side face where the prism body (23) of the probe was installed was a transparent window (39).

【0042】このようなプローブ(31)は図25のように
地中のボーリング孔(40)内に吊り下げられるが、この
とき連結する地上装置としてはワイヤー(30)に係合し
てプローブ(31)の深さを測定する深度測定器(41)、
及び画像記録装置(42)、画像処理装置(43)、プロー
ブコントロール装置(44)、さらに立体視用の2つの画
像を写し出す2連モニタ(45)等を備えておく。このよ
うな一連の装置により、プローブを徐々に降下させたと
ころ、2連モニタ(45)には孔壁内周の全周を異なった
方向から見た矩形の平面画像が得られ、前記の方法によ
り立体視して立体像を観察することができた。
Such a probe (31) is suspended in a boring hole (40) underground as shown in FIG. 25. At this time, a ground device to be connected is engaged with a wire (30) to engage the probe (31). 31) Depth measuring device (41) for measuring the depth of
And an image recording device (42), an image processing device (43), a probe control device (44), and a dual monitor (45) for projecting two images for stereoscopic vision. When the probe is gradually lowered by such a series of devices, a rectangular planar image is obtained on the dual monitor (45), which looks at the entire inner circumference of the hole wall from different directions. , A stereoscopic image could be observed in a stereoscopic view.

【0043】(実施例2)円柱状ガラスに軸方向を一致
させた円錐形状の凹所を形成してその面を鏡面とした円
錐面鏡(7)を、その軸方向を円筒状正及び逆フレネル
プリズムを連結した円筒プリズム(50)の軸方向に合わ
せて該円筒プリズムの内側に設置した。そしてこの円錐
面鏡(7)と円筒プリズム(50)からなる一体型立体画
像撮影用プリズム体を図26に示すように横坑内移動車
(51)に設置し、さらにこの移動車には横坑壁照明ラン
プ(52)、プリズム体の中心軸上にテレビカメラ(3
4)、及び上記の地上装置と同様に画像記録装置(4
2)、画像処理装置(43)、カメラ・照明コントロール
装置(53)、2連モニタ(45)を載置した。なお図中
(54)は移動距離検出用車輪である。このような装置に
よっても横坑の壁面の連続立体画像が得られた。
(Example 2) A conical concave mirror (7) having a conical concave part whose axial direction is made coincident with a cylindrical glass and whose surface is a mirror surface is used. The Fresnel prism was installed inside the cylindrical prism (50) connected to the axial direction of the cylindrical prism (50). Then, an integrated stereoscopic image photographing prism body comprising the conical mirror (7) and the cylindrical prism (50) is installed on a moving vehicle (51) in a horizontal shaft as shown in FIG. Wall illumination lamp (52), TV camera (3
4) and an image recording device (4
2) An image processing device (43), a camera / lighting control device (53), and a dual monitor (45) were mounted. In the drawing, reference numeral (54) denotes a moving distance detecting wheel. A continuous three-dimensional image of the wall of the shaft was also obtained with such a device.

【0044】[0044]

【発明の効果】本発明によれば以下のような効果があ
る。 (1) 一個のテレビカメラを孔壁の中心位置において、
孔壁全周の、軸直角方向に視角をかえた定方位立体展開
画像がリアルタイムで撮影可能。 (2) 得られた一対の立体視可能な展開画像上で、孔壁
上の同一点の画像位置を計測することで、次のように当
該点の孔軸からの距離(孔の半径)を計測することがで
きる。
According to the present invention, the following effects can be obtained. (1) Place one TV camera at the center of the hole wall.
Capable of capturing real-time stereoscopic three-dimensional images of the entire circumference of the hole wall with different viewing angles in the direction perpendicular to the axis. (2) By measuring the image position of the same point on the hole wall on the obtained pair of stereoscopically developed images, the distance (the radius of the hole) from the hole axis of the point can be determined as follows. Can be measured.

【0045】いま、図27に示すように視差角が、ある一
定の半径の孔壁面上(標準孔壁面(60)、半径R)で交
差するように設定し、一対の立体展開画像を作成する
と、標準孔壁面(60)上にある点Pは図28(a)(b)
のように左右眼展開画像(13)(14)上で同一位置に表
示される。即ち図28(a)(b)で、b−a=0であ
る。一方、標準孔壁面(60)より奥にある点P′は左右
眼展開画像(13)(14)上で異なって表示され、b′−
a′=c≠0となる。図27に示されるようにcの大きさ
はΔθに相関し、さらにΔθは点P′の標準孔壁面から
の隔たりΔRに相関するので、展開画像上でa′、b′
の位置を計測することで孔壁の変化(R+ΔR)を決定
することができる。これを、展開画像内で同定される多
数の点で計測すれば、図29(a)(b)のように孔壁の
全体的な形状を知ることができる。
Now, as shown in FIG. 27, when the parallax angles are set to intersect on a hole wall surface with a certain radius (standard hole wall surface (60), radius R), and a pair of three-dimensional developed images is created. The point P on the standard hole wall surface (60) is shown in FIGS.
Are displayed at the same position on the left and right eye developed images (13) and (14). That is, ba = 0 in FIGS. 28A and 28B. On the other hand, the point P 'located behind the standard hole wall surface (60) is displayed differently on the left and right eye developed images (13) and (14), and b'-
a ′ = c ≠ 0. As shown in FIG. 27, the magnitude of c correlates with Δθ, and Δθ correlates with the distance ΔR from the standard hole wall of the point P ′.
The change (R + ΔR) in the hole wall can be determined by measuring the position of the hole. If this is measured at many points identified in the developed image, the overall shape of the hole wall can be known as shown in FIGS. 29 (a) and (b).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明円筒状直線フレネルプリズムの形状を説
明する説明図である。
FIG. 1 is an explanatory diagram illustrating the shape of a cylindrical linear Fresnel prism of the present invention.

【図2】本発明円筒状直線フレネルプリズムを示す斜視
図である。
FIG. 2 is a perspective view showing a cylindrical linear Fresnel prism of the present invention.

【図3】円筒状直線フレネルプリズムを用いた光軸の変
化を示す説明図である。
FIG. 3 is an explanatory diagram showing a change in an optical axis using a cylindrical linear Fresnel prism.

【図4】本発明の立体画像撮影の原理を示す説明図であ
る。
FIG. 4 is an explanatory diagram illustrating the principle of stereoscopic image capturing according to the present invention.

【図5】本発明の立体画像撮影方法を説明する説明図で
ある。
FIG. 5 is an explanatory diagram illustrating a stereoscopic image capturing method according to the present invention.

【図6】円錐面鏡で得られる撮影画像を示す平面図であ
る。
FIG. 6 is a plan view showing a captured image obtained by a conical mirror.

【図7】本発明の立体画像撮影方法の他の例を示す説明
図である。
FIG. 7 is an explanatory diagram showing another example of the stereoscopic image capturing method of the present invention.

【図8】リング状画像の展開方法を説明する説明図であ
る。
FIG. 8 is an explanatory diagram illustrating a method of developing a ring-shaped image.

【図9】同じく展開方法の説明図である。FIG. 9 is an explanatory diagram of a developing method.

【図10】同じく展開方法の説明図である。FIG. 10 is an explanatory diagram of a developing method.

【図11】他の展開方法を説明する説明図である。FIG. 11 is an explanatory diagram for explaining another developing method.

【図12】同上の説明図である。FIG. 12 is an explanatory diagram of the above.

【図13】本発明の円筒状直線両フレネルプリズムの形
状を示す説明図である。
FIG. 13 is an explanatory view showing the shape of a cylindrical linear double-Fresnel prism of the present invention.

【図14】両フレネルプリズムを用いて画像撮影する方
法を示す説明図である。
FIG. 14 is an explanatory diagram illustrating a method of capturing an image using both Fresnel prisms.

【図15】両フレネルプリズムの視線の変更状態を説明
する説明図である。
FIG. 15 is an explanatory diagram illustrating a state of change in the line of sight of both Fresnel prisms.

【図16】両フレネルプリズムを用いて展開画像を得る
方法を説明する説明図である。
FIG. 16 is an explanatory diagram illustrating a method of obtaining a developed image using both Fresnel prisms.

【図17】同上の説明図である。FIG. 17 is an explanatory diagram of the above.

【図18】立体視用眼鏡を示す斜視図である。FIG. 18 is a perspective view showing stereoscopic glasses.

【図19】立体視の一例を示す説明図である。FIG. 19 is an explanatory diagram illustrating an example of a stereoscopic view.

【図20】実施例で用いた一体型立体画像撮影用プリズ
ム体を示すもので(a)は斜視図、(b)は側面図、
(c)は平面図である。
20A and 20B show an integrated stereoscopic image photographing prism used in the embodiment, wherein FIG. 20A is a perspective view, FIG.
(C) is a plan view.

【図21】補助レンズを用いた状態を示す説明図であ
る。
FIG. 21 is an explanatory diagram showing a state in which an auxiliary lens is used.

【図22】回転放物面円錐鏡を用いた状態を示す説明図
である。
FIG. 22 is an explanatory view showing a state in which a rotating parabolic conical mirror is used.

【図23】二段円錐鏡を用いた状態を示す説明図であ
る。
FIG. 23 is an explanatory view showing a state in which a two-stage conical mirror is used.

【図24】本発明装置の一例を示す説明図である。FIG. 24 is an explanatory view showing an example of the device of the present invention.

【図25】同上の説明図である。FIG. 25 is an explanatory diagram of the above.

【図26】本発明装置の他の例を示す説明図である。FIG. 26 is an explanatory view showing another example of the device of the present invention.

【図27】本発明法により孔の半径を測定する例を示す
説明図である。
FIG. 27 is an explanatory diagram showing an example of measuring the radius of a hole by the method of the present invention.

【図28】同上野説明図である。FIG. 28 is an explanatory diagram of the Ueno.

【図29】本発明法により孔の形状を測定した例を示す
説明図である。
FIG. 29 is an explanatory diagram showing an example of measuring the shape of a hole by the method of the present invention.

【図30】従来の孔壁観察装置の一例を示す説明図であ
る。
FIG. 30 is an explanatory view showing an example of a conventional hole wall observation device.

【符号の説明】[Explanation of symbols]

1 透明円筒材 2 円筒状直線フレネルプリズム 3 鋸歯形凹溝 4 孔壁 5 円筒状直線正フレネルプリズム 5 円筒状直線逆フレネルプリズム 7 円錐面鏡 8 カメラ 9 リング状正画像 10 リング状逆画像 11 正フレネルプリズム用円錐鏡 12 逆フレネルプリズム用円錐鏡 13 左目用展開画像 14 右目用展開画像 15 円筒状直線両フレネルプリズム 16 板状正フレネルプリズム 17 板状逆フレネルプリズム 18 正逆フレネルプリズム眼鏡 20 貫通孔 21 補正レンズ 22 ホルダー 23 一体型立体画像撮影用プリズム体 24 回転放物面円錐鏡 25 二段円錐鏡 30 ワイヤー 31 プローブ 32 磁気方位センサー 33 カメラ方向制御モーター 34 テレビカメラ 35 磁方位コンパス 36 電源ユニット 37 孔壁面照明ランプ 38 コンパス照明装置 39 透明窓 40 ボーリング孔 41 深度測定器 42 画像記録装置 43 画像処理装置 44 プローブコントロール装置 45 2連モニタ 50 円筒プリズム 51 横坑移動車 52 横坑壁照明ランプ 53 カメラ・照明コントロール装置 60 標準孔壁面 61 円錐台鏡 DESCRIPTION OF SYMBOLS 1 Transparent cylindrical material 2 Cylindrical straight Fresnel prism 3 Serrated concave groove 4 Hole wall 5 Cylindrical straight normal Fresnel prism 5 Cylindrical straight inverted Fresnel prism 7 Conical mirror 8 Camera 9 Ring-shaped normal image 10 Ring-shaped inverted image 11 Normal Conical mirror for Fresnel prism 12 Conical mirror for reverse Fresnel prism 13 Image for left eye 14 Image for right eye 15 Cylindrical linear double Fresnel prism 16 Plate-shaped normal Fresnel prism 17 Plate-shaped reverse Fresnel prism 18 Forward / reverse Fresnel prism glasses 20 Through hole 21 Correction lens 22 Holder 23 Integrated stereoscopic imaging prism body 24 Rotating parabolic conical mirror 25 Two-stage conical mirror 30 Wire 31 Probe 32 Magnetic direction sensor 33 Camera direction control motor 34 TV camera 35 Magnetic direction compass 36 Power supply unit 37 Hole wall illumination lamp 38 Compass illumination device 39 Transparent window 40 Boring hole 41 Depth measuring instrument 42 Image recording Device 43 the image processing apparatus 44 probe control unit 45 duplicates the monitor 50 cylindrical prism 51 adit transport vehicle 52 Yokoanakabe illuminating lamp 53 camera and lighting control apparatus 60 standard hole wall 61 frustoconical mirror

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H04N 13/00 H04N 13/00 (56)参考文献 特開 昭48−90731(JP,A) 特開 平1−210594(JP,A) 特開 昭63−81416(JP,A) 特開 平4−152765(JP,A) 特開 平5−7374(JP,A) 特開 平7−140569(JP,A) 実開 昭52−151032(JP,U) (58)調査した分野(Int.Cl.7,DB名) G03B 35/00 - 37/06 G02B 5/00 - 5/136 G02B 27/22 H04N 5/222 - 5/257 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI H04N 13/00 H04N 13/00 (56) References JP-A-48-90731 (JP, A) JP-A-1-210594 (JP) JP-A-63-81416 (JP, A) JP-A-4-152765 (JP, A) JP-A-5-7374 (JP, A) JP-A-7-140569 (JP, A) 52-151032 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G03B 35/00-37/06 G02B 5/00-5/136 G02B 27/22 H04N 5/222-5 / 257

Claims (17)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 孔壁内周の全周像を該内周に沿った円周
上に配置した円筒状プリズムにより異なる2方向からそ
れぞれ該プリズムの内側に導入してそれぞれの全周画像
を各別に撮影することを特徴とする孔壁全周の立体画像
撮影方法。
1. A full-circle image of the inner circumference of a hole wall is introduced into the inside of the prism from two different directions by cylindrical prisms arranged on a circumference along the inner circumference, and each full-circle image is obtained. A method of capturing a stereoscopic image of the entire circumference of a hole wall, which is performed separately.
【請求項2】 透明円筒材の中心軸を含む平面と、該平
面と該円筒材の肉厚部内で交わり該平面に対して一方の
側で中心軸側を挟む該中心軸に平行な平面とで切除され
る略直角三角柱状の軸方向の鋸歯形凹溝を全周に連続し
て設けた円筒状直線正フレネルプリズムと、透明円筒材
の中心軸を含む平面と、該平面と該円筒材の肉厚部内で
交わり該平面に対して他方の側で中心軸側を挟む該中心
軸に平行な平面とで切除される略直角三角柱状の軸方向
の鋸歯形凹溝を全周に連続して設けた円筒状直線逆フレ
ネルプリズムとを軸方向に重ねて配置してこれらフレネ
ルプリズムをその軸方向に孔内を移動させることによ
り、孔壁内周の全周像を上記円筒状直線正フレネルプリ
ズムを通した画像と上記円筒状直線逆フレネルプリズム
を通した画像とを各別に撮影する請求項1記載の孔壁全
周の立体画像撮影方法。
2. A plane including a central axis of the transparent cylindrical member, and a plane that intersects the plane within the thick portion of the cylindrical member and is parallel to the central axis on one side of the plane and sandwiches the central axis side. A cylindrical straight positive Fresnel prism having a substantially right-angled triangular prism-shaped axially sawtooth-shaped concave groove continuously cut along the entire circumference, a plane including the central axis of a transparent cylindrical material, and the flat surface and the cylindrical material A substantially right-angled triangular prism-shaped axial sawtooth-shaped groove intersecting within the thick part of the plane and being cut off by a plane parallel to the center axis on the other side of the plane with respect to the center axis side is continuous with the entire circumference. By disposing the cylindrical linear inverted Fresnel prisms arranged in the axial direction and moving these Fresnel prisms in the axial direction in the axial direction, the entire circumferential image of the inner periphery of the hole wall can be obtained by the cylindrical linear normal Fresnel prism. The image passed through the prism and the image passed through the cylindrical straight inverted Fresnel prism are separately 3. The method of capturing a three-dimensional image of the entire circumference of a hole wall according to claim 1, wherein the image is captured at a predetermined distance.
【請求項3】 円筒状直線逆フレネルプリズムが円筒状
直線正フレネルプリズムを軸方向で反転したものである
請求項2記載の孔壁全周の立体画像撮影方法。
3. A method according to claim 2, wherein the cylindrical linear inverse Fresnel prism is obtained by inverting the cylindrical linear normal Fresnel prism in the axial direction.
【請求項4】 透明円筒材の中心軸を含む平面に対して
対称であって該円筒材の肉厚部内で交わり該中心軸を挟
む中心軸に平行な2平面で切除される略二等辺三角柱状
の軸方向の山形凹溝を全周に連続して設けた円筒状直線
両フレネルプリズムを用い、上記の中心軸を含む各平面
に対して一方の側の平面で切除され形成されたプリズム
面を通して得た周方向に分割された孔壁内周の全周画像
と同時に他方の側の平面で切除され形成されたプリズム
面を通して得た周方向に分割された孔壁内周の全周画像
とを各別に撮影する請求項1記載の孔壁全周の立体画像
撮影方法。
4. A substantially isosceles triangle which is symmetrical with respect to a plane including the central axis of the transparent cylindrical member, cuts in two planes which intersect within the thick portion of the cylindrical member and are parallel to the central axis sandwiching the central axis. A prism surface formed by using a cylindrical linear double Fresnel prism having a columnar axial chevron groove continuously provided on the entire circumference, and being cut off by a plane on one side with respect to each plane including the central axis. A full-circumference image of the hole wall inner circumference divided in the circumferential direction obtained through the prism surface formed by being cut out on the other side plane at the same time as a full-circumference image of the hole wall inner circumference divided in the circumferential direction obtained through The stereoscopic image photographing method of claim 1, wherein the photographing is performed separately.
【請求項5】 孔壁内周の全周像を該内周に沿った円周
上に配置した円筒状プリズムにより異なる2方向からそ
れぞれ該プリズムの内側に導入してそれぞれの全周画像
を該プリズム内側に設置した円錐鏡面で孔の軸方向に反
射して得られる2種類のリング状全周画像をそれぞれ周
方向と径方向に細分割し、周方向の分割画素を順次横方
向に再配列する操作を径方向に繰り返し行いこれらを縦
方向に配列することにより右目用孔壁展開画像と左目用
孔壁展開画像を得ることを特徴とする孔壁全周の立体画
像作成方法。
5. A full-circle image of the inner circumference of the hole wall is introduced into the inside of the prism from two different directions by cylindrical prisms arranged on a circumference along the inner circumference, and each full-circle image is obtained. Two types of ring-shaped full-circumferential images obtained by reflecting in the axial direction of the hole with a conical mirror surface installed inside the prism are subdivided in the circumferential direction and radial direction, respectively, and the divided pixels in the circumferential direction are sequentially rearranged in the horizontal direction A three-dimensional image creating method for the entire perimeter of a perforated wall, characterized by obtaining a right-eye perforated wall developed image and a left-eye perforated wall developed image by repeatedly performing an operation in the radial direction and arranging these in the vertical direction.
【請求項6】 透明円筒材の中心軸を含む平面と、該平
面と該円筒材の肉厚部内で交わり該平面に対して一方の
側で中心軸側を挟む該中心軸に平行な平面とで切除され
る略直角三角柱状の軸方向の鋸歯形凹溝を全周に連続し
て設けた円筒状直線正フレネルプリズムと、透明円筒材
の中心軸を含む平面と、該平面と該円筒材の肉厚部内で
交わり該平面に対して他方の側で中心軸側を挟む該中心
軸に平行な平面とで切除される略直角三角柱状の軸方向
の鋸歯形凹溝を全周に連続して設けた円筒状直線逆フレ
ネルプリズムとを軸方向に重ねて配置してこれら正及び
逆フレネルプリズムを軸方向に移動し同時にこれらフレ
ネルプリズムを通った孔壁内周のそれぞれの全周像をこ
れらフレネルプリズムの内側に配置した円錐鏡面で軸方
向に反射して得られる2種類のリング状全周画像として
右目用孔壁展開画像と左目用孔壁展開画像を得る請求項
5記載の孔壁全周の立体画像の作成方法。
6. A plane including the central axis of the transparent cylindrical member, and a plane that intersects the plane within the thick portion of the cylindrical member and is parallel to the central axis on one side of the plane with respect to the central axis. A cylindrical straight positive Fresnel prism having a substantially right-angled triangular prism-shaped axially sawtooth-shaped concave groove continuously cut along the entire circumference, a plane including the central axis of a transparent cylindrical material, and the flat surface and the cylindrical material A substantially right-angled triangular prism-shaped axial sawtooth-shaped groove intersecting within the thick part of the plane and being cut off by a plane parallel to the center axis on the other side of the plane with respect to the center axis side is continuous with the entire circumference. A cylindrical linear inverted Fresnel prism provided in the above manner is superposed in the axial direction, these forward and reverse Fresnel prisms are moved in the axial direction, and at the same time, the full-circumferential images of the inner circumference of the hole wall passing through these Fresnel prisms are obtained. It is obtained by axially reflecting on a conical mirror placed inside the Fresnel prism. 6. The method for creating a three-dimensional image of the entire circumference of a hole wall according to claim 5, wherein a right-eye hole wall development image and a left-eye hole wall development image are obtained as two types of ring-shaped full-circle images.
【請求項7】 円筒状直線逆フレネルプリズムが円筒状
直線正フレネルプリズムを軸方向で反転したものである
請求項6記載の孔壁全周の立体画像の作成方法。
7. The method according to claim 6, wherein the cylindrical linear inverse Fresnel prism is obtained by inverting the cylindrical linear normal Fresnel prism in the axial direction.
【請求項8】 透明円筒材の中心軸を含む平面に対して
対称であって該円筒材の肉厚部内で交わり該中心軸を挟
む中心軸に平行な2平面で切除される略二等辺三角柱状
の軸方向の山形凹溝を全周に連続して設けた円筒状直線
両フレネルプリズムを用い、上記の中心軸を含む各平面
に対して一方の側の平面で切除され形成されたプリズム
面を通して得た周方向に分割された孔壁内周の全周画像
と同時に他方の側の平面で切除され形成されたプリズム
面を通して得た周方向に分割された孔壁内周の全周画像
とを該フレネルプリズムの内側に設置した円錐鏡面で軸
方向に反射して得られる周方向に交互に分割されて配置
された2種類のリング状分割全周画像によりそれぞれ右
目用孔壁展開画像と左目用孔壁展開画像を得る請求項5
記載の孔壁全周の立体画像の作成方法。
8. A substantially isosceles triangle which is symmetrical with respect to a plane including the central axis of the transparent cylindrical member, cuts in two planes which intersect within the thick portion of the cylindrical member and are parallel to the central axis sandwiching the central axis. A prism surface formed by using a cylindrical linear double Fresnel prism having a columnar axial chevron groove continuously provided on the entire circumference, and being cut off by a plane on one side with respect to each plane including the central axis. A full-circumference image of the hole wall inner circumference divided in the circumferential direction obtained through the prism surface formed by being cut out on the other side plane at the same time as a full-circumference image of the hole wall inner circumference divided in the circumferential direction obtained through Are obtained by reflecting in the axial direction by a conical mirror provided inside the Fresnel prism, two types of ring-shaped divided full-circumference images alternately divided and arranged in the circumferential direction, and a right-eye hole wall development image and a left-eye development image, respectively. 6. A development image of a hole wall development.
A method for creating a three-dimensional image of the entire circumference of the hole wall described.
【請求項9】 透明円筒材の中心軸を含む平面と、該平
面と該円筒材の肉厚部内で交わり該平面に対して一方の
側で中心軸側を挟む該中心軸に平行な平面とで切除され
る略直角三角柱状の軸方向の鋸歯形凹溝を全周に連続し
て設けたことを特徴とする孔壁全周の立体画像撮影用プ
リズム。
9. A plane including the central axis of the transparent cylindrical member, and a plane that intersects the plane within the thick portion of the cylindrical member and is parallel to the central axis on one side of the plane and sandwiching the central axis side. A prism for taking a three-dimensional image of the entire circumference of a hole wall, characterized in that a substantially right-angled triangular prism-shaped axial sawtooth-shaped groove which is cut off in step (1) is continuously provided on the entire circumference.
【請求項10】 透明円筒材の中心軸を含む平面に対し
て対称であって該円筒材の肉厚部内で交わり該中心軸を
挟む中心軸に平行な2平面で切除される略二等辺三角柱
状の軸方向の山形凹溝を全周に連続して設けたことを特
徴とする孔壁全周の立体画像撮影用プリズム。
10. A substantially isosceles triangle which is symmetrical with respect to a plane including the central axis of the transparent cylindrical member, intersects in a thick portion of the cylindrical member, and is cut in two planes parallel to the central axis sandwiching the central axis. A prism for photographing a three-dimensional image on the entire circumference of a hole wall, wherein a column-shaped axial concave groove is provided continuously on the entire circumference.
【請求項11】 透明円筒材の中心軸を含む平面と、該
平面と該円筒材の肉厚部内で交わり該平面に対して一方
の側で中心軸側を挟む該中心軸に平行な平面とで切除さ
れる略直角三角柱状の軸方向の鋸歯形凹溝を全周に連続
して設けた円筒状直線正フレネルプリズムと、透明円筒
材の中心軸を含む平面と、該平面と該円筒材の肉厚部内
で交わり該平面に対して他方の側で中心軸側を挟む該中
心軸に平行な平面とで切除される略直角三角柱状の軸方
向の鋸歯形凹溝を全周に連続して設けた円筒状直線逆フ
レネルプリズムとを軸方向に重ねて孔内を該孔の長手方
向に移動自在な観察部本体内に設置し、これら正及び逆
フレネルプリズムの内側に軸方向を一致させた円錐鏡を
設置し、かつこれら正及び逆フレネルプリズムを通して
円錐鏡でそれぞれ軸方向に反射されるリング状の2方向
からの2種類の孔壁内周の全周像を撮影するカメラを観
察部本体内に設置し、さらにカメラで得られた2種類の
リング状の孔壁内周の全周画像をそれぞれ矩形の右目用
孔壁展開画像と左目用孔壁展開画像に変換する画像処理
部と、観察部本体を移動する駆動部と、方位指示計とを
備えたことを特徴とする孔壁全周の立体画像撮影装置。
11. A plane including a central axis of the transparent cylindrical member, and a plane that intersects the plane within the thick portion of the cylindrical member and is parallel to the central axis on one side of the plane and sandwiching the central axis side. A cylindrical straight positive Fresnel prism having a substantially right-angled triangular prism-shaped axially sawtooth-shaped concave groove continuously cut along the entire circumference, a plane including the central axis of a transparent cylindrical material, and the flat surface and the cylindrical material A substantially right-angled triangular prism-shaped axial sawtooth-shaped groove intersecting within the thick part of the plane and being cut off by a plane parallel to the center axis on the other side of the plane with respect to the center axis side is continuous with the entire circumference. The cylindrical linear inverted Fresnel prism provided in the above is superposed in the axial direction, and the inside of the hole is installed in the observation portion main body which is movable in the longitudinal direction of the hole, and the axial direction coincides with the inside of these forward and reverse Fresnel prisms. A conical mirror is set up, and the conical mirror is used to move the conical mirror through these forward and reverse Fresnel prisms. A camera that captures a full-circumferential image of the inner circumference of two types of hole walls from two directions reflected in two directions is installed in the observation unit main body, and two types of ring-shaped hole walls obtained by the cameras are further provided. An image processing unit that converts the entire inner circumferential image into a rectangular right-eye hole wall developed image and a left-eye hole wall developed image, a driving unit that moves the observation unit body, and a direction indicator. A three-dimensional image capturing device for the entire circumference of the hole wall.
【請求項12】 円筒状直線正及び逆フレネルプリズム
の内側に少なくともこれらフレネルプリズムの軸方向の
長さの合計寸法より大きい高さを有する単一の円錐鏡を
用い、該円錐鏡の頂点方向に1台のカメラを設置する請
求項11記載の孔壁全周の立体画像撮影装置。
12. A single conical mirror having a height greater than at least the sum of the axial lengths of these Fresnel prisms is used inside the cylindrical straight forward and reverse Fresnel prisms. 12. The three-dimensional image photographing apparatus of claim 11, wherein one camera is installed.
【請求項13】 円筒状直線正及び逆フレネルプリズム
の内側にそれぞれ立体角の異なる円錐面を連続に連結し
た二段円錐鏡を用いる請求項11記載の孔壁全周の立体画
像撮影装置。
13. The stereoscopic image photographing apparatus according to claim 11, wherein a two-stage conical mirror in which conical surfaces having different solid angles are continuously connected to each other inside the cylindrical linear positive and reverse Fresnel prisms.
【請求項14】 透明円筒材の中心軸を含む平面に対し
て対称であって該円筒材の肉厚部内で交わり該中心軸を
挟む中心軸に平行な2平面で切除される略二等辺三角柱
状の軸方向の山形凹溝を全周に連続して設けた円筒状直
線両フレネルプリズムを、孔内を該孔の長手方向に移動
自在な観察部本体内に設置し、該フレネルプリズムの内
側に軸方向を一致させた円錐鏡を設置し、かつ該フレネ
ルプリズムを通して円錐鏡で軸方向に反射される周方向
に交互に分割されて配置された2方向からの孔壁内周の
2種類のリング状分割全周像を同時に撮影するカメラを
観察部本体内に設置し、さらにカメラで得られたリング
状の周方向に交互に分割配置された各別の全周像をそれ
ぞれ矩形の右目用孔壁展開画像と左目用孔壁展開画像に
変換する画像処理部と、観察部本体を移動する駆動部
と、方位指示計とを備えたことを特徴とする孔壁全周の
立体画像撮影装置。
14. A substantially isosceles triangle which is symmetrical with respect to a plane including the central axis of the transparent cylindrical member, cuts in two planes which intersect within the thick portion of the cylindrical member and are parallel to the central axis sandwiching the central axis. A cylindrical linear double Fresnel prism having a columnar axial chevron groove continuously provided on the entire circumference is installed in the observation unit main body that is movable in the longitudinal direction of the hole, and the inside of the Fresnel prism is disposed inside the hole. And the inner circumference of the hole wall from two directions, which are arranged alternately in the circumferential direction and are reflected alternately in the axial direction by the conical mirror through the Fresnel prism through the Fresnel prism. A camera that simultaneously captures the ring-shaped divided full-circumference images is installed in the observation unit main body, and the other full-circle images obtained by the camera, which are alternately divided and arranged in the ring-shaped circumferential direction, are each used for a rectangular right eye. Image processing unit that converts the image to the hole wall developed image and the left eye hole wall developed image And a driving unit for moving the main body of the observation unit, and a direction indicator.
【請求項15】 カメラの撮影レンズと円錐鏡との間に
補正レンズを設置することにより、円筒状フレネルプリ
ズムを通る視線をすべて円錐鏡の中心軸に対して直交さ
せる請求項11〜14のいずれか1項記載の孔壁全周の立体
画像撮影装置。
15. A lens according to claim 11, wherein a line of sight passing through the cylindrical Fresnel prism is made orthogonal to the central axis of the conical mirror by providing a correction lens between the taking lens of the camera and the conical mirror. The stereoscopic image photographing device for the entire circumference of the hole wall according to claim 1.
【請求項16】 円錐鏡面を回転放物面鏡とすることに
より円筒状フレネルプリズムを通る視線をすべて円錐鏡
の中心軸に対して直交させる請求項11〜15のいずれか1
項記載の孔壁全周の立体画像撮影装置。
16. The method according to claim 11, wherein all the lines of sight passing through the cylindrical Fresnel prism are orthogonal to the central axis of the conical mirror by using a conical mirror as a rotating parabolic mirror.
Item 3. A stereoscopic image photographing device for the entire circumference of a hole wall.
【請求項17】 円錐鏡がその中心軸に沿って円柱状の
透孔または透明材からなる円錐台鏡であり、該透孔また
は透明材を通して方位コンパスをカメラにて同時に撮影
する請求項11〜16のいずれか1項記載の孔壁全周の立体
画像撮影装置。
17. The mirror according to claim 11, wherein the conical mirror is a truncated conical mirror formed of a cylindrical through-hole or a transparent material along a central axis thereof, and the azimuth compass is simultaneously photographed by the camera through the through-hole or the transparent material. 17. The three-dimensional image photographing device for the entire circumference of a hole wall according to any one of items 16.
JP34346293A 1993-12-16 1993-12-16 Method for photographing and creating a stereoscopic image of the entire circumference of a hole wall, and a stereoscopic prism and its device Expired - Fee Related JP3359137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34346293A JP3359137B2 (en) 1993-12-16 1993-12-16 Method for photographing and creating a stereoscopic image of the entire circumference of a hole wall, and a stereoscopic prism and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34346293A JP3359137B2 (en) 1993-12-16 1993-12-16 Method for photographing and creating a stereoscopic image of the entire circumference of a hole wall, and a stereoscopic prism and its device

Publications (2)

Publication Number Publication Date
JPH07168124A JPH07168124A (en) 1995-07-04
JP3359137B2 true JP3359137B2 (en) 2002-12-24

Family

ID=18361719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34346293A Expired - Fee Related JP3359137B2 (en) 1993-12-16 1993-12-16 Method for photographing and creating a stereoscopic image of the entire circumference of a hole wall, and a stereoscopic prism and its device

Country Status (1)

Country Link
JP (1) JP3359137B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095659A1 (en) * 2003-04-23 2004-11-04 Korea Advanced Institute Of Science And Technology Device for generating plane beam/conical shape beam and security device using generated plane beam/cone beam

Also Published As

Publication number Publication date
JPH07168124A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
US5717455A (en) System and method for three dimensional image acquisition and processing of a borehole wall
JP4267668B2 (en) 3D image display device
AU643834B2 (en) Mirror for producing development image of wall of hole in ground and device for producing image
US7168809B2 (en) Stereoscopic display apparatus
JPS63107294A (en) Three-dimensional visual projector
US2905758A (en) Panoramic television cameras
JP2002267444A (en) Method of measuring shape of tunnel pit
AU707609B2 (en) Device for observing the inner wall surface of a duct such as a water supply duct or sewage duct
US9273954B2 (en) Method and system for analyzing geometric parameters of an object
JP3359137B2 (en) Method for photographing and creating a stereoscopic image of the entire circumference of a hole wall, and a stereoscopic prism and its device
US3279085A (en) Apparatus for inspecting interiors of apparatuses and the like
JP3224856B2 (en) 3D image device
CN206411335U (en) Panoramic scanning device
JP2002131054A (en) Automatic surveying method
JP2001124546A (en) Method and system or photogrammetric operation at inside of tunnel passage
JP2724833B2 (en) Manufacturing apparatus and manufacturing method of hole wall developed image
EP0547635A2 (en) Method and apparatus for sensing a three-dimensional scene
JP2782114B2 (en) Composite mirror for hole wall observation and lifting sonde using this
JP2006085135A (en) Stereoscopic display system
JP3433320B2 (en) Groundwater flow measurement method and device
JP2868957B2 (en) Method and apparatus for photographing inside cavity
JPH0816650B2 (en) Driving inspection device
JPH03246861A (en) Permeation type electron microscope
EP0380507B1 (en) A vision system with a picture capture device and a picture reproduction device
AU715836B2 (en) Hole wall surface observing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees