JP3358122B2 - Flow control device - Google Patents
Flow control deviceInfo
- Publication number
- JP3358122B2 JP3358122B2 JP10474696A JP10474696A JP3358122B2 JP 3358122 B2 JP3358122 B2 JP 3358122B2 JP 10474696 A JP10474696 A JP 10474696A JP 10474696 A JP10474696 A JP 10474696A JP 3358122 B2 JP3358122 B2 JP 3358122B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure chamber
- spring
- control
- pressure
- receiving member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Power Steering Mechanism (AREA)
Description
【0001】[0001]
【発明の属する技術の分野】この発明は自動車のパワー
ステアリング装置等に使用され、パワーソースからこの
パワーステアリング装置のアクチュエータに供給される
圧力作動流体の流量を、所定流量に制御する流量制御装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow control device for use in a power steering device of an automobile, for controlling a flow rate of a pressure working fluid supplied from a power source to an actuator of the power steering device to a predetermined flow rate. .
【0002】[0002]
【従来の技術】流体を作動媒体として、手動操舵トルク
を助勢するパワーステアリング装置にあっては、このパ
ワーステアリング装置に作動流体を供給するパワーソー
スとして、車両に搭載した内燃機関によって駆動される
ポンプを施用することが多い。しかし、一般にパワース
テアリング装置は車両の低速走行時または停車時、換言
すれば内燃機関の低回転駆動時に十分な操舵助勢力が獲
得できることが望まれ、低速走行中よりも接地抵抗の小
さい、つまり高回転駆動時には操舵安定性の見地から、
然程操舵助勢力を必要としない。したがって、ポンプ出
力が内燃機関の回転速度に比例して増加するパワーソー
スは、そのままでは適用できない。2. Description of the Related Art In a power steering apparatus which assists manual steering torque using a fluid as a working medium, a pump driven by an internal combustion engine mounted on a vehicle is used as a power source for supplying a working fluid to the power steering apparatus. Is often applied. However, in general, it is desired that the power steering device be able to acquire sufficient steering assisting force when the vehicle is running at a low speed or at a stop, in other words, when the internal combustion engine is driven at a low speed. At the time of rotation drive, from the viewpoint of steering stability,
Does not require much steering assistance. Therefore, a power source whose pump output increases in proportion to the rotation speed of the internal combustion engine cannot be applied as it is.
【0003】そこで、通常、パワーステアリング装置に
は、このパワーステアリング装置に供給される作動流体
(作動油)の流量を、内燃機関のアイドリング乃至は低
回転域では十分なパワーステアリング操作が可能なよう
にポンプ吐出油の全量とし、内燃機関の回転速度がある
程度高くなった場合にはオリフィスによって限局された
流量に制御し、余剰油を貯油タンクに還流させるように
した流量制御装置が施用される。[0003] Therefore, usually, the power steering apparatus uses a flow rate of a working fluid (hydraulic oil) supplied to the power steering apparatus so that a sufficient power steering operation can be performed in an idling or low rotation range of the internal combustion engine. When the rotational speed of the internal combustion engine is increased to some extent, a flow rate control device that controls the flow rate limited by the orifice and returns the surplus oil to the oil storage tank is applied.
【0004】また、近年、操舵助勢力を必要としないス
テアリング操作の中立位置で、余剰油流量を増加させ、
パワーステアリング装置への供給油量を減じることによ
ってポンプでの仕事量を減じ、省エネルギを実現させる
流量制御装置が提案されている。In recent years, the surplus oil flow rate has been increased at a neutral position of steering operation that does not require steering assisting force,
There has been proposed a flow control device that reduces the amount of oil supplied to a power steering device, thereby reducing the amount of work performed by a pump and achieving energy saving.
【0005】この種の流量制御装置として、例えば特開
平6−8840号公報には、スプール弁収容孔内にスプ
ール弁を摺動自在に収容して、このスプール弁収容孔内
を第1圧力室と第2圧力室に画成し、第1圧力室内に
は、制御オリフィスを介して吐出通路と連通する導入通
路及び低圧側へ連通するドレン通路を開口し、第2圧力
室内には、吐出通路の圧力を導くと共に前記スプール弁
を第1圧力室側に偏倚する制御スプリングを収装して、
前記導入通路から制御オリフィスを介して吐出通路に作
動油の必要流量を導く一方、該必要流量に対する余剰油
を前記スプール弁の移動によって開閉制御されるドレン
通路に還流させる流量制御装置であって、吐出通路の圧
力に応動するバイパス弁を設けて、このバイパス弁によ
ってステアリング操作の中立位置(パワーステアリング
装置の非作動状態)で吐出通路側の圧力が低下したと
き、前記第2圧力室内を低圧側と連通して、前記スプー
ル弁によるドレン通路の開口面積を増大させ、パワース
テアリング装置への供給油量を減じるようにした流量制
御装置が開示してある。As this type of flow control device, for example, Japanese Patent Application Laid-Open No. 6-8840 discloses a spool valve slidably housed in a spool valve housing hole and a first pressure chamber in the spool valve housing hole. And a second pressure chamber, and an inlet passage communicating with the discharge passage through a control orifice and a drain passage communicating with the low pressure side are opened in the first pressure chamber, and a discharge passage is formed in the second pressure chamber. And a control spring that guides the pressure and biases the spool valve toward the first pressure chamber.
A flow control device that guides a required flow rate of hydraulic oil from the introduction path to a discharge path via a control orifice, and returns excess oil to the required flow rate to a drain path that is opened and closed by movement of the spool valve. A bypass valve responsive to the pressure of the discharge passage is provided, and when the pressure on the discharge passage side decreases at a neutral position of the steering operation (the power steering device is not operated) by the bypass valve, the second pressure chamber is set to the low pressure side. There is disclosed a flow control device in which the area of the drain passage opened by the spool valve is increased in communication with the spool valve to reduce the amount of oil supplied to the power steering device.
【0006】[0006]
【発明が解決しようとする課題】斯かる従来例にあって
は、バイパス弁によって第2圧力室内を低圧側と連通し
て、これによって流量制御を司るスプール弁を移動さ
せ、吐出通路の油量を低下させるようにしてある。In such a conventional example, the second pressure chamber communicates with the low pressure side by the bypass valve, thereby moving the spool valve which controls the flow rate, and thereby the oil amount in the discharge passage. Is to be reduced.
【0007】ところで、前記第2圧力室内には前述のご
とく吐出通路の圧力を導いている。つまり、制御オリフ
ィスを通過した後の圧力を導いているから、第2圧力室
を低圧側と連通した場合には、制御オリフィスを通過し
た後の作動油が低圧側にドレンすることになる。したが
って、パワーステアリング装置(アクチュエータ)が非
作動状態にあっても作動油の一部が流通抵抗を有する制
御オリフィスを通過することになる。このために、ポン
プは作動油が制御オリフィスを通過するために所定の吐
出圧力を維持する必要があるから、その分、無駄な仕事
をすることになり、省エネルギを十分に達成することが
できない虞がある。The pressure in the discharge passage is guided into the second pressure chamber as described above. That is, since the pressure after passing through the control orifice is guided, when the second pressure chamber communicates with the low pressure side, the hydraulic oil after passing through the control orifice drains to the low pressure side. Therefore, even when the power steering device (actuator) is in a non-operating state, a part of the hydraulic oil passes through the control orifice having the flow resistance. For this reason, the pump needs to maintain a predetermined discharge pressure in order for the hydraulic oil to pass through the control orifice, so that the pump performs wasteful work and energy saving cannot be sufficiently achieved. There is a fear.
【0008】本発明は斯かる従来の実情に鑑みて案出さ
れたもので、アクチュエータが非作動状態であって必要
とする作動油圧力が低いとき、ポンプの無駄なエネルギ
の消費を抑制して、省エネルギを十分に達成することが
できる流量制御装置を得ることを目的とする。The present invention has been devised in view of such a conventional situation, and suppresses wasteful energy consumption of a pump when an actuator is in a non-operating state and a required operating oil pressure is low. It is an object of the present invention to obtain a flow control device capable of sufficiently achieving energy saving.
【0009】[0009]
【課題を解決するための手段】そこで本発明は、スプー
ル弁収容孔内にスプール弁を摺動自在に収容して、該ス
プール弁収容室内を第1圧力室と第2圧力室に画成し、
第1圧力室内には、制御オリフィスを介して吐出通路と
連通する導入通路及びドレン通路を開口し、第2圧力室
内には、吐出通路の圧力を導くと共に前記スプール弁を
第1圧力室側に偏倚する流量制御スプリングを収装し
て、前記導入通路から制御オリフィスを介して吐出通路
に作動油の必要流量を導く一方、該必要流量に対する余
剰油を前記スプール弁の移動によって開閉制御されるド
レン通路に還流させる流量制御装置において、前記第2
圧力室の圧力が導かれる制御圧力室を設け、前記制御圧
力室と前記第2圧力室との間に、一端面が前記第2圧力
室に面して前記流量制御スプリングに当接し、他端面が
一端面の面積よりも大きい面積を持って制御圧力室に面
する可動ばね受け部材を設けると共に、該可動ばね受け
部材に制御圧力室側への偏倚力を与え、可動ばね受け部
材の移動によって段階的なばね力を得るばね部材を可動
ばね受け部材に付属させることにより、前記流量制御ス
プリングのばね力が前記吐出通路の圧力に応じて変化す
るように構成にしてある。SUMMARY OF THE INVENTION Accordingly, the present invention provides a spool valve slidably received in a spool valve receiving hole and defines the spool valve receiving chamber as a first pressure chamber and a second pressure chamber. ,
In the first pressure chamber, an introduction passage and a drain passage communicating with the discharge passage through a control orifice are opened. In the second pressure chamber, the pressure of the discharge passage is guided and the spool valve is moved to the first pressure chamber side. A biased flow control spring is accommodated to guide the required flow rate of hydraulic oil from the introduction path to the discharge path via the control orifice, and a drain controlled to open and close by the movement of the spool valve with respect to the required flow rate. in the flow control device for recirculating the passage, the second
Provided a control pressure chamber in which the pressure in the pressure chamber is guided, between the second pressure chamber and said control pressure chamber, one end face abuts on the flow control spring facing said second pressure chamber, the other end face Is provided with a movable spring receiving member facing the control pressure chamber with an area larger than the area of the one end face, and applies a biasing force to the control pressure chamber side to the movable spring receiving member, thereby moving the movable spring receiving member. Movable spring member to obtain stepwise spring force
Spring received by Rukoto is supplied with the member, the flow control scan
The spring force of the pulling changes according to the pressure of the discharge passage.
It is configured as follows.
【0010】また、請求項2記載の発明は、請求項1記
載の発明の構成のうち、前記可動ばね受け部材に付属す
るばね部材を、内外二重の入れ子型ばね部材とした構成
にしてある。According to a second aspect of the present invention, in the configuration of the first aspect of the invention, the spring member attached to the movable spring receiving member is a double nested inner and outer spring member. .
【0011】斯かる構成にあっては、第1圧力室内に導
入通路を介してポンプから吐出される作動油が導かれ
る。前記第1圧力室内に導かれた作動油は、制御オリフ
ィスを通過する制限流動と、この制御オリフィスの前後
差圧に基づくスプール弁の移動によるドレン通路の解放
の際にのみ生じるのであるが、第1圧力室内からドレン
通路を通ってポンプ吸入室及び貯油タンクに逃げる余剰
油流動とに分流される。これにより、前記制御オリフィ
スによる制限の下に必要な流量の作動油が吐出通路から
アクチュエータに導かれ、例えば、パワーステアリング
装置にあっては必要な操舵助勢力を得る。In such a configuration, the hydraulic oil discharged from the pump is guided into the first pressure chamber via the introduction passage. The hydraulic oil introduced into the first pressure chamber is generated only when the restricted flow through the control orifice and when the drain passage is released by the movement of the spool valve based on the differential pressure across the control orifice. The excess oil flows from the first pressure chamber to the pump suction chamber and the oil storage tank through the drain passage to the oil storage tank. As a result, the required amount of hydraulic oil is guided to the actuator from the discharge passage under the restriction of the control orifice. For example, in a power steering device, a necessary steering assist force is obtained.
【0012】ここで、本発明にあっては、前記スプール
弁を付勢する制御スプリングが可動ばね受け部材に当接
している。この可動ばね受け部材は、第2圧力室側の面
積よりも制御圧力室側の面積が大きく、制御圧力室側へ
付勢するばね部材が付属しているから、制御圧力室内の
圧力(吐出通路の圧力が導かれる第2圧力室内の圧力に
等しい)が低いときはばね部材によって付勢されて第2
圧力室から遠い位置にある。一方、前記制御圧力室の圧
力が高いときは、可動ばね受け部材は、この可動ばね受
け部材に付属するばね部材のばね力に抗して第2圧力室
側に移動し、制御スプリングを所定位置で支持してい
る。したがって、前記スプール弁は、ばね受け部材が制
御圧力室の圧力に応じた所定の位置にあって、このばね
受け部材で支持された制御スプリングのばね力に第2圧
力室内の圧力を加えた力と、第1圧力室内の圧力による
力との釣り合いによって移動し、流量制御を司ることに
なる。Here, in the present invention, the control spring for urging the spool valve is in contact with the movable spring receiving member. Since the movable spring receiving member has a larger area on the control pressure chamber side than the area on the second pressure chamber side and includes a spring member for urging the control pressure chamber side, the pressure (discharge passage) in the control pressure chamber is increased. (Equal to the pressure in the second pressure chamber in which the pressure of the second pressure chamber is introduced) is low.
It is far from the pressure chamber. On the other hand, when the pressure in the control pressure chamber is high, the movable spring receiving member moves toward the second pressure chamber against the spring force of the spring member attached to the movable spring receiving member, and moves the control spring to a predetermined position. We support in. Therefore, in the spool valve, the spring receiving member is located at a predetermined position corresponding to the pressure of the control pressure chamber, and the force obtained by adding the pressure in the second pressure chamber to the spring force of the control spring supported by the spring receiving member. Moves in balance with the force of the pressure in the first pressure chamber, and controls the flow rate control.
【0013】前記ばね受け部材に付属するばね部材は、
可動ばね受け部材の移動によって段階的なばね力を得る
ばね部材であって、内外二重の入れ子型ばね部材を用い
ることにより2段階のばね力を得ることが可能であるほ
か、複数のばね部材を組合わせて多段階のばね力を得る
ことが可能である。この場合のばね部材は、各種材料か
らなるコイルばねのほか、ゴムばね等各種ばね部材が採
用可能である。そこで、2段階のばね力を得るばね部材
を用いた場合の作用について説明すると、次の如くであ
る。[0013] The spring member attached to the spring receiving member,
A spring member that obtains a stepwise spring force by moving a movable spring receiving member. In addition to being able to obtain a two-stage spring force by using an inner and outer double nested spring member, a plurality of spring members can be obtained. Can be combined to obtain a multi-step spring force. As the spring member in this case, various spring members such as rubber springs can be adopted in addition to coil springs made of various materials. Therefore, the operation in the case of using a spring member that obtains a two-stage spring force will be described as follows.
【0014】即ち、前記吐出通路側の圧力が低いとき
は、この吐出通路の圧力が導かれる制御圧力室内の圧力
も低く、可動ばね受け部材はばね部材によって付勢され
て第2圧力室から最も遠い位置にある。このため、前記
制御スプリングの取付け長が長くなるから、この制御ス
プリングのばね力(セット荷重)は弱くなる。したがっ
て、前記スプール弁はこのセット荷重が小さい制御スプ
リングによって制御され、制御オリフィスを通過する流
量は図6のA−Bで示す流量となる。That is, when the pressure on the discharge passage side is low, the pressure in the control pressure chamber to which the pressure in the discharge passage is led is also low, and the movable spring receiving member is urged by the spring member to move the pressure from the second pressure chamber most. It is far away. For this reason, since the mounting length of the control spring becomes long, the spring force (set load) of this control spring becomes weak. Accordingly, the spool valve is controlled by the control spring having a small set load, and the flow rate passing through the control orifice is the flow rate indicated by AB in FIG.
【0015】このとき、前記可動ばね受け部材に付属
し、この可動ばね受け部材に制御圧力室への偏倚力を与
え、可動ばね受け部材の移動によって段階的なばね力を
得るばね部材は、最も小さいばね力でこの可動ばね受け
部材を付勢している。At this time, the spring member which is attached to the movable spring receiving member, applies a biasing force to the control pressure chamber to the movable spring receiving member, and obtains a stepwise spring force by moving the movable spring receiving member, The movable spring receiving member is urged with a small spring force.
【0016】前記吐出通路の圧力が上昇することによ
り、この吐出通路の圧力が導かれる制御圧力室内の圧力
が上昇する。前記制御圧力室内の圧力が上昇すると、こ
の制御室内の圧力によって可動ばね受け部材がばね部材
のばね力に抗して第2圧力室側に移動し、制御スプリン
グを徐々に押し縮め、この制御スプリングのセット荷重
を徐々に強くする。したがって、前記スプール弁はやや
高くなった制御スプリングのばね力と制御オリフィスの
前後差圧に基づいて移動制御され、制御オリフィスを通
過する流量は図6のB−Cで示す流量となる。As the pressure in the discharge passage increases, the pressure in the control pressure chamber to which the pressure in the discharge passage is guided increases. When the pressure in the control pressure chamber increases, the movable spring receiving member moves toward the second pressure chamber side against the spring force of the spring member due to the pressure in the control chamber, and gradually compresses and contracts the control spring. Gradually increase the set load. Therefore, the movement of the spool valve is controlled based on the slightly increased spring force of the control spring and the differential pressure across the control orifice, and the flow rate passing through the control orifice is the flow rate indicated by BC in FIG.
【0017】このとき、前記可動ばね受け部材に付属す
るばね部材は第1段階のばね力を発揮することになる。At this time, the spring member attached to the movable spring receiving member exerts a first-stage spring force.
【0018】前記制御圧力室内の圧力が所定圧力に達
し、ばね部材が第1段階以降のばね力を発揮するまでの
間は、可動ばね受け部材は、制御圧力室内の圧力とばね
部材の第1段階のばね力との釣合い位置に保たれ、その
位置で制御スプリングのセット荷重を所定値になす。し
たがって、前記スプール弁は制御スプリングの所定のば
ね力と制御オリフィスの前後差圧に基づいて流量制御を
司り、制御オリフィスを通過する流量は図6のC−Dで
示す流量となる。Until the pressure in the control pressure chamber reaches a predetermined pressure and the spring member exerts the spring force in the first and subsequent stages, the movable spring receiving member holds the pressure in the control pressure chamber and the first of the spring member. The spring is kept at a position where it is balanced with the spring force of the step, at which position the set load of the control spring is set to a predetermined value. Therefore, the spool valve controls the flow rate based on the predetermined spring force of the control spring and the differential pressure across the control orifice, and the flow rate passing through the control orifice is the flow rate indicated by CD in FIG.
【0019】このとき、前記可動ばね受け部材に付属す
るばね部材は第1段階での最も大きいばね力を発揮する
ことになる。At this time, the spring member attached to the movable spring receiving member exerts the largest spring force in the first stage.
【0020】前記制御圧力室内の圧力が更に上昇し、可
動ばね受け部材に作用する油圧力が増加して、ばね部材
の第1段階での最大ばね力を越えると、可動ばね受け部
材がばね部材の次段階のばね力に抗して第2圧力室側に
更に移動し、制御スプリングを徐々に押し縮め、セット
荷重を徐々に強くする。したがって、前記スプール弁は
徐々に高くなった制御スプリングのばね力と制御オリフ
ィスの前後差圧の基づいて移動制御され、制御オリフィ
スを通過する流量は図6のD−Eで示す流量に制御され
る。When the pressure in the control pressure chamber further increases and the hydraulic pressure acting on the movable spring receiving member increases to exceed the maximum spring force in the first stage of the spring member, the movable spring receiving member is moved to the spring member. Then, the control spring is further moved toward the second pressure chamber against the spring force of the next step, and the control spring is gradually compressed to gradually increase the set load. Therefore, the spool valve is controlled to move based on the gradually increased spring force of the control spring and the differential pressure across the control orifice, and the flow rate passing through the control orifice is controlled to the flow rate indicated by DE in FIG. .
【0021】このとき、前記可動ばね受け部材に付属す
るばね部材は第1段階以降のばね力を発揮することにな
る。At this time, the spring member attached to the movable spring receiving member exerts a spring force after the first stage.
【0022】前記制御圧力室内の圧力が所定圧力に達す
ると、可動ばね受け部材は第2圧力室に最も近付き、制
御スプリングのセット荷重を最大とする。この状態で、
前記スプール弁は制御スプリング及び制御オリフィスの
前後差圧に応動して流量制御を司り、制御オリフィスを
通過する流量は図6においてE−Fで示す流量に制御さ
れる。この流量がアクチュエータに供給される最大流量
である。When the pressure in the control pressure chamber reaches a predetermined pressure, the movable spring receiving member comes closest to the second pressure chamber and maximizes the set load of the control spring. In this state,
The spool valve controls the flow rate in response to the differential pressure between the control spring and the control orifice, and the flow rate passing through the control orifice is controlled to the flow rate indicated by EF in FIG. This flow rate is the maximum flow rate supplied to the actuator.
【0023】このとき、前記可動ばね受け部材に付属す
るばね部材は、段階的に作用するばね力の最大のばね力
を発揮することになる。At this time, the spring member attached to the movable spring receiving member exerts the maximum spring force acting stepwise.
【0024】一方、アクチュエータの非作動状態(例え
ば、パワーステアリング装置の中立位置)では、前記吐
出通路の作動圧力が低下するから、スプール弁は制御オ
リフィスの前後差圧を一定に保つために第2圧力室内の
制御スプリングのばね力に抗して第2圧力室側に移動
し、ドレン通路の開口面積を増大させる。これにより、
前記導入通路から第1圧力室内に導入された作動油の多
くがドレン通路に流入することになり、ポンプ内圧力
(吐出圧力)が低下し、ポンプの仕事量が減じられる。On the other hand, when the actuator is not operated (for example, in the neutral position of the power steering device), the operating pressure of the discharge passage is reduced. Therefore, the spool valve is set to the second position in order to keep the differential pressure across the control orifice constant. It moves toward the second pressure chamber against the spring force of the control spring in the pressure chamber, and increases the opening area of the drain passage. This allows
Most of the hydraulic oil introduced into the first pressure chamber from the introduction passage flows into the drain passage, so that the pump internal pressure (discharge pressure) is reduced and the work of the pump is reduced.
【0025】これと同時に、アクチュエータが非作動状
態で前記吐出通路内の圧力が低下すると、この吐出通路
の圧力が第2圧力室を経由して導かれるところの、制御
圧力室内の圧力が低下することになる。これにより、前
記制御圧力室内の圧力を受けるばね受け部材は、このば
ね受け部材に付属するばね部材のばね力によって制御圧
力室側に移動し、可動ばね受け部材とスプール弁との間
に縮設した制御スプリングの取付け長(セット長)を増
大させることになる。At the same time, when the pressure in the discharge passage is reduced while the actuator is not operated, the pressure in the control pressure chamber, where the pressure in the discharge passage is guided through the second pressure chamber, decreases. Will be. Thus, the spring receiving member receiving the pressure in the control pressure chamber moves toward the control pressure chamber by the spring force of the spring member attached to the spring receiving member, and is contracted between the movable spring receiving member and the spool valve. The mounting length (set length) of the control spring is increased.
【0026】したがって、前記制御オリフィスの前後差
圧即ち第1圧力室内の圧力と第2圧力室内の圧力に制御
スプリングのばね力を加えた力との釣り合いによって移
動するスプール弁は、可動ばね受け部材が制御圧力室側
に移動した分、制御スプリングのばね力が減じられるこ
とによって更に第2圧力室側に移動して、ドレン通路の
開口面積を更に増大させる。Therefore, the spool valve which moves by balancing the differential pressure across the control orifice, ie, the pressure in the first pressure chamber and the pressure in the second pressure chamber plus the spring force of the control spring, is a movable spring receiving member. Is moved to the control pressure chamber side, and the spring force of the control spring is reduced, so that the control spring moves further to the second pressure chamber side to further increase the opening area of the drain passage.
【0027】これによって、前記第1圧力室内に供給さ
れた作動油は、アクチュエータが作動油を必要としない
非作動状態において、開口面積が増大したドレン通路か
らポンプ吸入側及び貯油タンク側に還流される。したが
って、前記導入通路を介して第1圧力室に作動油を吐出
するポンプは、その吐出圧力が低下して仕事量が減じら
れ、省エネルギが有利に達成される。Accordingly, the hydraulic oil supplied to the first pressure chamber is returned to the pump suction side and the oil storage tank side from the drain passage having the increased opening area when the actuator does not require the hydraulic oil. You. Therefore, the pump that discharges the hydraulic oil to the first pressure chamber through the introduction passage has a reduced discharge pressure, reduces the amount of work, and advantageously achieves energy saving.
【0028】この場合に、前記可動ばね受け部材は、こ
のばね受け部材に付属するばね部材と制御圧力室内の圧
力との釣り合いによって移動し、制御スプリングのばね
力を変化させる。そして、前記制御圧力室内には第2圧
力室内の圧力が導かれているから、この可動ばね受け部
材を移動させるために、ポンプ吐出油の一部が制御オリ
フィスを通過することがないから、ポンプ吐出圧力を所
定圧力に維持する必要がなく、ポンプの無駄なエネルギ
の消費を抑制して、省エネルギを達成することができる
のである。In this case, the movable spring receiving member moves by the balance between the spring member attached to the spring receiving member and the pressure in the control pressure chamber, and changes the spring force of the control spring. Since the pressure in the second pressure chamber is introduced into the control pressure chamber, part of the pump discharge oil does not pass through the control orifice to move the movable spring receiving member. It is not necessary to maintain the discharge pressure at a predetermined pressure, and it is possible to suppress wasteful energy consumption of the pump and achieve energy saving.
【0029】[0029]
【発明の実施の形態】以下、この発明の実施の形態を、
パワーステアリング装置の流量制御装置に適用した態様
として、図面に基づいて詳述する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described.
An embodiment applied to a flow control device of a power steering device will be described in detail with reference to the drawings.
【0030】図1はこの発明の実施の形態を示す流量制
御装置の断面図である。図において1はポンプボディ2
と一体に形成されたハウジングで、このハウジング1に
は一端がシールリング3が付属するプラグ4で封止され
たスプール弁収容孔5が形成され、このスプール弁収容
孔5の開口端はシールリング6による封止の下に捩じ込
み固定されるコネクタ7によって閉止されている。FIG. 1 is a sectional view of a flow control device showing an embodiment of the present invention. In the figure, 1 is a pump body 2
The housing 1 is provided with a spool valve receiving hole 5 whose one end is sealed by a plug 4 having a seal ring 3 attached thereto. The open end of the spool valve receiving hole 5 has a seal ring It is closed off by a connector 7 which is screwed under the seal by 6.
【0031】前記コネクタ7には、図外のパワーステア
リング装置即ちアクチュエータに連通する吐出通路8を
設け、かつ、この吐出通路8とスプール弁収容孔5内部
とを連通する制御オリフィス9及び通路10を穿設し、
さらに周溝11と、この周溝11の底部に開口して前記
吐出通路8に連通する直径方向の貫通孔12が形成して
ある。また、前記通路10の開口端側にはこの通路10
に連通する直径方向の貫通孔13が設けてある。The connector 7 is provided with a discharge passage 8 communicating with a power steering device (not shown), that is, an actuator, and a control orifice 9 and a passage 10 communicating the discharge passage 8 with the inside of the spool valve receiving hole 5. Pierce,
Further, a circumferential groove 11 and a diametrical through hole 12 which is open at the bottom of the circumferential groove 11 and communicates with the discharge passage 8 are formed. In addition, the passage 10
Is provided with a diametrical through-hole 13 communicating with.
【0032】前記コネクタ7によって開口端が閉止され
たスプール弁収容孔5内には、スプール弁14が摺動自
在に嵌挿されており、このスプール弁14は、スプール
弁収容孔5内部を第1圧力室15と第2圧力室16とに
画成すると共に、第2圧力室16内に収装した制御スプ
リング17のばね力をもって常時第1圧力室15側に偏
倚され、常態にあってそのランド部18で図外の貯油タ
ンクに連通するドレン通路19を閉止している。また、
前記スプール弁14によって画成された第1圧力室15
にはポンプ吐出油を導く導入通路20が開口している。A spool valve 14 is slidably fitted in the spool valve housing hole 5 whose opening end is closed by the connector 7. The first pressure chamber 15 and the second pressure chamber 16 are defined, and are always biased toward the first pressure chamber 15 by the spring force of the control spring 17 housed in the second pressure chamber 16, and are normally in the normal state. A drain passage 19 communicating with an oil storage tank (not shown) is closed by the land portion 18. Also,
First pressure chamber 15 defined by the spool valve 14
Is provided with an introduction passage 20 for guiding the pump discharge oil.
【0033】21はハウジング1に形成した通路で、こ
の通路21は、前記スプール弁収容孔5と略平行に盲穴
状に穿設され、その開口端は栓22によって閉塞されて
おり、一端が感圧オリフィス23及び斜孔24を介して
コネクタ7の周溝11に連通し、他端が通路25を介し
て第2圧力室16内に連通している。前記通路25は第
2圧力室16を半径方向に横切って穿設され、その開口
端を栓26で閉塞してある。Reference numeral 21 denotes a passage formed in the housing 1. The passage 21 is formed in a blind hole substantially in parallel with the spool valve housing hole 5, and has an open end closed by a plug 22 and one end thereof. The other end communicates with the peripheral groove 11 of the connector 7 through the pressure-sensitive orifice 23 and the oblique hole 24 and the second pressure chamber 16 through the passage 25. The passage 25 is bored radially across the second pressure chamber 16, and its open end is closed by a stopper 26.
【0034】前記スプール弁14には、図示したところ
から明らかなように、ドレン通路19に面する周溝27
と、この周溝27の底部に開口する直径方向の貫通孔2
8及びこの貫通孔28に連通して第2圧力室16に向か
って開く軸方向の盲穴29を設け、この盲穴29内に
は、球弁30をその押子31と共にチェックスプリング
32で偏倚して盲穴29の開口端に固定した中空尾栓3
3の弁座に適合させたリリーフ弁34が設けられてお
り、前記感圧オリフィス23を介して第2圧力室16内
に導かれる吐出通路8における圧力超過を、このリリー
フ弁34のリリーフ動作で回避する。なお、35は中空
尾栓33の第2圧力室16側端部に設けたフィルタであ
る。As apparent from the drawing, the spool valve 14 has a circumferential groove 27 facing the drain passage 19.
And a diametric through hole 2 opening at the bottom of the circumferential groove 27.
8 and an axial blind hole 29 communicating with the through hole 28 and opening toward the second pressure chamber 16 is provided. In the blind hole 29, the ball valve 30 is biased together with its pusher 31 by a check spring 32. Hollow tail plug 3 fixed to the open end of blind hole 29
A relief valve 34 adapted to the third valve seat is provided, and when the pressure in the discharge passage 8 led into the second pressure chamber 16 via the pressure-sensitive orifice 23 is exceeded, the relief operation of the relief valve 34 is performed. To avoid. Reference numeral 35 denotes a filter provided at the end of the hollow tail plug 33 on the second pressure chamber 16 side.
【0035】36は前記第2圧力室16とプラグ4との
間に形成された制御圧力室で、スプール弁収容孔5の軸
方向位置に形成してある。Reference numeral 36 denotes a control pressure chamber formed between the second pressure chamber 16 and the plug 4, and is formed at an axial position of the spool valve housing hole 5.
【0036】37は前記制御圧力室36と第2圧力室1
6との間に配置された可動ばね受け部材である。この可
動ばね受け部材37は有底筒状の基部38とこの基部3
8の外周に固定された環状の鍔部39とから構成してあ
る。この可動ばね受け部材37は、基部38の円筒部3
8aが第2圧力室16内に挿入され、円筒部38a側の
一端面40が前記第2圧力室16に面して前記流量制御
スプリング17に当接しており、鍔部39が制御圧力室
36内に挿入され、一端面40よりも大きい面積を有す
る鍔部39側の他端面41が前記制御圧力室36に面し
ている。42は可動ばね受け部材37の基部38を貫通
する感圧通路で、第2圧力室16内の圧力を制御圧力室
36内に導く。Reference numeral 37 denotes the control pressure chamber 36 and the second pressure chamber 1
6 is a movable spring receiving member disposed between the movable spring receiving member and the movable spring receiving member. The movable spring receiving member 37 includes a bottomed cylindrical base 38 and the base 3.
8 and an annular flange 39 fixed to the outer periphery of the rim 8. The movable spring receiving member 37 is provided on the cylindrical portion 3 of the base 38.
8 a is inserted into the second pressure chamber 16, one end surface 40 of the cylindrical portion 38 a side faces the second pressure chamber 16 and abuts on the flow rate control spring 17, and the flange 39 is connected to the control pressure chamber 36. The other end surface 41 on the side of the flange 39 having an area larger than the one end surface 40 faces the control pressure chamber 36. Reference numeral 42 denotes a pressure-sensitive passage penetrating the base 38 of the movable spring receiving member 37, and guides the pressure in the second pressure chamber 16 into the control pressure chamber 36.
【0037】43は前記可動ばね受け部材37に付属す
るばね部材で、このばね部材43は大径ばね43aと小
径ばね43bとからなる内外二重の入れ子型ばね部材
で、前記制御圧力室36の第2圧力室16側底面36a
と鍔部39との間に形成されるばね部材収容室44内に
在って、可動ばね受け部材37を前記制御圧力室36側
に付勢可能である。また、前記大径ばね43aは制御圧
力室36の第2圧力室16側底面36aと鍔部39との
間に所定のセット荷重をもって縮設され、小径ばね43
bは、基部38の円筒部38a外周に、軸方向に一定長
さだけ移動可能に取付けられた可動ストッパ45と鍔部
39との間に所定のセット荷重をもって縮設してある。Reference numeral 43 denotes a spring member attached to the movable spring receiving member 37. The spring member 43 is an inner / outer double nested spring member comprising a large diameter spring 43a and a small diameter spring 43b. Second pressure chamber 16 side bottom surface 36a
The movable spring receiving member 37 can be urged toward the control pressure chamber 36 in the spring member housing chamber 44 formed between the spring member 39 and the flange 39. The large-diameter spring 43a is contracted with a predetermined set load between the bottom surface 36a of the control pressure chamber 36 on the second pressure chamber 16 side and the flange 39, and the small-diameter spring 43a
b is contracted with a predetermined set load between a movable stopper 45 and a flange 39 attached to the outer periphery of the cylindrical portion 38a of the base 38 so as to be movable by a fixed length in the axial direction.
【0038】即ち、前記可動ストッパ45は、可動ばね
受け部材37の基部38の外周に形成した段部38b
に、鍔部39側へ移動可能に取付けられており、図1に
示すように、可動ばね受け部材37が第2圧力室16か
ら最も離れた位置(図において最も右側位置)にあると
き、制御圧力室36の第2圧力室16側端面36aに当
接しない位置で停止している。したがって、前記可動ば
ね受け部材37が図1に示す位置にあるとき、ばね部材
43の大径ばね43aは可動ばね受け部材37に制御圧
力室36側への偏倚力を与えるが、小径ばね43bのば
ね力は可動ばね受け部材37の移動のために何等寄与す
ることがない。That is, the movable stopper 45 is provided with a step 38 b formed on the outer periphery of the base 38 of the movable spring receiving member 37.
When the movable spring receiving member 37 is at a position farthest from the second pressure chamber 16 (the rightmost position in the figure), the control is performed as shown in FIG. It stops at a position where it does not come into contact with the end surface 36a of the pressure chamber 36 on the second pressure chamber 16 side. Therefore, when the movable spring receiving member 37 is at the position shown in FIG. 1, the large-diameter spring 43a of the spring member 43 applies a biasing force toward the control pressure chamber 36 to the movable spring receiving member 37, but the small-diameter spring 43b The spring force does not contribute to the movement of the movable spring receiving member 37 at all.
【0039】前記ばね部材43の小径ばね43bのばね
力が可動ばね受け部材37に有効な偏倚力を与えるの
は、後に詳述するように、制御圧力室36内の圧力によ
って可動ばね受け部材37が第2圧力室16側に移動
し、可動ストッパ45が制御圧力室36の第2圧力室1
6側端面36aに接した以降である。The reason why the spring force of the small diameter spring 43b of the spring member 43 gives an effective biasing force to the movable spring receiving member 37 is that the movable spring receiving member 37 is controlled by the pressure in the control pressure chamber 36, as will be described in detail later. Moves to the second pressure chamber 16 side, and the movable stopper 45 moves to the second pressure chamber 1 of the control pressure chamber 36.
This is after the contact with the sixth side end surface 36a.
【0040】なお、前記ばね部材収容室44内は、感圧
オリフィス46及び斜孔47を介してドレン通路19と
連通している。The interior of the spring member housing chamber 44 communicates with the drain passage 19 through a pressure-sensitive orifice 46 and a slant hole 47.
【0041】斯かる構成によれば、前記導入通路20か
ら第1圧力室15内に導かれたポンプ吐出油が、コネク
タ7に形成した貫通孔13、通路10及びオリフィス9
を介して吐出通路8に導かれる。According to this configuration, the pump discharge oil guided from the introduction passage 20 into the first pressure chamber 15 is supplied to the through hole 13, the passage 10, and the orifice 9 formed in the connector 7.
Through the discharge passage 8.
【0042】このとき、常態にあっては、前記スプール
弁14は、制御スプリング17によって前記第1圧力室
15側に付勢され、その胴部(ランド部)18でドレン
通路19を閉塞しており、第1圧力室15内に導入され
たポンプ吐出油はその全量が制御オリフィス9を介して
図外のアクチュエータに導かれる。一方、ポンプの回転
速度が増加してポンプ吐出油量が増加し、前記第1圧力
室15内に導入されるポンプ吐出油量が増加すると、オ
リフィス9による制限流動の下に第1圧力室15内の作
動油が吐出通路8に導かれる一方で、このオリフィス9
の前後差圧に基づいてスプール弁14が図1に示す如く
右方向に移動してドレン通路19を開き、このドレン通
路19から余剰油を図外の貯油タンクに還流させる。At this time, under normal conditions, the spool valve 14 is urged toward the first pressure chamber 15 by a control spring 17, and the body (land) 18 closes the drain passage 19. The entire amount of the pump discharge oil introduced into the first pressure chamber 15 is guided to an actuator (not shown) through the control orifice 9. On the other hand, when the rotation speed of the pump increases and the amount of oil discharged from the pump increases, and the amount of oil discharged from the pump introduced into the first pressure chamber 15 increases, the first pressure chamber 15 While the hydraulic oil in the orifice is guided to the discharge passage 8, the orifice 9
The spool valve 14 moves rightward as shown in FIG. 1 on the basis of the pressure difference between the front and rear sides to open the drain passage 19, and the excess oil is returned from this drain passage 19 to an unillustrated oil storage tank.
【0043】ここで、本発明にあっては、前記スプール
弁14を付勢する制御スプリング17が可動ばね受け部
材37に当接している。この可動ばね受け部材37は、
第2圧力室側16の面積よりも制御圧力室36側の面積
が大きく、制御圧力室36側へ付勢するばね部材43が
付属しているから、制御圧力室36内の圧力(吐出通路
8側の圧力が導かれる第2圧力室16内の圧力に等し
い)が低いときはばね部材43によって付勢されて第2
圧力室16から遠い位置にある(図1参照)。一方、前
記制御圧力室36内の圧力が高いときは、可動ばね受け
部材37は、この可動ばね受け部材37に付属するばね
部材43のばね力に抗して第2圧力室16側に移動し
て、その円筒部38aの先端が第2圧力室16内に形成
した肩部48に当接した位置で制御スプリング17を支
持している(図5参照)。したがって、前記スプール弁
14は、ばね受け部材37が制御圧力室36の圧力に応
じた所定の位置にあって、このばね受け部材37で支持
されされた制御スプリング17(取付け長がL1からL
2の範囲となる)のばね力に第2圧力室16内の圧力を
加えた力と、第1圧力室15内の圧力による力との釣り
合いによって移動し、流量制御を司ることになる。Here, in the present invention, the control spring 17 for urging the spool valve 14 is in contact with the movable spring receiving member 37. This movable spring receiving member 37
Since the area on the control pressure chamber 36 side is larger than the area on the second pressure chamber side 16 and the spring member 43 for urging the control pressure chamber 36 side is attached, the pressure in the control pressure chamber 36 (discharge passage 8 (Equal to the pressure in the second pressure chamber 16 into which the pressure on the side is guided) is low,
It is located far from the pressure chamber 16 (see FIG. 1). On the other hand, when the pressure in the control pressure chamber 36 is high, the movable spring receiving member 37 moves toward the second pressure chamber 16 against the spring force of the spring member 43 attached to the movable spring receiving member 37. Thus, the control spring 17 is supported at a position where the distal end of the cylindrical portion 38a contacts the shoulder 48 formed in the second pressure chamber 16 (see FIG. 5). Therefore, the spool valve 14 has a spring receiving member 37 at a predetermined position corresponding to the pressure of the control pressure chamber 36, and the control spring 17 supported by the spring receiving member 37 (the mounting length is L1 to L1).
2) and the flow is controlled by balancing the force obtained by adding the pressure in the second pressure chamber 16 to the spring force of the second pressure chamber 16 and the force generated by the pressure in the first pressure chamber 15.
【0044】詳しくは、前記吐出通路8側の圧力が低い
ときは、この吐出通路8の圧力が第2圧力室16を経由
して導かれる制御圧力室36内の圧力も低く、可動ばね
受け部材37は、ばね部材43によって付勢されて、基
部38に形成した停止突起38cがプラグ4に接して第
2圧力室16から最も遠い位置にある(図1参照)。こ
のため、前記制御スプリング17の取付け長が最も長く
なるから、この制御スプリング17のばね力(セット荷
重)は弱くなる。したがって、前記スプール弁14はこ
のセット荷重が小さい制御スプリング17によって制御
され、制御オリフィス9を通過する流量は図6のA−B
で示す流量となる。この流量は、吐出通路8を介して作
動油が導かれるパワーステアリング装置が操舵助勢力を
必要としないとき、或いは操舵操作しないときの流量で
ある。More specifically, when the pressure on the discharge passage 8 side is low, the pressure in the discharge passage 8 is also low in the control pressure chamber 36 guided through the second pressure chamber 16, and the movable spring receiving member 37 is biased by the spring member 43, and the stop projection 38c formed on the base 38 is in the position farthest from the second pressure chamber 16 in contact with the plug 4 (see FIG. 1). For this reason, the mounting length of the control spring 17 is the longest, and the spring force (set load) of the control spring 17 is weak. Therefore, the spool valve 14 is controlled by the control spring 17 having a small set load, and the flow rate passing through the control orifice 9 is represented by AB in FIG.
The flow rate is indicated by. This flow rate is a flow rate when the power steering device to which the hydraulic oil is guided through the discharge passage 8 does not require a steering assisting force or does not perform a steering operation.
【0045】このとき、前記可動ばね受け部材37に付
属するばね部材43の大径ばね43は、一端が制御圧力
室36の第2圧力室16側端面36aに接して可動ばね
受け部材37に偏倚力を与えているけれども、小径ばね
43は一端が可動ストッパ45に接しているから、可動
ばね受け部材37を軸方向に偏倚させるためのばね力を
発揮していない(図1参照)。したがって、前記ばね部
材43は最も小さいばね力で可動ばね受け部材37を制
御圧力室36側に付勢している。At this time, the large-diameter spring 43 of the spring member 43 attached to the movable spring receiving member 37 has one end in contact with the end surface 36a of the control pressure chamber 36 on the side of the second pressure chamber 16 and is biased toward the movable spring receiving member 37. Although a force is applied, the small-diameter spring 43 has one end in contact with the movable stopper 45, and thus does not exert a spring force for biasing the movable spring receiving member 37 in the axial direction (see FIG. 1). Therefore, the spring member 43 urges the movable spring receiving member 37 toward the control pressure chamber 36 with the smallest spring force.
【0046】図外のパワーステアリング装置が操舵操作
され始めることによって吐出通路8の圧力が上昇するこ
とにより、この吐出通路8の圧力が、貫通孔12、周溝
11、斜孔24、感圧オリフィス23、通路21及び通
路25を介して第2圧力室16内に導かれ、更に感圧通
路42を介して制御圧力室36内に導かれて、この制御
圧力室36内の圧力が上昇する。前記制御圧力室36内
の圧力が上昇すると、この制御室36内の圧力によって
可動ばね受け部材37がばね部材43のばね力に抗して
第2圧力室16側に移動し(図2参照)、制御スプリン
グ17を徐々に押し縮め、この制御スプリング17のセ
ット荷重を徐々に強くする。したがって、前記スプール
弁14はやや高くなった制御スプリング17のばね力と
制御オリフィス9の前後差圧に基づいて移動制御され、
制御オリフィス9を通過する流量は図6のB−Cで示す
流量となる。When the power steering device (not shown) starts to be steered, the pressure in the discharge passage 8 rises, and the pressure in the discharge passage 8 is increased by the through hole 12, the circumferential groove 11, the oblique hole 24, and the pressure-sensitive orifice. The pressure is guided into the second pressure chamber 16 via the passage 23, the passage 21 and the passage 25 and further into the control pressure chamber 36 via the pressure-sensitive passage 42, and the pressure in the control pressure chamber 36 increases. When the pressure in the control pressure chamber 36 increases, the pressure in the control chamber 36 causes the movable spring receiving member 37 to move toward the second pressure chamber 16 against the spring force of the spring member 43 (see FIG. 2). Then, the control spring 17 is gradually compressed, and the set load of the control spring 17 is gradually increased. Therefore, the movement of the spool valve 14 is controlled based on the slightly increased spring force of the control spring 17 and the differential pressure across the control orifice 9,
The flow rate passing through the control orifice 9 is the flow rate indicated by B-C in FIG.
【0047】このとき、前記可動ばね受け部材37に付
属するばね部材43は、一端が制御圧力室36の第2圧
力室16側端面36aに接している大径ばね43aのみ
がばね作用をし、第1段階のばね力を発揮することにな
る(図2参照)。At this time, as for the spring member 43 attached to the movable spring receiving member 37, only the large-diameter spring 43a whose one end is in contact with the second pressure chamber 16 side end surface 36a of the control pressure chamber 36 acts as a spring. The first stage spring force is exerted (see FIG. 2).
【0048】前記制御圧力室36内の圧力が所定圧力に
達し、ばね部材43が第1段階以降のばね力を発揮する
までの間、即ち前記可変ストッパ45が制御圧力室36
の端面36aに接して小径ばね43bがばね力を発揮す
るまでの間は、可動ばね受け部材37は、制御圧力室3
6内の圧力とばね部材43の第1段階のばね力(大径ば
ね43aのばね力)の最大値との釣合い位置に保たれ
(図3参照)、その位置で制御スプリング17のセット
荷重を所定値になす。したがって、前記スプール弁14
は制御スプリング17の所定のばね力と制御オリフィス
9の前後差圧に基づいて流量制御を司り、制御オリフィ
ス9を通過する流量は図6のC−Dで示す流量となる。
この流量は、車両の高速走行時、操舵操作された場合に
吐出通路8から図外のパワーステアリング装置に供給さ
れる流量である。Until the pressure in the control pressure chamber 36 reaches a predetermined pressure and the spring member 43 exerts the spring force after the first stage, that is, the variable stopper 45 is
Until the small-diameter spring 43b exerts a spring force in contact with the end surface 36a, the movable spring receiving member 37 holds the control pressure chamber 3
6 and the maximum value of the first-stage spring force of the spring member 43 (the spring force of the large-diameter spring 43a) is maintained at a balanced position (see FIG. 3), and the set load of the control spring 17 is reduced at that position. Set to a predetermined value. Therefore, the spool valve 14
Controls the flow rate based on the predetermined spring force of the control spring 17 and the differential pressure across the control orifice 9, and the flow rate passing through the control orifice 9 is the flow rate indicated by CD in FIG.
This flow rate is a flow rate that is supplied from the discharge passage 8 to a power steering device (not shown) when the steering operation is performed during high-speed running of the vehicle.
【0049】このとき、前記可動ばね受け部材37に付
属するばね部材43は、大径ばね43aが、可変ストッ
パ45が制御圧力室36の端面36aに接するまで押し
縮められて第1段階での最も大きいばね力を発揮するこ
とになる(図3参照)。At this time, the large diameter spring 43a of the spring member 43 attached to the movable spring receiving member 37 is compressed until the variable stopper 45 comes into contact with the end surface 36a of the control pressure chamber 36, so that the spring in the first stage is A large spring force is exerted (see FIG. 3).
【0050】前記制御圧力室36内の圧力が更に上昇
し、可動ばね受け部材37に作用する油圧力が増加し
て、ばね部材43の第1段階での最大ばね力を越える
と、可動ばね受け部材37がばね部材43の次段階のば
ね力に抗して第2圧力室16側に更に移動し(図4参
照)、制御スプリング17を徐々に押し縮め、セット荷
重を徐々に強くする。したがって、前記スプール弁14
は徐々に高くなった制御スプリング17のばね力と制御
オリフィス9の前後差圧の基づいて移動制御され、制御
オリフィス9を通過する流量は図6のD−Eで示す流量
に制御される。When the pressure in the control pressure chamber 36 further increases and the hydraulic pressure acting on the movable spring receiving member 37 increases and exceeds the maximum spring force of the spring member 43 in the first stage, the movable spring receiving member 37 The member 37 further moves to the second pressure chamber 16 side against the spring force of the next stage of the spring member 43 (see FIG. 4), and gradually compresses the control spring 17 to gradually increase the set load. Therefore, the spool valve 14
Is controlled based on the gradually increased spring force of the control spring 17 and the differential pressure across the control orifice 9, and the flow rate passing through the control orifice 9 is controlled to the flow rate indicated by DE in FIG.
【0051】このとき、前記可動ばね受け部材37に付
属するばね部材43は、大径ばね43aのばね力と共
に、小径ばね43bの一端部が接する可動ストッパ45
が制御圧力室36の端面36aに接して、この小径ばね
43bが押し縮められて第2段階のばね力を発揮するこ
とになる(図4参照)。At this time, the spring member 43 attached to the movable spring receiving member 37 includes a movable stopper 45 to which one end of the small-diameter spring 43b contacts with the spring force of the large-diameter spring 43a.
Comes into contact with the end surface 36a of the control pressure chamber 36, and the small-diameter spring 43b is compressed and exerts the second-stage spring force (see FIG. 4).
【0052】前記制御圧力室36内の圧力が所定圧力に
達すると、可動ばね受け部材37は第2圧力室16に最
も近付いて、その円筒部38aの先端が第2圧力室16
内に形成した肩部48に当接した位置で停止し、制御ス
プリング17のセット荷重を最大とする(図5参照)。
この状態で、前記スプール弁14は制御スプリング17
及び制御オリフィス9の前後差圧に応動して流量制御を
司り、制御オリフィス9を通過する流量は図6において
E−Fで示す流量に制御される。この流量がアクチュエ
ータに供給される最大流量である。When the pressure in the control pressure chamber 36 reaches a predetermined pressure, the movable spring receiving member 37 comes closest to the second pressure chamber 16, and the tip of the cylindrical portion 38 a is moved to the second pressure chamber 16.
It stops at the position where it abuts the shoulder 48 formed therein, and the set load of the control spring 17 is maximized (see FIG. 5).
In this state, the spool valve 14 is controlled by the control spring 17.
In response to the differential pressure across the control orifice 9, the flow rate is controlled, and the flow rate passing through the control orifice 9 is controlled to the flow rate indicated by EF in FIG. This flow rate is the maximum flow rate supplied to the actuator.
【0053】このとき、前記可動ばね受け部材37に付
属するばね部材43は、大径ばね54a及び小径ばね4
3bが最も押し縮められて、段階的に作用するばね力の
最大のばね力を発揮することになる(図5参照)。At this time, the spring member 43 attached to the movable spring receiving member 37 includes a large-diameter spring 54a and a small-diameter spring 4a.
3b is compressed most, and exerts the maximum spring force acting stepwise (see FIG. 5).
【0054】一方、アクチュエータの非作動状態、つま
りパワーステアリング装置の中立位置では、前記吐出通
路8の作動圧力が低下するから、制御オリフィス9の前
後差圧を一定に保つために、スプール弁14は第2圧力
室内16の制御スプリング17のばね力に抗して第2圧
力室16側に移動し、ドレン通路19の開口面積を増大
させる。これにより、前記導入通路20から第1圧力室
15内に導入された作動油の多くがドレン通路19に流
入することになり、ポンプ内圧力が低下し、ポンプの仕
事量が減じられることになる。On the other hand, in the inoperative state of the actuator, that is, in the neutral position of the power steering device, the operating pressure of the discharge passage 8 decreases. Therefore, in order to keep the differential pressure across the control orifice 9 constant, the spool valve 14 is required. It moves toward the second pressure chamber 16 against the spring force of the control spring 17 in the second pressure chamber 16 and increases the opening area of the drain passage 19. As a result, much of the hydraulic oil introduced into the first pressure chamber 15 from the introduction passage 20 flows into the drain passage 19, so that the pressure in the pump is reduced and the work of the pump is reduced. .
【0055】これと同時に、パワーステアリング装置の
アクチュエータが非作動状態で吐出通路8内の圧力が低
下すると、この吐出通路8の圧力が第2圧力室16を経
由して導かれる制御圧力室36内の圧力が低下すること
になる。これにより、前記制御圧力室36内の圧力を受
けるばね受け部材37は、このばね受け部材37に付属
するばね部材43のばね力によって制御圧力室36側に
移動し、ばね受け部材37の停止突起38cがプラグ4
に当接した位置で停止する。前記ばね受け部材37が制
御圧力室36側に移動することによって、この可動ばね
受け部材37とスプール弁14との間に縮設した制御ス
プリング17の取付け長がL1(図1参照)となり、制
御圧力室36内の圧力が高いときの取付け長L2(図5
参照)に比較して増大することになる。At the same time, when the pressure in the discharge passage 8 is reduced while the actuator of the power steering device is not operated, the pressure in the discharge passage 8 is controlled by the control pressure chamber 36 which is guided through the second pressure chamber 16. Will decrease. Thereby, the spring receiving member 37 receiving the pressure in the control pressure chamber 36 moves toward the control pressure chamber 36 by the spring force of the spring member 43 attached to the spring receiving member 37, and the stop projection of the spring receiving member 37 38c is plug 4
Stop at the position where it abuts. As the spring receiving member 37 moves toward the control pressure chamber 36, the length of the control spring 17 contracted between the movable spring receiving member 37 and the spool valve 14 becomes L1 (see FIG. 1). The installation length L2 when the pressure in the pressure chamber 36 is high (FIG. 5)
Reference)).
【0056】したがって、前記制御オリフィス9の前後
差圧即ち第1圧力室15内の圧力と第2圧力室16内の
圧力に制御スプリング17のばね力を加えた力との釣り
合いによって移動するスプール弁14は、可動ばね受け
部材37が制御圧力室36側に移動した分、制御スプリ
ング17のばね力が減じられることによって更に第2圧
力室16側に移動して、ドレン通路19の開口面積を更
に増大させる。Therefore, the spool valve which moves by the balance between the pressure difference between the control orifice 9 and the pressure in the first pressure chamber 15 and the pressure in the second pressure chamber 16 plus the spring force of the control spring 17. 14 moves further toward the second pressure chamber 16 by reducing the spring force of the control spring 17 to the extent that the movable spring receiving member 37 moves toward the control pressure chamber 36, further increasing the opening area of the drain passage 19. Increase.
【0057】これによって、前記第1圧力室15内に供
給された作動油は、アクチュエータが作動油を必要とし
ない非作動状態において、開口面積が増大したドレン通
路19から図外のポンプ吸入側及び貯油タンク側に還流
される。したがって、前記導入通路20を介して第1圧
力室15に作動油を吐出するポンプは、その吐出圧力が
低下して仕事量が減じられ、省エネルギが有利に達成さ
れる。Accordingly, the hydraulic oil supplied into the first pressure chamber 15 is supplied from the drain passage 19 having the increased opening area to the pump suction side (not shown) and the non-operating state where the actuator does not require the hydraulic oil. It is returned to the oil storage tank side. Therefore, the pump that discharges the working oil to the first pressure chamber 15 through the introduction passage 20 has a reduced discharge pressure, reduces the amount of work, and advantageously achieves energy saving.
【0058】この場合に、前記可動ばね受け部材37
は、このばね受け部材37に付属するばね部材43と制
御圧力室36内の圧力との釣り合いによって移動し、制
御スプリング17のばね力を変化させる。そして、前記
制御圧力室36内には第2圧力室16内の圧力が導かれ
ているから、この可動ばね受け部材37を移動させるた
めに、ポンプ吐出油の一部が制御オリフィス9を通過す
ることがないから、ポンプ吐出圧力を所定圧力に維持す
る必要がなく、ポンプの無駄なエネルギの消費を抑制し
て、省エネルギを達成することができるのである。In this case, the movable spring receiving member 37
Moves due to the balance between the spring member 43 attached to the spring receiving member 37 and the pressure in the control pressure chamber 36, and changes the spring force of the control spring 17. Since the pressure in the second pressure chamber 16 is guided into the control pressure chamber 36, a part of the pump discharge oil passes through the control orifice 9 in order to move the movable spring receiving member 37. Therefore, it is not necessary to maintain the pump discharge pressure at a predetermined pressure, and it is possible to suppress wasteful energy consumption of the pump and achieve energy saving.
【0059】また、前記制御圧力室36はスプール弁収
容孔5の軸方向位置に形成してあることにより、流量制
御弁が格別長大化することがない。Further, since the control pressure chamber 36 is formed at the axial position of the spool valve housing hole 5, the flow control valve does not become particularly long.
【0060】以上、実施の形態を図面に基づいて説明し
たが、具体的構成はこの実施の形態に限られるものでは
なく、発明の要旨を逸脱しない範囲で変更可能である。
例えば、前記第2圧力室16内の圧力を制御圧力室36
に導く通路42をばね受け部材37内に形成したが、こ
れに変えて、通路をハウジング1に形成するようにして
もよい。Although the embodiment has been described with reference to the drawings, the specific configuration is not limited to this embodiment, and can be changed without departing from the spirit of the invention.
For example, the pressure in the second pressure chamber 16 is controlled by the control pressure chamber 36.
Is formed in the spring receiving member 37, but a passage may be formed in the housing 1 instead.
【0061】また、前記ばね部材43の小径ばね43b
の一端を可動ストッパ45で支持した構成について述べ
たが、これに変えて、可動ストッパ45を廃止すると共
に、小径ばね43bの自由長を、可動ばね受け部材37
が第2圧力室16から最も遠い位置にあるとき、この小
径ばね43bの一端が制御圧力室36の端面36aに接
しない長さにして、段階的なばね力を得るばね部材を構
成するようにしてもよい。The small diameter spring 43b of the spring member 43
Has been described in which one end is supported by the movable stopper 45. Instead, the movable stopper 45 is eliminated and the free length of the small-diameter spring 43b is reduced by the movable spring receiving member 37.
Is located farthest from the second pressure chamber 16, one end of the small-diameter spring 43b has a length that does not contact the end surface 36a of the control pressure chamber 36, so as to constitute a spring member that obtains a stepwise spring force. You may.
【0062】[0062]
【発明の効果】以上詳細に説明したように本発明によれ
ば、アクチュエータが非作動状態であって、必要とする
作動油圧力が低いとき、ポンプの無駄なエネルギの消費
を抑制することができる。したがって、省エネルギを十
分に達成することができる流量制御装置が得られる。As described above in detail, according to the present invention, when the actuator is in the non-operating state and the required hydraulic oil pressure is low, it is possible to suppress unnecessary energy consumption of the pump. . Therefore, a flow control device capable of sufficiently achieving energy saving can be obtained.
【図1】本発明の実施の形態を示す流量制御装置の断面
図である。FIG. 1 is a cross-sectional view of a flow control device according to an embodiment of the present invention.
【図2】吐出通路の圧力が高く、可動ばね受け部材が第
2圧力室側に若干移動した状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state in which the pressure of a discharge passage is high and a movable spring receiving member has slightly moved to a second pressure chamber side.
【図3】同じく、可動ばね受け部材が更に第2圧力室側
に移動し、可動ストッパが制御油室の端面に接した状態
を示す断面図である。FIG. 3 is a cross-sectional view showing a state in which the movable spring receiving member further moves toward the second pressure chamber and the movable stopper comes into contact with the end surface of the control oil chamber.
【図4】同じく、可動ばね受け部材が更に第2圧力室側
に移動し、ばね部材の大径ばね及び小径ばねがばね作用
を発揮している状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which the movable spring receiving member further moves toward the second pressure chamber, and the large-diameter spring and the small-diameter spring of the spring member are exerting a spring action.
【図5】同じく、可動ばね受け部材が更に第2圧力室側
に移動し、可動ばね受け部材の円筒部の先端が第2圧力
室の肩部に接して停止した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which the movable spring receiving member further moves toward the second pressure chamber, and the distal end of the cylindrical portion of the movable spring receiving member comes into contact with the shoulder of the second pressure chamber and stops. .
【図6】流量制御特性を示す線図である。FIG. 6 is a diagram showing flow control characteristics.
5 スプール弁収容孔 8 吐出通路 9 制御オリフィス 14 スプール弁 15 第1圧力室 16 第2圧力室 17 制御スプリング 19 ドレン通路 20 導入通路 36 制御圧力室 37 可動ばね受け部材 40 一端面 41 他端面 43 ばね部材 Reference Signs List 5 spool valve accommodation hole 8 discharge passage 9 control orifice 14 spool valve 15 first pressure chamber 16 second pressure chamber 17 control spring 19 drain passage 20 introduction passage 36 control pressure chamber 37 movable spring receiving member 40 one end surface 41 the other end surface 43 spring Element
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−131485(JP,A) 特開 昭63−25176(JP,A) 特開 平8−216903(JP,A) 特開 平8−276855(JP,A) 特開 昭59−38167(JP,A) 特開 平8−282513(JP,A) 実開 昭51−116531(JP,U) 実開 昭61−42384(JP,U) (58)調査した分野(Int.Cl.7,DB名) B62D 5/00 - 5/32 B62D 6/00 - 6/06 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-131485 (JP, A) JP-A-63-25176 (JP, A) JP-A-8-216903 (JP, A) JP-A-8-216903 276855 (JP, A) JP-A-59-38167 (JP, A) JP-A-8-282513 (JP, A) JP-A-51-116531 (JP, U) JP-A-61-42384 (JP, U) (58) Field surveyed (Int.Cl. 7 , DB name) B62D 5/00-5/32 B62D 6/00-6/06
Claims (2)
自在に収容して、該スプール弁収容室内を第1圧力室と
第2圧力室に画成し、第1圧力室内には、制御オリフィ
スを介して吐出通路と連通する導入通路及びドレン通路
を開口し、第2圧力室内には、吐出通路の圧力を導くと
共に前記スプール弁を第1圧力室側に偏倚する流量制御
スプリングを収装して、前記導入通路から制御オリフィ
スを介して吐出通路に作動油の必要流量を導く一方、該
必要流量に対する余剰油を前記スプール弁の移動によっ
て開閉制御されるドレン通路に還流させる流量制御装置
において、前記第2圧力室の圧力が導かれる制御圧力室を設け、前
記 制御圧力室と前記第2圧力室との間に、一端面が前記
第2圧力室に面して前記流量制御スプリングに当接し、
他端面が一端面の面積よりも大きい面積を持って制御圧
力室に面する可動ばね受け部材を設けると共に、 該可動ばね受け部材に制御圧力室側への偏倚力を与え、
可動ばね受け部材の移動によって段階的なばね力を得る
ばね部材を可動ばね受け部材に付属させることにより、
前記流量制御スプリングのばね力が前記吐出通路の圧力
に応じて変化するように構成したことを特徴とする流量
制御装置。A spool valve is slidably housed in a spool valve housing hole, the spool valve housing chamber is defined as a first pressure chamber and a second pressure chamber, and a control chamber is provided in the first pressure chamber. An introduction passage and a drain passage communicating with the discharge passage through the orifice are opened, and a flow control spring for guiding the pressure of the discharge passage and biasing the spool valve toward the first pressure chamber is housed in the second pressure chamber. In the flow control device, the required flow rate of hydraulic oil is guided from the introduction path to the discharge path via the control orifice, and excess oil corresponding to the required flow rate is returned to the drain path that is opened and closed by the movement of the spool valve. Providing a control pressure chamber into which the pressure of the second pressure chamber is led,
Between the serial control pressure chamber and the second pressure chamber, one end face abuts on the flow control spring facing said second pressure chamber,
A movable spring receiving member facing the control pressure chamber with the other end surface having an area larger than the area of the one end surface is provided, and a biasing force toward the control pressure chamber is applied to the movable spring receiving member.
The Rukoto spring member to obtain a stepwise spring force by the movement of the movable spring bearing member is supplied with the movable spring receiving member,
The spring force of the flow control spring is equal to the pressure of the discharge passage.
A flow control device characterized in that the flow control device is configured to change in accordance with the flow rate.
材は、内外二重の入れ子型ばね部材からなる、請求項1
記載の流量制御装置。2. The spring member attached to the movable spring receiving member comprises a double inner / outer nested spring member.
A flow control device as described.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10474696A JP3358122B2 (en) | 1996-04-03 | 1996-04-03 | Flow control device |
US08/674,723 US5819777A (en) | 1995-07-07 | 1996-07-02 | Flow control device |
EP19960304980 EP0752361B1 (en) | 1995-07-07 | 1996-07-05 | Flow control device |
DE69615099T DE69615099T2 (en) | 1995-07-07 | 1996-07-05 | Flow control device |
KR1019960027361A KR100196765B1 (en) | 1995-07-07 | 1996-07-06 | Flow control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10474696A JP3358122B2 (en) | 1996-04-03 | 1996-04-03 | Flow control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09267758A JPH09267758A (en) | 1997-10-14 |
JP3358122B2 true JP3358122B2 (en) | 2002-12-16 |
Family
ID=14389068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10474696A Expired - Fee Related JP3358122B2 (en) | 1995-07-07 | 1996-04-03 | Flow control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3358122B2 (en) |
-
1996
- 1996-04-03 JP JP10474696A patent/JP3358122B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09267758A (en) | 1997-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3520232B2 (en) | Flow control device | |
JP3820273B2 (en) | Hydraulic pump flow control valve | |
US5819777A (en) | Flow control device | |
JP3358122B2 (en) | Flow control device | |
JP3771675B2 (en) | Flow control device for positive displacement pump | |
JP3203300B2 (en) | Flow control device | |
JP3274966B2 (en) | Flow control device | |
EP0752362A1 (en) | Flow control valve | |
JP3358939B2 (en) | Flow control device | |
JP3274967B2 (en) | Flow control device | |
JP3207086B2 (en) | Flow control device | |
JP3207085B2 (en) | Flow control device | |
JP3358923B2 (en) | Flow control device | |
JP3318201B2 (en) | Flow control device | |
JP3274970B2 (en) | Flow control device | |
JP3207096B2 (en) | Flow control device | |
JP3229922B2 (en) | Flow control device | |
JP3203301B2 (en) | Flow control device | |
JP3686742B2 (en) | Flow control device | |
JP3253239B2 (en) | Flow control device | |
JPH10315994A (en) | Flow rate controller | |
JP3500410B2 (en) | Flow control device | |
EP0753449A1 (en) | Flow control device of power steering system | |
JPH08282514A (en) | Flow control device for pump | |
JPH0939811A (en) | Power steering device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |