JP3357566B2 - Crystalline titania fine particle / clay composite and method for producing the same - Google Patents

Crystalline titania fine particle / clay composite and method for producing the same

Info

Publication number
JP3357566B2
JP3357566B2 JP07079697A JP7079697A JP3357566B2 JP 3357566 B2 JP3357566 B2 JP 3357566B2 JP 07079697 A JP07079697 A JP 07079697A JP 7079697 A JP7079697 A JP 7079697A JP 3357566 B2 JP3357566 B2 JP 3357566B2
Authority
JP
Japan
Prior art keywords
titania fine
clay
fine particle
clay composite
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07079697A
Other languages
Japanese (ja)
Other versions
JPH10245226A (en
Inventor
大岡千洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CITY OF NAGOYA
Original Assignee
CITY OF NAGOYA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CITY OF NAGOYA filed Critical CITY OF NAGOYA
Priority to JP07079697A priority Critical patent/JP3357566B2/en
Publication of JPH10245226A publication Critical patent/JPH10245226A/en
Application granted granted Critical
Publication of JP3357566B2 publication Critical patent/JP3357566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はチタニア微粒子/粘
土複合体のチタニア微粒子を結晶化する方法、および多
孔質の結晶質チタニア微粒子/粘土複合体に関するもの
である。チタニア微粒子が結晶化したチタニア微粒子/
粘土複合体は、チタニアの光触媒活性を利用した触媒材
料等への利用、また多孔質構造を利用した触媒、触媒担
体、吸着材、分離材等への利用が考えられる。
The present invention relates to a method for crystallizing titania fine particles of a titania fine particle / clay composite, and a porous crystalline titania fine particle / clay composite. Titania fine particles crystallized from titania fine particles /
The clay composite is considered to be used as a catalyst material or the like utilizing the photocatalytic activity of titania, or as a catalyst, a catalyst carrier, an adsorbent, a separator or the like utilizing a porous structure.

【0002】[0002]

【従来の技術】粘土は層状の結晶構造を持っており、そ
の層間にチタニア微粒子を複合させたチタニア微粒子/
粘土複合体が合成されている。従来のチタニア微粒子/
粘土複合体の製造法に関しては、例えば、特開昭62−
187107号公報、Clays and Clay
Minerals,34,658〜664(198
6)、Materials Chemistry an
d Physics,17,87−101(198
7)、日本化学会誌(1996)638〜644等が公
表されている。これらの製造法で合成されるチタニア微
粒子/粘土複合体は粘土の層間をチタニア微粒子が押し
広げているため、層間にすきま(層間空隙)が存在す
る。層間空隙の大きさはチタニア微粒子の粒子径に対応
するが、数nm程度である。この層間空隙により従来の
チタニア微粒子/粘土複合体は多孔質となり、100〜
500m2 /g程度の大きなBET法比表面積を持って
おり、この多孔質構造を活用した触媒、触媒担体、吸着
材、分離材への応用が考えられている。
2. Description of the Related Art Clay has a layered crystal structure.
Clay composites have been synthesized. Conventional titania fine particles /
Regarding the method for producing a clay composite, see, for example,
187107, Clays and Clay
Minerals, 34, 658-664 (198
6), Materials Chemistry an
d Physics, 17, 87-101 (198
7), The Chemical Society of Japan (1996), 638-644, etc., have been published. In the titania fine particle / clay composite synthesized by these production methods, a gap (interlayer void) exists between the layers because the titania fine particles spread the layers between the clay layers. The size of the interlayer gap corresponds to the particle size of the titania fine particles, but is about several nm. This interlayer void makes the conventional titania fine particle / clay composite porous,
It has a large BET specific surface area of about 500 m 2 / g, and its application to a catalyst, a catalyst carrier, an adsorbent, and a separation material utilizing this porous structure is considered.

【0003】しかしこれらの従来の製造法で合成される
チタニア微粒子/粘土複合体のチタニア微粒子は非晶質
であるか、非常に結晶性の低いアナターゼである。従来
の製造法で合成されたチタニア微粒子/粘土複合体のチ
タニア微粒子の結晶性を高めるために500℃までの温
度で加熱しても、チタニア微粒子は非常に結晶性の低い
アナターゼにしかならない。500℃より高い温度で加
熱すれば、粘土層の破壊が起こるため、多孔質構造が失
われる。すなわち、従来の製造法で100m2/g以上
のBET法比表面積を示す多孔質構造を持った結晶質チ
タニア微粒子/粘土複合体は得られていない。
However, the titania fine particles of the titania fine particles / clay composite synthesized by these conventional production methods are either amorphous or anatase having very low crystallinity. Even when heated at a temperature of up to 500 ° C. in order to increase the crystallinity of the titania fine particles / titania fine particles synthesized by the conventional production method, the titania fine particles are converted into anatase having very low crystallinity. Heating at a temperature higher than 500 ° C. will destroy the clay layer, thus losing the porous structure. That is, a crystalline titania fine particle / clay composite having a porous structure and a BET specific surface area of 100 m 2 / g or more has not been obtained by the conventional production method.

【0004】チタニア粉体は光触媒材料として使用され
ているが、その光触媒活性は非晶質のチタニア粉体では
高くなく、活性が高いチタニア粉体は結晶化したもので
あり、またその活性も結晶性の高い粉体が高い(例え
ば、日本化学会誌(1984)246−252)。チタ
ニア微粒子/粘土複合体を光触媒材料として使用する試
みも行われているが(Jounal of Physi
cal Chemistry,93,4833−483
7(1989))、従来技術で製造したチタニア微粒子
/粘土複合体は、チタニア微粒子が非晶質であるか、あ
るいは低結晶性であり、光触媒活性が低いという欠点を
持つ。
[0004] Titania powder is used as a photocatalytic material, but its photocatalytic activity is not high in amorphous titania powder, and titania powder having high activity is crystallized, and its activity is also crystalline. Highly powdery material is high (for example, Chemical Society of Japan (1984) 246-252). Attempts have been made to use the titania fine particle / clay composite as a photocatalytic material (Journal of Physi).
cal Chemistry, 93, 4833-483
7 (1989)), the titania fine particle / clay composite produced by the prior art has the disadvantage that the titania fine particles are amorphous or low crystalline and have low photocatalytic activity.

【0005】またチタニアは酸性溶液にさらされると溶
出するが、その溶出度は結晶化したチタニアよりも非晶
質あるいは低結晶性のチタニアの方が高いという性質を
有している。したがってチタニア微粒子が非晶質あるい
は低結晶性の従来のチタニア微粒子/粘土複合体は触媒
材料、吸着材、分離材等に使用する場合、酸性溶液中で
の使用が制限されるという欠点を持つ。しかるに粘土中
に結晶化したチタニア微粒子を複合化させる技術は未だ
に確立されていない。
[0005] Titania is eluted when exposed to an acidic solution. The elution degree of amorphous or low crystalline titania is higher than that of crystallized titania. Therefore, when the conventional titania fine particle / clay composite in which the titania fine particles are amorphous or low-crystalline is used as a catalyst material, an adsorbent, a separating material, or the like, there is a drawback that the use in an acidic solution is limited. However, a technique for compounding the titania fine particles crystallized in clay has not yet been established.

【0006】[0006]

【発明が解決しようとする課題】光触媒活性が高い、あ
るいは酸性溶液中での耐久性が高い、あるいはその両方
の課題を満たし、かつ100m2 /g以上のBET法比
表面積を示す多孔質のチタニア微粒子/粘土複合体を提
供し、またそのためにチタニア微粒子/粘土複合体中の
チタニア微粒子の結晶性を高める方法を提供するもので
ある。
A porous titania having a high photocatalytic activity, a high durability in an acidic solution, or both, and a BET specific surface area of 100 m 2 / g or more. An object of the present invention is to provide a fine particle / clay composite, and to provide a method for increasing the crystallinity of the titania fine particles in the titania fine particle / clay composite.

【0007】[0007]

【課題を解決するための手段】本発明は水熱処理により
チタニア微粒子/粘土複合体中の非晶質あるいは低結晶
性のチタニア微粒子をアナターゼに高結晶化させる方法
を提供し、またその方法により、光触媒活性が高い、あ
るいは酸性溶液中での耐久性の高い、あるいはその両方
を満たし、かつ100m2 /g以上のBET法比表面積
を示す多孔質の結晶質チタニア微粒子/粘土複合体を提
供するものである。
SUMMARY OF THE INVENTION The present invention provides a method for highly crystallizing amorphous or low-crystalline titania fine particles in a titania fine particle / clay composite to anatase by hydrothermal treatment. An object of the present invention is to provide a porous crystalline titania fine particle / clay composite which has high photocatalytic activity, or high durability in an acidic solution, or both, and has a BET specific surface area of 100 m 2 / g or more. It is.

【0008】[0008]

【発明の実施の形態】本発明で製造される結晶質チタニ
ア微粒子/粘土複合体の、原料粘土は膨潤性粘土であれ
ばよく、例えばモンモリロナイトやヘクトライト等のス
メクタイト、バーミキュライト、合成マイカ、あるいは
フッ素置換せしめた類似体等の1種または2種以上の混
合物より選択することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The starting clay of the crystalline titania fine particle / clay composite produced by the present invention may be a swelling clay, for example, smectite such as montmorillonite or hectorite, vermiculite, synthetic mica, or fluorine. It can be selected from one or a mixture of two or more such as substituted analogs.

【0009】原料粘土にチタニアを複合させる方法とし
ては例えば従来の、四塩化チタン、オキシ硫酸チタン、
オキシ硝酸チタン、チタニウムテトラエトキシド、チタ
ニウムテトライソプロポキシド、チタニウムテトラ−n
−ブトキシド等を水または酸に溶解させて製造されるチ
タニアゾルを粘土と反応させる方法で差し支えなく、チ
タニアの原料、複合方法に制限されるものではない。
As a method of combining titania with raw clay, for example, conventional titanium tetrachloride, titanium oxysulfate,
Titanium oxynitrate, titanium tetraethoxide, titanium tetraisopropoxide, titanium tetra-n
-A method in which a titania sol produced by dissolving butoxide or the like in water or an acid may be reacted with clay, and is not limited to titania raw materials and composite methods.

【0010】本発明ではチタニア微粒子が非晶質あるい
は低結晶性であるチタニア微粒子/粘土複合体を水に分
散させ水熱処理を行い、チタニア微粒子をアナターゼに
結晶化させる。水とチタニア微粒子/粘土複合体の配合
比に関しては、チタニア微粒子/粘土複合体が水中に均
一に分散すればよく、特に制限されるものではない。
In the present invention, a titania fine particle / a clay composite in which the titania fine particles are amorphous or low-crystalline is dispersed in water and subjected to hydrothermal treatment to crystallize the titania fine particles into anatase. The mixing ratio of the water and the titania fine particles / clay composite is not particularly limited as long as the titania fine particles / clay composite is uniformly dispersed in water.

【0011】本発明では、チタニア微粒子/粘土複合体
を水中に分散させ、この懸濁液を密閉容器内に入れ加熱
し水熱処理を行う。水熱処理の雰囲気としては例えば大
気雰囲気中、不活性気体中等であり、特に制限されるこ
とはない。
In the present invention, the titania fine particle / clay composite is dispersed in water, and this suspension is placed in a closed vessel and heated to perform hydrothermal treatment. The atmosphere for the hydrothermal treatment is, for example, in an air atmosphere, in an inert gas, or the like, and is not particularly limited.

【0012】水熱処理がチタニア微粒子の結晶化に及ぼ
す効果には温度、時間が影響するが、本発明に使用する
温度に関しては160〜250℃の範囲である。水熱処
理時間については処理温度、チタニア微粒子の粒子径と
関係し、処理温度が低く、チタニア微粒子の粒子径が大
きい場合は結晶化時間が長くかかる。したがって160
℃より低い温度で水熱処理を行った場合、処理時間が数
日あるいはそれ以上になり実用的ではない。一方、処理
温度が高く、チタニア微粒子の粒子径が小さい場合は結
晶化時間は短い。しかしながら250℃より高い温度で
水熱処理を行った場合、チタニア微粒子/粘土複合体の
粘土層の結晶構造の破壊が起こり望ましくない。
Although the effect of the hydrothermal treatment on the crystallization of the titania fine particles is affected by the temperature and time, the temperature used in the present invention is in the range of 160 to 250 ° C. The hydrothermal treatment time is related to the processing temperature and the particle size of the titania fine particles, and when the processing temperature is low and the particle size of the titania fine particles is large, the crystallization time is long. Therefore 160
If the hydrothermal treatment is performed at a temperature lower than ℃, the treatment time is several days or more, which is not practical. On the other hand, when the processing temperature is high and the particle size of the titania fine particles is small, the crystallization time is short. However, when the hydrothermal treatment is performed at a temperature higher than 250 ° C., the crystal structure of the clay layer of the titania fine particle / clay composite is destroyed, which is not desirable.

【0013】水熱処理をしたチタニア微粒子/粘土複合
体を脱水、遠心分離等の手段で回収し、乾燥する。乾燥
方法は例えば自然乾燥、熱風乾燥、凍結乾燥、超臨界乾
燥等があげられるが、特に限定はされない。
The hydrothermally treated fine particles of titania / clay are recovered by means such as dehydration and centrifugation and dried. Examples of the drying method include, but are not particularly limited to, natural drying, hot air drying, freeze drying, and supercritical drying.

【0014】従来の製造法で合成されたチタニア微粒子
/粘土複合体は100〜500m2/g程度のBET法
比表面積を示すが、160〜250℃の温度で水熱処理
を施された本発明の結晶質チタニア微粒子/粘土複合体
は100m2 /g以上のBET法比表面積を保つ。
The titania fine particle / clay composite synthesized by the conventional production method has a BET specific surface area of about 100 to 500 m 2 / g, but the hydrothermal treatment of the present invention at a temperature of 160 to 250 ° C. The crystalline titania fine particle / clay composite has a BET specific surface area of 100 m 2 / g or more.

【0015】従来の製造法で合成されたチタニア微粒子
/粘土複合体は数nm程度の層間空隙を持つが、160
〜250℃の温度で水熱処理を施されるとチタニア微粒
子の粒子成長が起こり、層間空隙の増大が起きる。層間
空隙の増大の度合いは、高温で長時間の水熱処理を行う
ほど増大する。層間空隙の平均的大きさは、窒素ガス吸
着法による平均細孔径により求められるが、本発明の結
晶質チタニア微粒子/粘土複合体の層間空隙は、250
℃で数日間水熱処理を行ったものでも、その平均細孔径
は15nmを越えない。すなわち層間の結晶質チタニア
微粒子の大きさも15nmを越えない。
Although the titania fine particle / clay composite synthesized by the conventional manufacturing method has an interlayer gap of about several nm,
When hydrothermal treatment is performed at a temperature of about 250 ° C., particle growth of titania fine particles occurs, and interlayer voids increase. The degree of increase in interlayer voids increases as long-term hydrothermal treatment is performed at high temperatures. The average size of the interlayer gap is determined by the average pore diameter by the nitrogen gas adsorption method, and the interlayer gap of the crystalline titania fine particle / clay composite of the present invention is 250%.
Even when subjected to hydrothermal treatment at ℃ for several days, the average pore diameter does not exceed 15 nm. That is, the size of the crystalline titania fine particles between the layers does not exceed 15 nm.

【0016】[0016]

【実施例】以下に本発明の効果を実施例、比較例、試験
例により示すが、本発明は下記実施例に限定されるもの
ではない。
EXAMPLES The effects of the present invention will be described below with reference to Examples, Comparative Examples and Test Examples, but the present invention is not limited to the following Examples.

【0017】実施例1 チタニウムテトライソプロポキシド10.2gを1N塩
酸水溶液36mlに溶解させチタニアゾルとし、このチ
タニアゾルをクニピア−F(クニミネ工業(株)製、ナ
トリウム−モンモリロナイト)1gを含む水懸濁液20
0mlに加え、撹拌しながら50℃まで加温し3時間保
持した。生成物(チタニア微粒子/粘土複合体)を遠心
分離にて回収し、水洗した後、再度、水100mlに分
散させ懸濁液とした。この懸濁液を水熱反応装置に入
れ、密閉し、200℃まで加温し、2時間保持し、その
後、自然冷却した。生成物を水熱反応装置から取り出
し、遠心分離にて回収し、水洗、自然乾燥し白色粉末を
得た。この白色粉末の窒素ガス吸着法によるBET法比
表面積は229m2 /g、全細孔容積は0.274ml
/g、平均細孔径は4.8nmであった。この白色粉末
のX線回折図を図1に示す。2θ=25°付近にアナタ
ーゼに帰属する回折線が明瞭に観測された。
EXAMPLE 1 10.2 g of titanium tetraisopropoxide was dissolved in 36 ml of a 1N aqueous hydrochloric acid solution to obtain a titania sol. 20
Then, the mixture was heated to 50 ° C. with stirring and maintained for 3 hours. The product (titania fine particles / clay composite) was collected by centrifugation, washed with water, and again dispersed in 100 ml of water to form a suspension. The suspension was placed in a hydrothermal reactor, sealed, warmed to 200 ° C., held for 2 hours, and then allowed to cool. The product was taken out of the hydrothermal reactor, collected by centrifugation, washed with water and dried naturally to obtain a white powder. The BET specific surface area of this white powder by a nitrogen gas adsorption method is 229 m 2 / g, and the total pore volume is 0.274 ml.
/ G, average pore diameter was 4.8 nm. The X-ray diffraction pattern of this white powder is shown in FIG. A diffraction line attributed to anatase was clearly observed around 2θ = 25 °.

【0018】実施例2 実施例1に対し水熱処理の温度と時間を250℃、1時
間保持に変えて、その他の操作は実施例1と同様に行い
白色粉末を得た。この白色粉末の窒素ガス吸着法による
BET法比表面積は220m2 /g、全細孔容積は0.
287ml/g、平均細孔径は5.2nmであった。こ
の白色粉末のX線回折図を図2に示す。実施例1と同様
に2θ=25°付近にアナターゼに帰属する回折線が明
瞭に観測された。
Example 2 A white powder was obtained in the same manner as in Example 1 except that the temperature and time of the hydrothermal treatment were changed to 250 ° C. and held for 1 hour. The BET specific surface area of this white powder by a nitrogen gas adsorption method was 220 m 2 / g, and the total pore volume was 0.1 μm.
287 ml / g, and the average pore diameter was 5.2 nm. FIG. 2 shows an X-ray diffraction pattern of this white powder. As in Example 1, a diffraction line belonging to anatase was clearly observed at around 2θ = 25 °.

【0019】実施例3 実施例1に対し水熱処理の温度と時間を160℃、24
時間保持に変えて、その他の操作は実施例1と同様に行
い白色粉末を得た。この白色粉末の窒素ガス吸着法によ
るBET法比表面積は264m2 /g、全細孔容積は
0.259ml/g、平均細孔径は3.9nmであっ
た。この白色粉末のX線回折図を図3に示す。2θ=2
5°付近のアナターゼに帰属する回折線は実施例1、実
施例2と比べると明瞭ではないが、後述の比較例1と比
べればより明瞭であり、チタニア微粒子の結晶性が改善
していることを示している。
Example 3 The temperature and time of the hydrothermal treatment were changed to 160 ° C. and 24
Other operations were performed in the same manner as in Example 1 except that the holding time was changed to obtain a white powder. This white powder had a BET specific surface area by a nitrogen gas adsorption method of 264 m 2 / g, a total pore volume of 0.259 ml / g, and an average pore diameter of 3.9 nm. The X-ray diffraction pattern of this white powder is shown in FIG. 2θ = 2
Diffraction lines belonging to anatase at around 5 ° are not clear as compared with Examples 1 and 2, but are clearer than Comparative Example 1 described below, and the crystallinity of the titania fine particles is improved. Is shown.

【0020】比較例1 実施例1と同様にクニピア−Fにチタニアを複合化さ
せ、生成物を遠心分離にて回収し、水洗した後、水熱処
理を行わずに自然乾燥させ白色粉末を得た。この白色粉
末の窒素ガス吸着法によるBET法比表面積は260m
2 /g、全細孔容積は0.216ml/g、平均細孔径
は3.2nmであった。この白色粉末のX線回折図を図
4(1)に示す。2θ=25°付近にはアナターゼに帰
属する非常に弱い回折線が観測された。この結果はこの
白色粉末(チタニア微粒子/粘土複合体)中のチタニア
微粒子の結晶性が非常に低いことを示している。この白
色粉末を500℃で6時間、加熱した後のX線回折図を
図4(2)に示す。(2)は加熱前の(1)のX線回折
図と比べてほとんど違いが無く、チタニア微粒子の結晶
性はほとんど改善されていないことを示している。また
500℃より高い温度でこの白色粉末を加熱した場合
は、チタニア微粒子/粘土複合体の粘土層の破壊が起こ
る。したがって従来の製造法によるチタニア微粒子/粘
土複合体に加熱処理を施しても、多孔質構造を維持した
ままチタニア微粒子の結晶性を改善することはできな
い。
Comparative Example 1 Titania was combined with Kunipia-F in the same manner as in Example 1, the product was collected by centrifugation, washed with water, and then naturally dried without hydrothermal treatment to obtain a white powder. . The specific surface area of this white powder by the BET method using a nitrogen gas adsorption method is 260 m.
2 / g, the total pore volume was 0.216 ml / g, and the average pore diameter was 3.2 nm. The X-ray diffraction pattern of this white powder is shown in FIG. A very weak diffraction line belonging to anatase was observed around 2θ = 25 °. This result indicates that the titania fine particles in the white powder (titania fine particles / clay composite) have very low crystallinity. The X-ray diffraction diagram after heating this white powder at 500 ° C. for 6 hours is shown in FIG. 4 (2). (2) shows little difference from the X-ray diffraction pattern of (1) before heating, indicating that the crystallinity of the titania fine particles is hardly improved. If the white powder is heated at a temperature higher than 500 ° C., the clay layer of the titania fine particles / clay composite will be destroyed. Therefore, even if heat treatment is performed on the titania fine particle / clay composite by the conventional production method, the crystallinity of the titania fine particles cannot be improved while maintaining the porous structure.

【0021】試験例1 チタニア微粒子/粘土複合体のチタニア微粒子の酸溶出
度試験。 実施例1のチタニア微粒子/粘土複合体と、比較例1の
500℃加熱前のチタニア微粒子/粘土複合体をそれぞ
れ0.01g(蛍光X線分析法によるチタニア含有量は
実施例1で54.4重量%、比較例1で48.9重量
%)づつ計り取り、pH2の塩酸水溶液10mlに浸漬
した。このチタニア微粒子/粘土複合体を浸漬させた塩
酸水溶液をガラス容器中に密閉し、50℃に保持し、一
定時間後に水溶液中のチタン量を誘導結合型プラズマ
(ICP)発光分光分析装置により測定した。水溶液中
のチタン量はチタニア微粒子/粘土複合体からのチタニ
ア溶出量とみなせる。チタニア微粒子/粘土複合体中の
チタニア含有量に対するチタニア溶出量の割合(%)を
チタニア溶出度と定義して、浸漬時間とチタニア溶出度
の関係を図5に示した。チタニア微粒子が結晶化した実
施例1のチタニア微粒子/粘土複合体の方が、チタニア
微粒子の結晶性が低い比較例1のチタニア微粒子/粘土
複合体に比べてはるかにチタニア溶出度が低い。
Test Example 1 An acid elution test of titania fine particles of a titania fine particle / clay composite. 0.01 g of the titania fine-particle / clay composite of Example 1 and 0.01 g of the titania fine-particle / clay composite of Comparative Example 1 before heating at 500 ° C. (the titania content by fluorescent X-ray analysis was 54.4 in Example 1.) % By weight, 48.9% by weight in Comparative Example 1) and immersed in 10 ml of a pH 2 aqueous hydrochloric acid solution. The aqueous hydrochloric acid solution in which the titania fine particles / clay composite was immersed was sealed in a glass container, kept at 50 ° C., and after a certain period of time, the amount of titanium in the aqueous solution was measured by an inductively coupled plasma (ICP) emission spectrometer. . The amount of titanium in the aqueous solution can be regarded as the amount of titania eluted from the titania fine particle / clay composite. The ratio (%) of the titania elution amount to the titania content in the titania fine particle / clay composite was defined as the titania elution degree, and the relationship between the immersion time and the titania elution degree is shown in FIG. The titania fine particle / clay composite of Example 1 in which the titania fine particles were crystallized has a much lower titania elution degree than the titania fine particle / clay composite of Comparative Example 1 in which the titania fine particles have low crystallinity.

【0022】[0022]

【発明の効果】本発明によりチタニア微粒子/粘土複合
体のチタニア微粒子を複合体の多孔質構造を保ったまま
アナターゼに結晶化させることができ、このような結晶
質チタニア微粒子/粘土複合体は光触媒活性が高い、あ
るいは酸性溶液中での耐久性が高い、あるいはその両方
を満たすため、触媒、触媒担体等の触媒材料、吸着材、
分離材等の用途に極めて有用であり、工業的価値の高い
ものである。
According to the present invention, the titania fine particles of the titania fine particle / clay composite can be crystallized into anatase while maintaining the porous structure of the composite. Such a crystalline titania fine particle / clay composite can be used as a photocatalyst. High activity, or high durability in acidic solution, or both to satisfy, catalyst, catalyst material such as catalyst carrier, adsorbent,
It is extremely useful for applications such as separation materials and has high industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得たチタニア微粒子/粘土複合体の
X線回折図である。
FIG. 1 is an X-ray diffraction diagram of the titania fine particle / clay composite obtained in Example 1.

【図2】実施例2で得たチタニア微粒子/粘土複合体の
X線回折図である。
FIG. 2 is an X-ray diffraction diagram of the titania fine particle / clay composite obtained in Example 2.

【図3】実施例3で得たチタニア微粒子/粘土複合体の
X線回折図である。
FIG. 3 is an X-ray diffraction diagram of the titania fine particle / clay composite obtained in Example 3.

【図4】比較例1で得たチタニア微粒子/粘土複合体の
X線回折図である。(1)は自然乾燥を行ったもの、
(2)は自然乾燥後500℃で加熱したものである。
4 is an X-ray diffraction diagram of the titania fine particle / clay composite obtained in Comparative Example 1. FIG. (1) is the one that has been dried naturally,
(2) is obtained by heating at 500 ° C. after natural drying.

【図5】試験例1で行ったチタニア溶出試験で、チタニ
ア微粒子/粘土複合体のチタニア微粒子が結晶化した複
合体とチタニア微粒子の結晶性が低い複合体を50℃の
pH2の塩酸水溶液に浸漬した時の浸漬時間とチタニア
溶出度の関係を示している。
FIG. 5: In a titania dissolution test performed in Test Example 1, a composite in which titania fine particles of titania fine particles / clay composite were crystallized and a composite having low crystallinity of titania fine particles were immersed in a hydrochloric acid aqueous solution of pH 2 at 50 ° C. The relationship between the immersion time and the elution degree of titania is shown.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C01B 33/40 C01B 33/40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C01B 33/40 C01B 33/40

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水熱処理を行ったことを特徴とし、かつ
複合体の窒素ガス吸着法による平均細孔径は15nm以
下の範囲である結晶質チタニア微粒子/粘土複合体。
1. A crystalline titania fine particle / clay composite, which has been subjected to hydrothermal treatment and has an average pore diameter of 15 nm or less by a nitrogen gas adsorption method of the composite.
【請求項2】 複合体の窒素ガス吸着法によるBET法
比表面積は100m/g以上の範囲であることを特徴
とする請求項1記載の結晶質チタニア微粒子/粘土複合
体。
2. The crystalline titania fine particle / clay composite according to claim 1, wherein the BET specific surface area of the composite by a nitrogen gas adsorption method is at least 100 m 2 / g.
【請求項3】 複合体の原料粘土は膨潤性粘土であるこ
とを特徴とする請求項1、2のいずれかに記載の結晶質
チタニア微粒子/粘土複合体。
3. The crystalline titania fine particle / clay composite according to claim 1, wherein the raw material clay of the composite is a swellable clay.
【請求項4】 複合体の原料粘土はスメクタイト、バー
ミキュライト、合成マイカおよびフッ素置換せしめた類
似体の1種、または2種以上の混合物から選ばれること
を特徴とする請求項1、2のいずれかに記載の結晶質チ
タニア微粒子/粘土複合体。
4. The raw material clay of the composite is selected from one or a mixture of two or more of smectite, vermiculite, synthetic mica, and a fluorine-substituted analog. 2. The crystalline titania fine particle / clay composite according to item 1.
【請求項5】 チタニア微粒子/粘土複合体に水熱処理
を行うことを特徴とする、結晶質チタニア微粒子/粘土
複合体の製造方法。
5. A method for producing a crystalline titania fine particle / clay composite, comprising performing a hydrothermal treatment on the titania fine particle / clay composite.
【請求項6】 該水熱処理を行われる該チタニア微粒子
/粘土複合体の窒素ガス吸着法によるBET法比表面積
は100m/g以上であることを特徴とする請求項5
記載の結晶質チタニア微粒子/粘土複合体の製造方法。
6. The specific surface area of the titania fine particle / clay composite subjected to the hydrothermal treatment by a BET method by a nitrogen gas adsorption method is 100 m 2 / g or more.
A method for producing the crystalline titania fine particle / clay composite according to the above.
【請求項7】 該水熱処理を行われる該チタニア微粒子
/粘土複合体の原料粘土は膨潤性粘土であることを特徴
とする請求項5、6のいずれかに記載の結晶質チタニア
微粒子/粘土複合体の製造方法。
7. The crystalline titania fine particle / clay composite according to claim 5, wherein the raw clay of the titania fine particle / clay composite subjected to the hydrothermal treatment is a swellable clay. How to make the body.
【請求項8】 該水熱処理を行われる該チタニア微粒子
/粘土複合体の原料粘土はスメクタイト、バーミキュラ
イト、合成マイカおよびフッ素置換せしめた類似体の1
種、または2種以上の混合物から選ばれることを特徴と
する請求項5、6のいずれかに記載の結晶質チタニア微
粒子/粘土複合体の製造方法。
8. The raw clay of the titania fine-particle / clay composite subjected to the hydrothermal treatment is one of smectite, vermiculite, synthetic mica, and a fluorine-substituted analog.
The method for producing a crystalline titania fine particle / clay composite according to any one of claims 5 and 6, wherein the method is selected from a seed or a mixture of two or more kinds.
【請求項9】 該水熱処理は水熱処理温度160℃以上
250℃以下の範囲で行うことを特徴とする請求項5〜
8のいずれかに記載の結晶質チタニア微粒子/粘土複合
体の製造方法。
9. The hydrothermal treatment is performed at a hydrothermal treatment temperature of 160 ° C. or more and 250 ° C. or less.
8. The method for producing the crystalline titania fine particle / clay composite according to any one of items 8 to 8.
JP07079697A 1997-03-06 1997-03-06 Crystalline titania fine particle / clay composite and method for producing the same Expired - Fee Related JP3357566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07079697A JP3357566B2 (en) 1997-03-06 1997-03-06 Crystalline titania fine particle / clay composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07079697A JP3357566B2 (en) 1997-03-06 1997-03-06 Crystalline titania fine particle / clay composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10245226A JPH10245226A (en) 1998-09-14
JP3357566B2 true JP3357566B2 (en) 2002-12-16

Family

ID=13441871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07079697A Expired - Fee Related JP3357566B2 (en) 1997-03-06 1997-03-06 Crystalline titania fine particle / clay composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3357566B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430405B1 (en) * 1999-04-23 2004-05-03 주식회사 나노 manufacturing method of titanium dioxide powder for photocatalyst
JP2006232865A (en) * 2005-02-22 2006-09-07 Nagoya City Titania-containing polymer composition
CN100386144C (en) * 2005-03-12 2008-05-07 山西大学 Process for preparing nano titanium dioxide bentonite composite material
JP2006326453A (en) * 2005-05-25 2006-12-07 Tokyo Institute Of Technology Titanium oxide-containing smectite-based photocatalytic composite material
JP5051985B2 (en) * 2005-06-28 2012-10-17 株式会社大林組 Manufacturing method of building material having adsorption function and photocatalytic function
JP2009263577A (en) * 2008-04-28 2009-11-12 Akebono Brake Ind Co Ltd Friction modifier, method of producing friction modifier, and friction material
JP2009275063A (en) * 2008-05-12 2009-11-26 Akebono Brake Ind Co Ltd Frictional material
JP5568726B2 (en) * 2009-03-09 2014-08-13 名古屋市 Titanium oxide / layered double hydroxide composite and method for producing the same
KR101431693B1 (en) 2011-12-29 2014-08-22 주식회사 포스코 Titanium dioxide nano particle, titanate, lithium titanate nano particle and method for preparation methods thereof
CN112645343B (en) * 2020-12-21 2021-12-10 西南科技大学 Vermiculite synthesized by phlogopite hydrothermal reaction and preparation method thereof

Also Published As

Publication number Publication date
JPH10245226A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
Li et al. Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed {0 0 1} facets for improved visible light photocatalytic activity
Kumar et al. MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation
An et al. A study on the consecutive preparation of silica powders and active carbon from rice husk ash
US6254845B1 (en) Synthesis method of spherical hollow aluminosilicate cluster
US5863514A (en) Thin fragmental titanium oxide and porous body as an aggregate thereof, and methods for their production
Cho et al. Morphology evolution of anatase TiO2 nanocrystals under a hydrothermal condition (pH= 9.5) and their ultra-high photo-catalytic activity
EP1216092B1 (en) Silicon-containing titanium dioxyde, method for preparing the same and catalytic compositions thereof
JP3357566B2 (en) Crystalline titania fine particle / clay composite and method for producing the same
Qi et al. Atp‐stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption
JPH0572323B2 (en)
CN109809422B (en) Method for purifying attapulgite
JPH1095617A (en) Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same
JP2004511338A (en) Method for producing catalyst structure
JP2002534351A (en) Carbide-based and oxycarbide-based compositions and nanorods
JPS6220130B2 (en)
US4792539A (en) Process for producing clay derivatives having a porous structure and novel clay derivatives obtained by the process
US5858081A (en) Kaolin derivatives
Lakbita et al. On the key role of the surface of palygorskite nanofibers in the stabilization of hexagonal metastable β-Ag2CO3 phase in palygorskite-based nanocomposites
Atyaksheva et al. Halloysite, natural aluminosilicate nanotubes: structural features and adsorption properties (a review)
Okada et al. In situ zeolite Na–X coating on glass fibers by soft solution process
Sanabria et al. Effect of ultrasound on the structural and textural properties of Al–Fe pillared clays in a concentrated medium
US6746660B1 (en) Process for the production of ultra-fine zeolite crystals and their aggregates
JP6015453B2 (en) Method for producing porous crystalline α-type titanium hydrogen phosphate monohydrate spherical particles
JP2007098371A (en) Cobalt ion-exchanger and purification apparatus
Kooli et al. Pillaring of a lepidocrocite-like titanate with aluminium oxide and characterization

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees