JP3351442B2 - Storage type temperature difference battery - Google Patents

Storage type temperature difference battery

Info

Publication number
JP3351442B2
JP3351442B2 JP20610593A JP20610593A JP3351442B2 JP 3351442 B2 JP3351442 B2 JP 3351442B2 JP 20610593 A JP20610593 A JP 20610593A JP 20610593 A JP20610593 A JP 20610593A JP 3351442 B2 JP3351442 B2 JP 3351442B2
Authority
JP
Japan
Prior art keywords
temperature
electrode
low
temperature difference
redox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20610593A
Other languages
Japanese (ja)
Other versions
JPH0757789A (en
Inventor
真樹 石沢
一彦 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20610593A priority Critical patent/JP3351442B2/en
Publication of JPH0757789A publication Critical patent/JPH0757789A/en
Application granted granted Critical
Publication of JP3351442B2 publication Critical patent/JP3351442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、温度差がある時に常用
発電機能及び蓄電機能を有し、温度差の消失時に放電可
能とさせた新規のレドックス温度差電池に関するもので
ある。特に、排熱利用用途、コジェネレーション用途の
バックアップ電源として有効な温度差電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel redox temperature difference battery having a normal power generation function and a power storage function when there is a temperature difference, and enabling discharge when the temperature difference disappears. In particular, the present invention relates to a temperature difference battery that is effective as a backup power supply for waste heat utilization and cogeneration.

【0002】[0002]

【従来の技術】従来、熱エネルギーを電気エネルギーに
変換する熱電変換器としては、電気化学的温度差電池が
周知されているところであるが、この従来型の温度差電
池の構成が図3に示される。すなわち従来型の電気化学
的温度差電池は電極に対して可逆的電荷移動反応をする
レドックス対イオンを含有する溶液2中に同一材料から
なる電極が、両極間に低温媒体4と高温媒体5により温
度差が与えられて、低温電極1及び高温電極3として設
備され、両極の間に電位差、すなわち熱起電力が発生さ
れるものである。例えば、レドックス対化合物としてフ
ェロシアン化カリウムとフェリシアン化カリウムが、ま
た溶媒として水が使用される場合は、負の熱起電力が発
生して、低温電極1と高温電極3において以下に示す反
応が生起するため、高温電極側が負極となり低温電極側
が正極となる。
2. Description of the Related Art Conventionally, as a thermoelectric converter for converting heat energy into electric energy, an electrochemical temperature difference battery has been known. FIG. 3 shows the structure of this conventional temperature difference battery. It is. That is, in a conventional electrochemical temperature difference battery, an electrode made of the same material is contained in a solution 2 containing a redox counter ion that performs a reversible charge transfer reaction on the electrode, and a low-temperature medium 4 and a high-temperature medium 5 are provided between the two electrodes. A temperature difference is given, and the electrode is provided as a low-temperature electrode 1 and a high-temperature electrode 3, and a potential difference, that is, a thermoelectromotive force is generated between the two electrodes. For example, when potassium ferrocyanide and potassium ferricyanide are used as the redox pair compound and water is used as the solvent, a negative thermoelectromotive force is generated, and the following reaction occurs in the low-temperature electrode 1 and the high-temperature electrode 3. The high-temperature electrode side becomes the negative electrode and the low-temperature electrode side becomes the positive electrode.

【0003】Fe(CN)6 3- + e- → Fe(CN)
6 4- (低温電極側、正極) Fe(CN)6 4- → Fe(CN)6 3- + e- (高温
電極側、負極) ここで、低温の正極ではFe(CN)6 4-が、また高温の
負極ではFe(CN)6 3-が生成し、各々の生成物が拡散
・対流等により内部循環し、対極へ移動することにより
定常的に反応が行われ電流が流れる。このような構成の
温度差電池系においては、運転を停止させ正負極の温度
差が消失すると熱起電力も消失し、電力を取り出すこと
は不可能であった。また、上記の系のように溶媒として
水が使用されているため、高温電極側温度を100℃以
上の高温にできないという欠点を有していた。
[0003] Fe (CN) 6 3- + e - → Fe (CN)
6 4- (cold electrode side, a positive electrode) Fe (CN) 6 4- → Fe (CN) 6 3- + e - ( hot electrode side, the negative electrode) wherein the 4- Fe (CN) 6 at a low temperature of the positive electrode In the case of a high-temperature negative electrode, Fe (CN) 6 3- is generated, and each product circulates internally by diffusion, convection, etc., and moves to the counter electrode, whereby a steady reaction occurs and a current flows. In the temperature difference battery system having such a configuration, when the operation is stopped and the temperature difference between the positive and negative electrodes disappears, the thermoelectromotive force also disappears, and it is impossible to extract power. In addition, since water is used as a solvent as in the above system, there is a disadvantage that the high-temperature electrode side temperature cannot be increased to 100 ° C. or higher.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来のレド
ックス温度差電池が蓄電機能を装備しておらず、高温で
の使用が困難であるという問題点を解決するため、高温
側電極及び低温側電極で生成するそれぞれのレドックス
対が溶融状態で配置され、さらにイオン伝導性固体電解
質を配置することにより前記レドックス対を蓄積させ、
その濃度差を保持し濃度差電池を形成させることによ
り、温度差がある時の常用発電機能に加え、蓄電機能を
付与することにより温度差消失時の放電機能を備えた蓄
電型温度差電池を提供するものである。
SUMMARY OF THE INVENTION In order to solve the problem that the conventional redox temperature difference battery does not have a power storage function and is difficult to use at a high temperature, the present invention provides a high-temperature side electrode and a low-temperature electrode. Each redox pair generated at the side electrode is arranged in a molten state, and further, the redox pair is accumulated by disposing an ion-conductive solid electrolyte,
By holding the concentration difference and forming a concentration difference battery, in addition to a normal power generation function when there is a temperature difference, by providing a power storage function, a storage type temperature difference battery having a discharge function when the temperature difference disappears is provided. To provide.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は、異なる温度に配置された高温電極及び低温
電極の間に、酸化還元電位が温度によって変化するハロ
ゲンイオンを陰イオンとするレドックス対化合物が溶融
状態で配置され、さらに前記レドックス対を透過しない
ハロゲンイオン伝導性固体電解質が配置された温度差電
池であって、前記ハロゲンイオン伝導性固体電解質と高
温電極、及びハロゲンイオン伝導性固体電解質と低温電
極との間に2つの放電電極を配置したことを特徴とする
蓄電型温度差電池である。さらに詳細にいえば、本発明
の蓄電型温度差電池では、酸化還元電位が温度によって
変化するレドックス対化合物を融点以上の温度に設定さ
れた高温側電極と低温側電極との間に溶融状態で配置す
ると熱起電力を生じることを利用し、この高温側電極及
び低温側電極で生成するそれぞれのレドックス対を蓄積
させ、その濃度差を拡大させ、濃度差電池を形成させて
おくことにより、イオン伝導性固体電解質と高低温電極
間に置かれた2つの放電電極で、温度差がある時の常用
発電機能、蓄電機能及び温度差消失時の放電機能を発現
させることを特徴とする。さらに本電池系では、水等の
溶媒を使用しないことから、高温での使用が可能である
ことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for forming a halo between a high-temperature electrode and a low-temperature electrode arranged at different temperatures, the oxidation-reduction potential of which varies with temperature.
A redox pair compound having a gen ion as an anion is disposed in a molten state and further does not pass through the redox pair.
A temperature difference battery in which a halogen ion conductive solid electrolyte is disposed, wherein two discharge electrodes are disposed between the halogen ion conductive solid electrolyte and the high temperature electrode, and between the halogen ion conductive solid electrolyte and the low temperature electrode. It is a storage type temperature difference battery characterized by the following. More specifically, in the energy storage type temperature difference battery of the present invention, the redox pair compound whose oxidation-reduction potential changes with temperature is melted between the high-temperature side electrode and the low-temperature side electrode set at a temperature equal to or higher than the melting point. By utilizing the fact that a thermoelectromotive force is generated when arranged, the respective redox pairs generated by the high-temperature side electrode and the low-temperature side electrode are accumulated, the concentration difference is enlarged, and a concentration difference battery is formed. The two discharge electrodes disposed between the conductive solid electrolyte and the high and low temperature electrodes are characterized by exhibiting a normal power generation function when there is a temperature difference, a power storage function, and a discharge function when the temperature difference disappears. Further, the present battery system is characterized in that it can be used at a high temperature because a solvent such as water is not used.

【0006】[0006]

【作用】本発明の蓄電型温度差電池について図面を参照
して以下詳細に説明する。
The power storage type temperature difference battery of the present invention will be described below in detail with reference to the drawings.

【0007】図1は、本発明の蓄電型温度差電池の構成
を示したものであり、低温媒体4及び高温媒体5により
レドックス対化合物の融点以上で温度差を持って加熱さ
れた低温電極1及び高温電極3の間に酸化還元電位が温
度によって変化する溶融状態のレドックス対化合物12
及び前記レドックス対を透過しないイオン伝導性固体電
解質6が配置され、さらにイオン伝導性固体電解質6と
高低温電極間に低温域側放電電極7及び低温域側放電電
極8が配置されている。
FIG. 1 shows the configuration of a storage battery of the present invention. The low-temperature electrode 1 is heated by a low-temperature medium 4 and a high-temperature medium 5 with a temperature difference higher than the melting point of redox compound. Between the redox and the compound 12 in which the oxidation-reduction potential changes between temperature and the high-temperature electrode 3 depending on the temperature
In addition, an ion conductive solid electrolyte 6 that does not pass through the redox pair is disposed, and a low temperature region side discharge electrode 7 and a low temperature region side discharge electrode 8 are disposed between the ion conductive solid electrolyte 6 and the high and low temperature electrodes.

【0008】まず、イオン伝導性固体電解質6と高低温
電極間の低温域9及び高温域10にそれぞれレドックス
対の濃度が等しい溶融状態のレドックス対化合物12を
入れると、高温電極3及び低温電極1間に温度差に比例
する起電力が生起される。ここで、低温域側放電電極7
及び高温域側放電電極8間を開放状態とし、高温電極3
及び低温電極1を接続すると、以下に述べる反応に従っ
て電流が流れる。即ち、熱起電力が正の場合、レドック
ス対化合物を一般式MLZ、MLZ+nで表わすと、溶融状
態ではこのレドックス対化合物はZ価及び(Z+n)価
の陽レドックスイオン対(MZ+、MZ+n)及び1価の陰
イオン(L-)に電荷分離し、それぞれの電極3及び1
上で、 MZ+ → M(Z+n)+ + ne- 低温電極 ・・・(1) M(Z+n)+ + ne- → MZ+ 高温電極 ・・・(2) で示される反応が進行し電流が流れるのである。ここで
本発明の蓄電型温度差電池系では、レドックス対を透過
せず、L-イオンのみを透過するイオン伝導性固体電解
質を設けているために、低温側の電極上ではMZ+の消費
と共に、M(Z+n)+が蓄積され、高温側の電極上ではM
(Z+n)+の消費と共にMZ+が蓄積され、両電極におけるM
Z+、M(Z+n)+のそれぞれの濃度差は拡大する。このよう
にレドックス対を透過しないイオン伝導性固体電解質を
設けることにより、低温側電極ではM (Z+n)+、高温側電
極ではMZ+の濃度が増大し、この濃度差を保持させてお
くことが可能となる。
First, the ion conductive solid electrolyte 6 and the high and low temperature
Redox in low temperature area 9 and high temperature area 10 between electrodes
Redox versus Compound 12 in molten state with equal concentration of pairs
When inserted, it is proportional to the temperature difference between high-temperature electrode 3 and low-temperature electrode 1.
An electromotive force is generated. Here, the low-temperature side discharge electrode 7
And the high-temperature region side discharge electrode 8 is opened, and the high-temperature electrode 3
When the low-temperature electrode 1 is connected, the reaction described below is performed.
Current flows. That is, if the thermoelectromotive force is positive,
Compound with the general formula MLZ, MLZ + nWhen expressed as
In this form, the redox pair compound has a Z valence and a (Z + n) valence
Positive redox ion pair (MZ +, MZ + n) And monovalent shade
Ion (L-) To separate the electrodes 3 and 1
Above, MZ + → M(Z + n) + + Ne- Low temperature electrode ・ ・ ・ (1) M(Z + n) + + Ne- → MZ + High-temperature electrode: The reaction shown in (2) proceeds and current flows. here
In the storage type temperature difference battery system of the present invention, the redox pair
Without, L-Ion-conductive solid electrolysis that transmits only ions
Quality on the cold side electrodeZ +Consumption of
With M(Z + n) +Accumulates and M on the hot side electrode
(Z + n) +M with consumption ofZ +Accumulates and M at both electrodes
Z +, M(Z + n) +The density difference of each increases. like this
Ionic conductive solid electrolyte that does not permeate the redox couple
By providing the low-temperature side electrode, M (Z + n) +, High temperature side power
M at the poleZ +Increases, and this concentration difference is maintained.
It becomes possible.

【0009】これら両極域における濃度差は、温度差に
起因する高低温電極間の起電力が0Vとなるまで拡大
し、充電反応はここで完了する。
The concentration difference between these two polar regions is increased until the electromotive force between the high and low temperature electrodes due to the temperature difference becomes 0 V, and the charging reaction is completed here.

【0010】次に高低温電極間に温度差がある時の常用
発電方法は、図2にその原理を示すように、高低温電極
間を接続したままで、2つの放電電極間、すなわち低温
域側放電電極7と高温域側放電電極8との間に負荷11
を接続すればよい。ここで、イオン伝導性固体電解質6
を挟んだ2つの放電電極間の距離は、出来るだけ短い方
が好ましく、2つの放電電極が電気的に絶縁されていれ
ばイオン伝導性固体電解質と接していても差し支えな
い。このように放電電極間の距離を短くすることによっ
て、放電電極間の温度差を極めて小さくすることが可能
となる。従って、放電電極間には、前記高低温電極間の
接続により作り出された低温域側放電電極7と高温域側
放電電極8におけるレドックス対の濃度差に起因する起
電力が発現し、常用発電が可能となる。常用発電状態に
おけるレドックス対の反応は、図2に示されるように、
低温域側放電電極7では、 M(Z+n)+ + ne- → MZ+ ・・・(3) の反応が、高温域側放電電極8では、 MZ+ → M(Z+n)+ + ne- ・・・(4) の反応が、各領域における濃度差が消失する方向に反応
が進行し、発電が行われる。
Next, a conventional power generation method when there is a temperature difference between the high and low temperature electrodes, as shown in FIG. Load 11 between the side discharge electrode 7 and the high temperature range side discharge electrode 8.
Should be connected. Here, the ion conductive solid electrolyte 6
The distance between the two discharge electrodes sandwiching is preferably as short as possible. If the two discharge electrodes are electrically insulated, they may be in contact with the ion-conductive solid electrolyte. By reducing the distance between the discharge electrodes in this way, it is possible to make the temperature difference between the discharge electrodes extremely small. Therefore, an electromotive force is generated between the discharge electrodes due to the concentration difference of the redox pair between the low-temperature side discharge electrode 7 and the high-temperature side discharge electrode 8 created by the connection between the high and low temperature electrodes. It becomes possible. The reaction of the redox couple in the normal power generation state is shown in FIG.
In the low temperature zone side discharge electrodes 7, M (Z + n) + + ne - reaction → M Z + ··· (3) is, in the high temperature region side discharge electrodes 8, M Z + → M ( Z + n) + + ne - reaction of (4) is reacted in a direction density difference in each region disappears proceeds, power generation is performed.

【0011】一方、低温電極1及び高温電極3では、形
成された濃度差を維持する方向に、(1)及び(2)式の反応
が進行する。ここで、常用発電状態における低温域9及
び高温域10における濃度差は、負荷11の接続されて
いる放電電極間の(3)及び(4)式の反応が律速となってい
るため、充電初期の濃度差が維持される。このように、
高温媒体5及び低温媒体4により、高温電極3及び低温
電極1の温度差が維持されている限り、(1)〜(4)式の反
応が定常的に進行し、定常発電が可能となる。また、こ
の濃度差が保持されることにより、蓄電機能を発現させ
ることが可能となる。
On the other hand, in the low-temperature electrode 1 and the high-temperature electrode 3, the reactions of the equations (1) and (2) proceed in a direction to maintain the formed concentration difference. Here, the concentration difference between the low-temperature region 9 and the high-temperature region 10 in the normal power generation state is determined by the reaction of the equations (3) and (4) between the discharge electrodes to which the load 11 is connected. Is maintained. in this way,
As long as the temperature difference between the high-temperature electrode 3 and the low-temperature electrode 1 is maintained by the high-temperature medium 5 and the low-temperature medium 4, the reactions represented by the equations (1) to (4) progress steadily, and steady power generation becomes possible. In addition, by maintaining this concentration difference, it becomes possible to develop a power storage function.

【0012】次に、高低温電極間の温度差が消失したと
き、ただちに高低温電極間の接続を切り放し、開放状態
とすればよく、こうすることにより(1)及び(2)式の逆反
応の停止が可能となり、(3)及び(4)式の反応が、低温域
9及び高温域10におけるレドックス対濃度が等しくな
るまで放電が可能となる。
Next, when the temperature difference between the high and low temperature electrodes has disappeared, the connection between the high and low temperature electrodes may be immediately disconnected and the connection may be made to be in an open state, whereby the reverse reaction of the equations (1) and (2) is performed. Can be stopped, and the reactions of the equations (3) and (4) can be discharged until the redox-to-concentration in the low temperature region 9 and the high temperature region 10 become equal.

【0013】以上述べた様に、本発明の蓄電型温度差電
池は、温度差がある時の常用発電機能及び蓄電機能、さ
らに温度差消失時の放電機能を備えている。
As described above, the power storage type temperature difference battery of the present invention has a normal power generation function and a power storage function when there is a temperature difference, and a discharge function when the temperature difference disappears.

【0014】本発明の蓄電型温度差電池に使用するレド
ックス対は従来のレドックス温度差電池に慣用の正又は
負の熱起電力を発生するものの利用が可能であり、得ら
れる熱起電力の絶対値が大きいものが好ましい。例え
ば、Fe2+/Fe3+,Cu+/Cu2+,Te2+/T
4+,Hg+/Hg2+,Sn2+/Sn4+等のレドックス
対が好適に使用される。またこれらのレドックス対イオ
ンを用いて化合物を構成するための陰イオンとして、C
-,Br-等のハロゲンイオンが好適に用いられる。本
発明の電池系はこれらのみに限定されるものではなく、
熱起電力を発生し、加熱により溶融塩を形成し得るレド
ックス対化合物であれば如何なるものであってもよい。
The redox pair used in the storage type temperature difference battery of the present invention can generate and use a conventional redox temperature difference battery that generates a positive or negative thermoelectromotive force. Those having a large value are preferred. For example, Fe 2+ / Fe 3+ , Cu + / Cu 2+ , Te 2+ / T
Redox pairs such as e 4+ , Hg + / Hg 2+ , Sn 2+ / Sn 4+ are preferably used. Further, as an anion for constituting a compound using these redox counter ions, C.I.
l -, Br - halogen ion and the like are suitably used. The battery system of the present invention is not limited to only these,
Any redox couple that can generate a thermoelectromotive force and form a molten salt upon heating can be used.

【0015】また、本発明ではレドックス対化合物の所
望温度での溶融塩を得るために、塩化アルミニウム等の
一般に溶融塩電解等で使用される添加剤を加えてもよ
い。
In the present invention, in order to obtain a molten salt of the redox compound at a desired temperature, an additive such as aluminum chloride generally used in molten salt electrolysis may be added.

【0016】また、レドックス対を蓄積させるためのイ
オン伝導性固体電解質としては、レドックス対イオンが
通過せず、ハロゲンイオン伝導性を有するPbCl2
固体電解質、SrCl2系固体電解質、BaCl2系固体
電解質、PbBr2系固体電解質、SrBr2系固体電解
質等を用いればよい。
The ion-conductive solid electrolytes for accumulating redox pairs include PbCl 2 -based solid electrolytes, SrCl 2 -based solid electrolytes, and BaCl 2 -based solid electrolytes that do not allow redox counter ions to pass through and have halogen ion conductivity. An electrolyte, a PbBr 2 -based solid electrolyte, an SrBr 2 -based solid electrolyte, or the like may be used.

【0017】本発明に用いる放電電極は、レドックス対
イオン以外の前記イオン伝導性固体電解質6を通過する
イオン種の通過を阻害しない構造となっていることが好
ましく、低電気抵抗を有する多孔性金属、多孔性カーボ
ン、網構造の金属シート等を用いることが出来る。ま
た、前記イオン伝導性固体電解質の両表面に金属を蒸着
等により接合してこれを放電電極としてもよい。但し、
本発明に用いる放電電極は前記の材料に限定される事無
く、低電気抵抗でレドックス対以外のイオン種の通過を
阻害しなければよい。
The discharge electrode used in the present invention preferably has a structure that does not hinder the passage of ionic species other than the redox counter ion that passes through the ion-conductive solid electrolyte 6, and is a porous metal having a low electric resistance. , Porous carbon, a metal sheet having a net structure, or the like can be used. Further, a metal may be bonded to both surfaces of the ion-conductive solid electrolyte by vapor deposition or the like, and this may be used as a discharge electrode. However,
The discharge electrode used in the present invention is not limited to the above-mentioned materials, and may be a material having low electric resistance and not obstructing passage of ionic species other than a redox pair.

【0018】本発明に用いる高低温電極用材料について
は、特に制限はなく導電性の良い金属材料、カーボン材
料等の集電機能を有するものであればいずれも使用可能
である。
The material for the high and low temperature electrode used in the present invention is not particularly limited, and any material having a current collecting function, such as a metal material or a carbon material having good conductivity can be used.

【0019】[0019]

【実施例】以下、実施例により本発明をさらに具体的に
説明するが、本発明はこれにより限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0020】実施例1 図1に示されるように、中央部にイオン伝導性固体電解
質6として、厚さ0.1mmのBaCl2系固体電解質
を、その両側に80メッシュの白金鋼性の低温域側放電
電極7及び高温域側放電電極8を、レドックス対化合物
12としてCuClとCuCl2の等モル化合物を配置
し、さらにその外側に厚さ0.1mmの白金板を低温電
極1及び高温電極3として配置した。ここで、低温域側
放電電極7、高温域側放電電極8、低温電極1及び高温
電極3の断面積は、2.25cm 2(1.5×1.5c
m)とし、イオン伝導性固体電解質6と低温域側放電電
極7及びイオン伝導性固体電解質6と高温域側放電電極
8を接触させ、低温域側放電電極7と低温電極1との間
隔を1mm、高温域側放電電極8と高温電極3との間隔
を1mmとして、レドックス対化合物はそれぞれ0.2
25cm3(1.5×1.5×0.1cm)とした。
Example 1 As shown in FIG.
As quality 6, BaCl having a thickness of 0.1 mmTwoBased solid electrolyte
And a low-temperature side discharge of 80 mesh platinum steel on both sides
The electrode 7 and the high-temperature-side discharge electrode 8 are connected to a redox-compound
CuCl and CuCl as 12TwoArrange equimolar compounds of
And a 0.1 mm thick platinum plate on the outside
It was arranged as pole 1 and hot electrode 3. Where the low-temperature side
Discharge electrode 7, high temperature side discharge electrode 8, low temperature electrode 1, and high temperature
The cross-sectional area of the electrode 3 is 2.25 cm Two(1.5 × 1.5c
m), the ion-conductive solid electrolyte 6 and the low-temperature side discharge
Electrode 7 and ion-conductive solid electrolyte 6 and high-temperature side discharge electrode
8 between the low-temperature region side discharge electrode 7 and the low-temperature electrode 1
The distance between the high-temperature region side discharge electrode 8 and the high-temperature electrode 3 is 1 mm.
Is 1 mm, redox vs. compound is 0.2
25cmThree(1.5 × 1.5 × 0.1 cm).

【0021】次に低温電極1及び高温電極3の温度がそ
れぞれ500℃及び800℃となるように、低温媒体4
及び高温媒体5(本実施例では熱空気を用いた)で温度
制御を行った。この時、銅イオンレドックス対は正の起
電力を示し、低温電極1側が負極、高温電極3側が正極
となり、150mVの起電力を生じた。まず、この起電
力を利用し初期充電を行う。低温域側放電電極7と高温
域側放電電極8を開放状態とし、低温電極1と高温電極
3を接続すると急激に電流が流れ、低温域9ではCu2+
が蓄積され、高温域10ではCu+が蓄積され、両領域
での濃度差が拡大し、数分後に低温電極1及び高温電極
3の起電力は0Vとなった。一方、この初期充電過程に
おける低温域側放電電極7と高温域側放電電極8の開放
起電力は、充電時間と共に急激に増加し、低温電極1と
高温電極3の起電力が0Vとなった時点で138mVま
で上昇した。次に、定常発電状態とするため、低温電極
1及び高温電極3を接続したまま、定電流放電を行った
ところ、10mAの定電流放電では低温域側放電電極7
と高温域側放電電極8間の電圧は115mVの一定電圧
値を示し、その後20mAの定電流放電では92mVの
一定電圧値を示し、定常発電していることを確認した。
さらに、低温電極1及び高温電極3を500℃に設定
し、両電極間の温度差を消失させると同時に低温電極1
及び高温電極3を開放状態とし、低温域側放電電極7と
高温域側放電電極8間で引き続き20mAの放電を継続
したところ、2.5hの放電が継続され、温度差消失後
も50mAhの容量を有していることが明らかとなっ
た。
Next, the low-temperature medium 4 is set so that the temperatures of the low-temperature electrode 1 and the high-temperature electrode 3 become 500 ° C. and 800 ° C., respectively.
The temperature was controlled with the high-temperature medium 5 (in this embodiment, hot air was used). At this time, the copper ion redox pair showed a positive electromotive force, the low-temperature electrode 1 side became a negative electrode, and the high-temperature electrode 3 side became a positive electrode, and an electromotive force of 150 mV was generated. First, initial charging is performed using this electromotive force. The low temperature range side discharge electrode 7 and the high-temperature region side discharge electrodes 8 and an open state, connecting the low-temperature electrode 1 and the hot electrode 3 a current rapidly flows, the low temperature zone 9 Cu 2+
Was accumulated, Cu + was accumulated in the high-temperature region 10, and the concentration difference between the two regions was increased. After a few minutes, the electromotive force of the low-temperature electrode 1 and the high-temperature electrode 3 became 0V. On the other hand, the open electromotive force of the low-temperature side discharge electrode 7 and the high-temperature area side discharge electrode 8 in this initial charging process increases rapidly with the charging time, and when the electromotive force of the low-temperature electrode 1 and the high-temperature electrode 3 becomes 0V. To 138 mV. Next, constant-current discharge was performed with the low-temperature electrode 1 and the high-temperature electrode 3 connected to obtain a steady power generation state.
The voltage between the discharge electrode 8 and the high-temperature region side discharge electrode 8 showed a constant voltage value of 115 mV, and then a constant current discharge of 20 mA showed a constant voltage value of 92 mV.
Further, the low-temperature electrode 1 and the high-temperature electrode 3 are set at 500 ° C. so that the temperature difference between the two electrodes disappears,
When the high-temperature electrode 3 is opened and the discharge of 20 mA is continued between the low-temperature-area discharge electrode 7 and the high-temperature-area discharge electrode 8, the discharge of 2.5 h is continued and the capacity of 50 mAh is maintained even after the temperature difference disappears. It became clear that it had.

【0022】以上の結果より、本発明の蓄電型温度差電
池は温度差がある時の常用発電機能、蓄電機能及び温度
差消失後の放電機能を有する電池であることが分かっ
た。
From the above results, it was found that the storage type temperature difference battery of the present invention was a battery having a normal power generation function when there was a temperature difference, a power storage function, and a discharge function after the temperature difference disappeared.

【0023】[0023]

【発明の効果】本発明の電池は、高温電極及び低温電極
の間に溶融状態のレドックス対化合物を充填させ、イオ
ン伝導性固体電解質及び2つの放電電極を設けることに
より、温度差がある時の定常発電機能、蓄電機能と温度
差消失時の放電機能を有しており、排熱利用用途、コジ
ェネレーション用途のバックアップ電源として極めて有
用である。
The battery of the present invention is filled with a redox couple in a molten state between a high-temperature electrode and a low-temperature electrode, and provided with an ion-conductive solid electrolyte and two discharge electrodes. It has a steady-state power generation function, a power storage function, and a discharge function when the temperature difference disappears, and is extremely useful as a backup power supply for exhaust heat utilization and cogeneration.

【0024】また、本発明では従来の水溶液系の温度差
電池に比較してはるかに大きい温度差を得ることがで
き、これにより大きな起電力を得ることが可能となっ
た。
Further, in the present invention, a much larger temperature difference can be obtained as compared with a conventional aqueous solution type temperature difference battery, and thus a large electromotive force can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる蓄電型温度差電池の一構成例を
示す概念図である。
FIG. 1 is a conceptual diagram showing a configuration example of a storage type temperature difference battery according to the present invention.

【図2】本発明に係わる蓄電型温度差電池の常用発電原
理を示す概念図である。
FIG. 2 is a conceptual diagram showing a normal power generation principle of a power storage type temperature difference battery according to the present invention.

【図3】従来型温度差電池の一構成例を示す概念図であ
る。
FIG. 3 is a conceptual diagram showing a configuration example of a conventional temperature difference battery.

【符号の説明】[Explanation of symbols]

1 低温電極 2 レドックス対含有溶液 3 高温電極 4 低温媒体 5 高温媒体 6 イオン伝導性固体電解質 7 低温域側放電電極 8 高温域側放電電極 9 低温域 10 高温域 11 負荷 12 溶融レドックス対化合物 DESCRIPTION OF SYMBOLS 1 Low temperature electrode 2 Redox pair containing solution 3 High temperature electrode 4 Low temperature medium 5 High temperature medium 6 Ion conductive solid electrolyte 7 Low temperature region side discharge electrode 8 High temperature region side discharge electrode 9 Low temperature region 10 High temperature region 11 Load 12 Melting redox pair compound

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 14/00 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 14/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 異なる温度に配置された高温電極及び低
温電極の間に、酸化還元電位が温度によって変化する
ロゲンイオンを陰イオンとするレドックス対化合物が溶
融状態で配置され、さらに前記レドックス対を透過しな
ハロゲンイオン伝導性固体電解質が配置された温度差
電池であって、前記ハロゲンイオン伝導性固体電解質と
高温電極、及びハロゲンイオン伝導性固体電解質と低温
電極との間に2つの放電電極を配置したことを特徴とす
る蓄電型温度差電池。
Between 1. A different temperatures arranged the hot electrode and the cold electrode, Ha redox potential varies with temperature
A temperature difference battery in which a redox pair compound having a logen ion as an anion is disposed in a molten state, and a halogen ion conductive solid electrolyte that does not pass through the redox pair is disposed, wherein the halogen ion conductive solid electrolyte and a high-temperature electrode are disposed. And an energy storage type temperature difference battery comprising two discharge electrodes disposed between a halogen ion conductive solid electrolyte and a low temperature electrode.
JP20610593A 1993-08-20 1993-08-20 Storage type temperature difference battery Expired - Lifetime JP3351442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20610593A JP3351442B2 (en) 1993-08-20 1993-08-20 Storage type temperature difference battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20610593A JP3351442B2 (en) 1993-08-20 1993-08-20 Storage type temperature difference battery

Publications (2)

Publication Number Publication Date
JPH0757789A JPH0757789A (en) 1995-03-03
JP3351442B2 true JP3351442B2 (en) 2002-11-25

Family

ID=16517888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20610593A Expired - Lifetime JP3351442B2 (en) 1993-08-20 1993-08-20 Storage type temperature difference battery

Country Status (1)

Country Link
JP (1) JP3351442B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101078304B1 (en) * 2010-05-10 2011-10-31 동국대학교 산학협력단 Thermoelectric transformation device using solvation materials

Also Published As

Publication number Publication date
JPH0757789A (en) 1995-03-03

Similar Documents

Publication Publication Date Title
EP0595688B1 (en) Temperature difference storage battery
Zhang et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power
Peljo et al. Towards a thermally regenerative all-copper redox flow battery
CA1168698A (en) Energy conversion and storage process
US8911895B2 (en) All solid state rechargeable oxide-ion battery (ROB) system
CN107978766A (en) A kind of three-decker formula single cell of thermo battery
US5487790A (en) Electric power generating element
US20160049707A1 (en) Intermediate temperature alkali metal/oxygen batteries employing molten nitrate electrolytes
Vassel et al. Electrochemical way of converting low-grade heat energy into electricity based on crystalline hydrate melting and crystallization
JPH05275107A (en) Thermal regeneration fuel cell
JP3351442B2 (en) Storage type temperature difference battery
Bae et al. Take it to the Carnot limit: perspectives and thermodynamics of dual-cell electrochemical heat engines
JP2703685B2 (en) Storage type temperature difference battery
JP3082884B2 (en) Storage type temperature difference battery
Matsui et al. Electrochemical cell recharging by solvent separation and transfer processes
Hammond et al. An electrochemical heat engine for direct solar energy conversion
CN111244560B (en) Double metal electrode secondary battery
Hirai et al. Charge and discharge characteristics of thermochargeable galvanic cells with an [Fe (CN) 6] 4−/[Fe (CN) 6] 3− redox couple
US4090012A (en) Electrochemical heat engine
Takada et al. Lithium ion conductive glass and its application to solid state batteries
JP6732227B2 (en) Thermochemical battery
JP3142093B2 (en) Storage type temperature difference battery
Jain et al. Solid electrolytes: Advances in science and technology
USH1449H (en) Thermal battery cells containing novel cathode materials in an oxyanionic electrolyte
JP3082886B2 (en) Power storage type temperature difference battery power generation system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10