JP3350605B2 - Method for producing polylactic acid - Google Patents

Method for producing polylactic acid

Info

Publication number
JP3350605B2
JP3350605B2 JP02092795A JP2092795A JP3350605B2 JP 3350605 B2 JP3350605 B2 JP 3350605B2 JP 02092795 A JP02092795 A JP 02092795A JP 2092795 A JP2092795 A JP 2092795A JP 3350605 B2 JP3350605 B2 JP 3350605B2
Authority
JP
Japan
Prior art keywords
polylactic acid
polymerization
lactide
melt
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02092795A
Other languages
Japanese (ja)
Other versions
JPH08193123A (en
Inventor
英雄 吉留
良明 平井
義和 近藤
仁実 小原
英一 小関
誠治 澤
康宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP02092795A priority Critical patent/JP3350605B2/en
Publication of JPH08193123A publication Critical patent/JPH08193123A/en
Application granted granted Critical
Publication of JP3350605B2 publication Critical patent/JP3350605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、衣料用並びに産業資材
用に利用できる高強力な繊維、フィルム及び溶融押し出
し成形加工体とするのに好適なポリ乳酸の製造方法に関
する。更に詳しくは、L及び/又はD−ラクチドの溶融
開環重合によるポリ乳酸の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing polylactic acid suitable for forming a high-strength fiber, film and melt-extruded product which can be used for clothing and industrial materials. More specifically, the present invention relates to a method for producing polylactic acid by melt ring-opening polymerization of L and / or D-lactide.

【0002】[0002]

【従来の技術】ポリ乳酸は、穀物発酵で生産された乳酸
からその環状二量体であるラクチドを原料とし、溶融重
合法にて製造されるものであり、安価で、無尽蔵なプラ
スチックとしてその優れた物性とともに、実用化が期待
されている。ラクチドを原料として開環重合によりポリ
乳酸が得られることはよく知られている。通常は、系中
の水分が重合開始剤として働くことも周知である。この
ような重合は錫化合物の触媒作用で促進され、一方で
は、末端部分から分子鎖が切断され再び環化することも
指摘されている。そのため、従来技術では、分子量5万
以上のポリ乳酸を取得するのは至難の技であった。例え
ば、特開平5−255488号公報によれば、10%以
上の結晶化度を有するポリ乳酸をそのガラス転移温度よ
り高く融点より低い温度で加熱処理して、分子量5万程
度のポリ乳酸を得たと開示されている。その他の解決策
として、乳酸の直接脱水重縮合反応による高分子量ポリ
乳酸の合成(特開平5−43665号公報)など、触媒
や重合方法の検討もなされてはいる。然しながら、従来
得られているポリ乳酸には、次のような問題点も知られ
ており、その解決が待たれている。 溶融成形性が悪い。 熱安定性に劣り、解重合し易い。 得られたフィルム、繊維及び成形体などは強靱性に劣
り、脆く弱い。 これらの解決には、高重合度のポリ乳酸製造処方を確立
すること、ラクチドモノマーを収率良くポリマー化し残
留モノマー量を極限迄少なくすること、更に加熱溶融時
のポリ乳酸分子鎖の切断や末端環化によるラクチドの再
生成を抑制することが効果的であると考えられる。
2. Description of the Related Art Polylactic acid is produced from lactic acid produced by grain fermentation using lactide, which is a cyclic dimer, as a raw material by a melt polymerization method, and is excellent as an inexpensive and inexhaustible plastic. It is expected to be put to practical use along with its physical properties. It is well known that polylactic acid can be obtained by ring-opening polymerization using lactide as a raw material. It is also well known that water in a system usually acts as a polymerization initiator. It has also been pointed out that such polymerization is promoted by the catalysis of a tin compound, while on the other hand, the molecular chain is cleaved from the terminal portion and cyclized again. Therefore, it was very difficult to obtain polylactic acid having a molecular weight of 50,000 or more in the conventional technology. For example, according to JP-A-5-255488, polylactic acid having a crystallinity of 10% or more is heated at a temperature higher than its glass transition temperature and lower than its melting point to obtain polylactic acid having a molecular weight of about 50,000. It is disclosed. As other solutions, studies have been made on catalysts and polymerization methods, such as synthesis of high molecular weight polylactic acid by direct dehydration polycondensation reaction of lactic acid (JP-A-5-43665). However, the following problems are also known in the conventionally obtained polylactic acid, and the solution is awaited. Poor melt moldability. Poor thermal stability and easy to depolymerize. The obtained films, fibers, molded articles, etc. are inferior in toughness, brittle and weak. To solve these problems, establish a high-polymerization degree polylactic acid production recipe, polymerize lactide monomers in high yield to minimize the amount of residual monomers, cut the molecular chains of polylactic acid during heating and melting, and terminate polylactic acid. It is considered effective to suppress the regeneration of lactide due to cyclization.

【0003】従来、ポリ乳酸の製造方法については、多
くの技術が提案されて来たが、前記課題を解決した優れ
たポリ乳酸を提供するには至っていない。特開昭63−
69825号公報には、ポリオキシエチレンジカルボン
酸との共重合による試みが開示されているが、重合度が
低く強度も弱いものしか得られていない。また、特開平
6−65360号公報には、高沸点・疎水性溶媒中で乳
酸オリゴマーを重合させ分子量6万〜18万強のポリ乳
酸が得られることが開示されている。本ポリ乳酸の物性
は、優れたものであるが溶媒を大量に要すること及びポ
リマーの精製工程が必要である点が、安価な工業生産を
目指す上でのネックとなる虞れがある。
Hitherto, many techniques have been proposed for producing polylactic acid, but there has been no way to provide an excellent polylactic acid that has solved the above-mentioned problems. JP-A-63-
Japanese Patent No. 69825 discloses an attempt by copolymerization with polyoxyethylene dicarboxylic acid, but only a polymer having a low degree of polymerization and a low strength has been obtained. JP-A-6-65360 discloses that a lactic acid oligomer is polymerized in a high boiling point and hydrophobic solvent to obtain polylactic acid having a molecular weight of 60,000 to over 180,000. Although the physical properties of the present polylactic acid are excellent, the fact that a large amount of a solvent is required and a step of purifying the polymer is required may possibly be a bottleneck in aiming at inexpensive industrial production.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、溶融
成形性と熱安定性に優れたポリ乳酸の新規な製造方法を
提供することにある。具体的には、平均分子量が10万
以上で且つ残留ラクチド量が3重量%以下のポリ乳酸の
製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel method for producing polylactic acid having excellent melt moldability and thermal stability. Specifically, it is an object of the present invention to provide a method for producing polylactic acid having an average molecular weight of 100,000 or more and a residual lactide amount of 3% by weight or less.

【0005】本発明者らは、ラクチドの開環重合法の経
済性に着目し、その重合工程や共重合処方の検討を実施
した。例えば、ポリエチレングリコールとの共重合の場
合には、分子末端のOH基が水分に代ってラクチドの開
環重合の開始剤として働き、推定構造としてポリエチレ
ングリコールの両末端にポリ乳酸連鎖が結合したブロッ
ク共重合体が得られる。然し、ブロック共重合体として
も分子量は高々10万程度に過ぎず、然も溶融粘度は紡
糸、或は射出・押出し成形のためにはなお不足である。
その理由の一つは重合生成物中に多量のラクチドが残留
することである。もう一段の重合度アップとラクチド等
の低分子量成分の減少が必要である。
The present inventors have paid attention to the economics of the ring-opening polymerization of lactide, and have studied the polymerization step and copolymerization recipe. For example, in the case of copolymerization with polyethylene glycol, the OH group at the molecular terminal acts as an initiator of ring-opening polymerization of lactide instead of moisture, and a polylactic acid chain is bonded to both ends of polyethylene glycol as a putative structure. A block copolymer is obtained. However, the molecular weight of the block copolymer is only about 100,000 at most, and the melt viscosity is still insufficient for spinning or injection / extrusion molding.
One of the reasons is that a large amount of lactide remains in the polymerization product. It is necessary to further increase the degree of polymerization and reduce low molecular weight components such as lactide.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前述の問
題点〜の根本的原因と従来技術の課題等を解析の結
果、溶融成形性に優れたポリ乳酸の新規な製造方法を見
出すに至り本発明を完成した。即ち、本発明は、L−及
び/又はD−ラクチドを重合原料とし、無機微粒子及び
/又は有機成分を結晶化核剤とし、該重合原料に対し該
結晶化核剤を0.01〜1.0重量%配合してなる重合
原料組成物を溶融重合する第1工程と、該第1工程の重
合温度から所定温度に移行させて溶融重合生成物を冷却
・固化させる第2工程と、該第2工程に続いて所定温度
に重合生成物を保持して固相重合する第3工程よりなる
ことを特徴とするポリ乳酸の製造方法である。本発明に
おいて、結晶化核剤は、第1工程の重合開始前に重合原
料に配合してもよく、第1工程途中から第2工程前迄の
適当な時期に投入しても良い。溶融重合工程ではポリ乳
酸・ラクチド・結晶化核剤の均質混合状態でのポリ乳酸
の高重合度化を達成し、冷却・固化工程では結晶化核剤
の作用により急速に固化する。そのため重合阻害要因を
排除したまま前記溶融重合工程の混合状態を保持してポ
リ乳酸ポリマーが固定されることになり、固相重合工程
ではポリ乳酸連鎖が結晶相を形成し安定化する一方、ポ
リマー末端部とラクチド等の未反応低分子成分を非晶相
に凝縮せしめ、非晶相での末端基と低分子量成分との反
応機会を増大することにより更に一段のポリ乳酸の重合
を促進させるものである。勿論、重合原料組成物中に
は、錫化合物で代表される各種のラクチド重合触媒を含
ませることが出来る。本発明にいう結晶化核剤にはラク
チド重合触媒を含ませてはいないが、重合触媒作用に加
えて結晶化核剤効果を有するラクチド重合触媒の使用は
とりわけ有効である。本発明において、重合原料である
ラクチドの光学純度が低い場合には、得られたポリ乳酸
の結晶性が低下するため、上記工程における結晶化核剤
による結晶相形成に対する効果が得られない。従って、
重合原料におけるL/DまたはD/Lラクチドのモル比
は0.1〜0.01の範囲内であることが望ましい。
Means for Solving the Problems The present inventors have analyzed the fundamental causes of the above problems 1 to 5 and the problems of the prior art, and as a result, have found a novel method for producing polylactic acid having excellent melt moldability. The present invention has been completed. That is, in the present invention, L- and / or D-lactide is used as a polymerization raw material, inorganic fine particles and / or an organic component is used as a crystallization nucleating agent, and the crystallization nucleating agent is used in an amount of 0.01 to 1. A first step of melt-polymerizing the polymerization raw material composition containing 0% by weight; a second step of shifting the polymerization temperature of the first step to a predetermined temperature to cool and solidify the molten polymerization product; A method for producing polylactic acid, comprising a third step of performing solid phase polymerization while maintaining the polymerization product at a predetermined temperature, following the two steps. In the present invention, the crystallization nucleating agent may be added to the polymerization raw material before the start of the polymerization in the first step, or may be added at an appropriate time from the middle of the first step to before the second step. In the melt polymerization step, the degree of polymerization of the polylactic acid in a homogeneously mixed state of polylactic acid, lactide and crystallization nucleating agent is achieved, and in the cooling / solidification step, the crystallization nucleating agent rapidly solidifies. Therefore, the polylactic acid polymer will be fixed while maintaining the mixed state of the melt polymerization step while eliminating the polymerization inhibition factors, and in the solid phase polymerization step, the polylactic acid chain forms a crystal phase and is stabilized, while the polymer is stabilized. Condensation of unreacted low-molecular components such as lactide at the terminal end into an amorphous phase, and further promoting the polymerization of polylactic acid by increasing the chance of reaction between the terminal groups and low-molecular components in the amorphous phase It is. Needless to say, the polymerization raw material composition can contain various lactide polymerization catalysts represented by tin compounds. Although the crystallization nucleating agent in the present invention does not contain a lactide polymerization catalyst, the use of a lactide polymerization catalyst having a crystallization nucleating agent effect in addition to the polymerization catalysis is particularly effective. In the present invention, when the optical purity of lactide, which is a polymerization raw material, is low, the crystallinity of the obtained polylactic acid is reduced, so that the effect on the crystal phase formation by the crystallization nucleating agent in the above step cannot be obtained. Therefore,
The molar ratio of L / D or D / L lactide in the polymerization raw material is desirably in the range of 0.1 to 0.01.

【0007】第1工程にて、一般式(−O(M)−)n
で表されるポリアルキレングリコール、多価アルコール
及び環状ラクトンの中から選ばれた少なくとも1種の化
合物を配合・混練することもできる。ここで、nは正の
整数、Mはメチレン基2個以上を有する炭化水素連鎖基
で、例えば、エチレン基、プロピレン基、ブチレン基、
イソプロピレン基等を表す。多価アルコールの中には、
グリセリン、トリメチロールプロパン、1,4−シクロ
ヘキサンジメタノール、ネオペンチルグリコール等が含
まれる。環状ラクトンには、カプロラクトン、プロピオ
ラクトン、バレロラクトン、ピバロラクトン等が代表的
である。これらの材料を重合原料に配合することによっ
て、ポリ乳酸との共重合体が得られる。この共重合体は
ポリ乳酸ホモポリマーと比較して、溶融時の流動性の向
上、ポリマーの親水性の改善などの効果が期待できる。
In the first step, the general formula (-O (M)-) n
And at least one compound selected from the group consisting of polyalkylene glycols, polyhydric alcohols and cyclic lactones. Here, n is a positive integer, M is a hydrocarbon chain group having two or more methylene groups, for example, ethylene group, propylene group, butylene group,
Represents an isopropylene group or the like. Some polyhydric alcohols
Glycerin, trimethylolpropane, 1,4-cyclohexanedimethanol, neopentyl glycol and the like are included. Representative examples of the cyclic lactone include caprolactone, propiolactone, valerolactone, and pivalolactone. By blending these materials with the polymerization raw material, a copolymer with polylactic acid can be obtained. Compared with the homopolymer of polylactic acid, this copolymer can be expected to have effects such as improvement in fluidity at the time of melting and improvement in hydrophilicity of the polymer.

【0008】本発明に用いる無機微粒子としては、ポリ
乳酸中の分散性の点から、その一次粒子サイズが0.1
μm以下のものが好ましい。0.1μmより大きい無機
粒子の場合、分散性が不十分になるため結晶化促進効果
が低下するため好ましくない。このような無機微粒子と
しては金属酸化物、炭酸化物、硫酸化物、水酸化物、ハ
ロゲン化物および天然鉱物系化合物等が好ましく用いら
れる。更に具体的な例としては、酸化チタン、酸化アル
ミニウム、酸化鉄、酸化亜鉛、酸化ケイ素、炭酸カルシ
ウム、硫酸バリウム、水酸化アルミニウム、塩化ナトリ
ウム、ふっ化カルシウム、雲母、ゼオライト、カオリ
ン、クレー、タルク等を挙げることができる。これらの
成分は、ポリ乳酸及びラクチド中で室温以上の高温でも
安定に存在し、ポリ乳酸並びにラクチドの何れとも化学
反応しないものである。次に本発明に用いる有機成分で
は、溶融したポリ乳酸中で粒子サイズが0.1μm以下
の微粒子状に分散される、軟化点50℃以上の熱可塑性
合成高分子である。粒子サイズに関しては無機微粒子の
場合と同様の理由で、0.1μmより大きなサイズとな
るものは好ましくない。又、軟化点が50℃未満のもの
は、結晶化核剤としての効果が得られないのみならず、
生成したポリ乳酸中で可塑剤として働くため、ポリ乳酸
本来の特性を損なうおそれがある。このような有機成分
としては、ポリエチレン、エチレン・プロピレン共重合
体、脂肪族ポリエステル、ポリアクリル系ポリマー、ポ
リスチレン、ポリブタジエン等の合成高分子類、ステア
リン酸マグネシウム、同カルシウム等の高級脂肪酸金属
塩(炭素数8以上)、シリコーン油、高級脂肪酸と直鎖
脂肪族アルコールのエステル類、その他が含まれる。こ
れらの成分はポリ乳酸の溶融体温度(130℃以上)で
分解または化学反応せず、ポリ乳酸溶融体中に微粒子状
に分散されるものである。
The inorganic fine particles used in the present invention have a primary particle size of 0.1 from the viewpoint of dispersibility in polylactic acid.
Those having a size of μm or less are preferred. In the case of inorganic particles larger than 0.1 μm, the dispersibility becomes insufficient and the effect of promoting crystallization decreases, which is not preferable. As such inorganic fine particles, metal oxides, carbonates, sulfates, hydroxides, halides, and natural mineral compounds are preferably used. More specific examples include titanium oxide, aluminum oxide, iron oxide, zinc oxide, silicon oxide, calcium carbonate, barium sulfate, aluminum hydroxide, sodium chloride, calcium fluoride, mica, zeolite, kaolin, clay, talc, etc. Can be mentioned. These components are present in polylactic acid and lactide stably even at a high temperature of room temperature or higher, and do not chemically react with either polylactic acid or lactide. Next, the organic component used in the present invention is a thermoplastic synthetic polymer having a softening point of 50 ° C. or higher, which is dispersed in fine particles having a particle size of 0.1 μm or less in molten polylactic acid. Regarding the particle size, for the same reason as the case of the inorganic fine particles, those having a size larger than 0.1 μm are not preferable. Further, those having a softening point of less than 50 ° C. cannot not only obtain the effect as a crystallization nucleating agent, but also
Since it acts as a plasticizer in the generated polylactic acid, the inherent properties of polylactic acid may be impaired. Such organic components include synthetic polymers such as polyethylene, ethylene-propylene copolymer, aliphatic polyester, polyacrylic polymer, polystyrene and polybutadiene, and higher fatty acid metal salts such as magnesium stearate and calcium stearate (carbon 8 or more), silicone oils, esters of higher fatty acids and linear aliphatic alcohols, and others. These components are not decomposed or chemically reacted at the polylactic acid melt temperature (130 ° C. or higher) and are dispersed in fine particles in the polylactic acid melt.

【0009】前記結晶化核剤の添加量は1%以下が望ま
しい。1%を超過して添加すると、ポリ乳酸の光散乱度
を高め、不透明感を生ずる。また、溶融時の流動抵抗が
安定化せず、成形性を損なうこともあり、ポリ乳酸の改
質という本来の目的にそぐわないことがある。本結晶化
核剤が存在することにより、第2工程並びに第3工程で
のポリ乳酸の急速な固化と結晶化が促進されるが、添加
量が1%を超えると不均一な結晶成長を起こし、第3工
程の固相重合による重合度が上がりにくくなる。結晶化
核剤の添加量は少なくとも0.01%は必要である。第
1工程においてポリ乳酸が溶融重合により生成し、第2
工程にてポリ乳酸が冷却・固化する過程での結晶生成の
核剤としてはたらくもので、少なくとも0.01%の添
加を要する。即ち、結晶化核剤の配合量は、好ましくは
0.01%〜1.0%の範囲が好適である。
The amount of the crystallization nucleating agent is preferably 1% or less. When added in excess of 1%, the degree of light scattering of the polylactic acid is increased, resulting in an opaque feeling. In addition, the flow resistance at the time of melting is not stabilized, and the moldability may be impaired, which may not meet the original purpose of modifying polylactic acid. The presence of the present crystallization nucleating agent promotes rapid solidification and crystallization of polylactic acid in the second step and the third step. However, when the added amount exceeds 1%, uneven crystal growth occurs. In addition, the degree of polymerization by the solid-phase polymerization in the third step does not easily increase. The crystallization nucleating agent must be added in an amount of at least 0.01%. In the first step, polylactic acid is produced by melt polymerization,
It acts as a nucleating agent for crystal formation in the process of cooling and solidifying polylactic acid in the process, and requires at least 0.01% of addition. That is, the amount of the crystallization nucleating agent is preferably in the range of 0.01% to 1.0%.

【0010】該第1工程初期に、無機及び/又は有機成
分よりなる結晶化核剤を添加しラクチドの溶融状態下で
重合原料中に均一に分散させ重合原料組成物を調製する
ことが重要である。好ましくは、無機粒子の場合は単粒
子状の分散、有機成分の場合にはポリ乳酸との分子状混
合状態となることであるが、そのためには強制的攪拌が
効果的である。工業的に有利な方法の一つは、二軸エク
ストルーダーを使用して温度180℃〜220℃での溶
融混練工程を第1工程とすることである。
At the beginning of the first step, it is important to prepare a polymerization raw material composition by adding a crystallization nucleating agent composed of an inorganic and / or organic component and uniformly dispersing the lactide in the polymerization raw material in a molten state. is there. Preferably, inorganic particles are dispersed in a single particle state, and organic components are in a molecularly mixed state with polylactic acid. For this purpose, forced stirring is effective. One of the industrially advantageous methods is to use a twin-screw extruder at a temperature of 180 ° C. to 220 ° C. as a first step.

【0011】第2工程の温度条件の設定は、重合原料組
成毎に最適化することが所望のポリ乳酸を第3工程上り
で取得する上のキーポイントである。例えば、第1工程
の重合温度がポリ乳酸の融点より高い場合、徐冷又は急
冷して第2工程の温度範囲に調節する。該第2工程では
ラクチドの重合阻害要因を該第1工程上りの溶融重合生
成物中に取込まないことが重要で、そのためにポリ乳酸
の結晶化度を少なくとも50%以上に高めることが効果
的である。結晶化核剤の作用により溶融状態からの冷却
過程での結晶析出速度が速まり結晶化度が高まるが、第
2工程の温度範囲で昇温と冷却を繰り返す方法はさらに
有効である。第2工程の温度が70℃を下回るとポリ乳
酸の結晶化速度が極度に遅くなり、実用的な時間内に高
い結晶化度は得られない。又、160℃を超えても、結
晶化は進行するが解重合も起き、重合度低下を引き起こ
すという不利がある。第2工程の温度範囲は70℃〜1
60℃が望ましい。好ましくは、75℃〜155℃が適
当である。第3工程の温度は、ラクチド残留量と反応時
間との絡みで適宜選定出来る。第3工程の温度が100
℃を下回ると、反応速度が遅く生産性が大幅に阻害され
る。一方、第3工程の温度が150℃を超えると、反応
速度は速いので到達目標の分子量のものを短時間で得ら
れるという利点がある反面、ラクチドの残留量が多く、
通常3%を超える結果となる。好ましくは、第3工程の
温度は100℃〜150℃、更に好ましくは110℃〜
140℃の範囲である。
The setting of the temperature conditions in the second step is a key point in obtaining polylactic acid desired to be optimized for each polymerization raw material composition in the third step. For example, when the polymerization temperature of the first step is higher than the melting point of polylactic acid, the temperature is adjusted to the temperature range of the second step by slow or rapid cooling. In the second step, it is important that the polymerization inhibiting factor of lactide is not incorporated into the melt polymerization product in the first step. Therefore, it is effective to increase the crystallinity of polylactic acid to at least 50% or more. It is. The action of the crystallization nucleating agent increases the rate of crystal precipitation in the process of cooling from the molten state and increases the degree of crystallinity, but the method of repeating the temperature increase and cooling in the temperature range of the second step is more effective. If the temperature of the second step is lower than 70 ° C., the crystallization rate of polylactic acid becomes extremely slow, and a high crystallinity cannot be obtained within a practical time. Further, when the temperature exceeds 160 ° C., crystallization proceeds but depolymerization also occurs, which is disadvantageous in that the degree of polymerization is reduced. The temperature range of the second step is 70 ° C. to 1
60 ° C. is desirable. Preferably, 75 ° C to 155 ° C is appropriate. The temperature in the third step can be appropriately selected depending on the relationship between the residual amount of lactide and the reaction time. The temperature of the third step is 100
If the temperature is lower than ℃, the reaction rate is low, and productivity is largely inhibited. On the other hand, when the temperature of the third step is higher than 150 ° C., the reaction rate is high, so that the target molecular weight can be obtained in a short time, but the residual amount of lactide is large,
Usually results of more than 3%. Preferably, the temperature of the third step is from 100C to 150C, more preferably from 110C.
140 ° C. range.

【0012】第1工程から第3工程までが、連続化され
ていても夫々がバッチ式に分離されていても良い。好ま
しいことは、各工程中並びに工程間ともチッソガス等の
不活性雰囲気に保持されていることである。空気中の水
分、酸素、その他の微量ガスが重合原料組成物又は重合
生成物と反応し重合阻害を誘起するので、所望のポリ乳
酸が取得出来ないことが多い。
The first to third steps may be continuous or each may be separated in a batch manner. It is preferable that an inert atmosphere such as nitrogen gas be maintained during each step and between steps. Since water, oxygen, and other trace gases in the air react with the polymerization raw material composition or the polymerization product to induce polymerization inhibition, a desired polylactic acid cannot be obtained in many cases.

【0013】[0013]

【作用】第1工程で均一分散された微粒子状の結晶化核
剤の作用により、第2工程での結晶化が促進され急速な
固化が達成される。その結果、重合生成物への重合阻害
成分の混入を排除され、然も、非晶領域にポリ乳酸分子
末端とラクチド等の未反応低分子成分が凝縮され、該領
域での固相重合が進行し易くなる。該固相重合によりラ
クチド等の低分子量成分が減少すると共に、溶融重合上
りから更に一段と高重合度化が達成される。該工程の適
用により、重量平均分子量10万以上で、低分子量成分
ラクチドの含有率が3%未満であるポリ乳酸が得られ
る。
The crystallization nucleating agent in the form of fine particles uniformly dispersed in the first step promotes crystallization in the second step and achieves rapid solidification. As a result, the contamination of the polymerization product with the polymerization-inhibiting component is eliminated, and naturally, unreacted low-molecular components such as polylactic acid molecular terminals and lactide are condensed in the amorphous region, and solid-phase polymerization proceeds in this region. Easier to do. The low-molecular-weight components such as lactide are reduced by the solid-phase polymerization, and the degree of polymerization is further increased from the melt polymerization. By applying this step, polylactic acid having a weight average molecular weight of 100,000 or more and a low molecular weight component lactide content of less than 3% can be obtained.

【0014】[0014]

【実施例】【Example】

(実施例1)L−ラクチド1000重量部に対し、平均
一次粒子径0.05μmの炭酸カルシウム1部と触媒と
してオクチル酸錫とを窒素気流で内部雰囲気を置換され
た溶融重合釜に投入し、攪拌しながら該重合釜の温度を
200℃に昇温し、該温度で3時間保持した。次いで、
第2工程として前記重合釜温度を140℃まで1時間か
けて降温した。該第2工程では重合釜内容物は固化し結
晶化するので、攪拌は停止した。140℃で更に1時間
保持し結晶化を促進させた後、130℃まで10分以内
の短時間で冷却した。続く第3工程では、130℃で5
時間重合釜内容物を保持した。該第3工程終了後、室温
まで冷却し、反応釜内容物を取り出し、ポリマーの性状
を分析した。表1の分析結果が示すように、得られたポ
リ乳酸は、重量平均分子量15万、低分子量成分が1.
5%の高重合度品であった。表1の比較例No.1−5
は、第1工程にて炭酸カルシウムを添加せず、他の工程
条件は同一として重合したものである。炭酸カルシウム
に代えて、微粒子シリカ、ステアリン酸マグネシウム、
ポリエチレン微小粉末を添加したものをそれぞれ、N
o.1−2、No.1−3、No.1−4としている。
なお、低分子量成分をFT−NMRで分析した所、原料
ラクチドが主成分となっていた。
(Example 1) To 1000 parts by weight of L-lactide, 1 part of calcium carbonate having an average primary particle diameter of 0.05 µm and tin octylate as a catalyst were charged into a melt polymerization vessel whose internal atmosphere was replaced by a nitrogen stream, While stirring, the temperature of the polymerization vessel was raised to 200 ° C., and the temperature was maintained for 3 hours. Then
As a second step, the temperature of the polymerization vessel was lowered to 140 ° C. over 1 hour. In the second step, the contents of the polymerization vessel were solidified and crystallized, so that the stirring was stopped. After holding at 140 ° C. for another 1 hour to promote crystallization, it was cooled to 130 ° C. in a short time within 10 minutes. In the subsequent third step, 130 ° C. and 5
The contents of the polymerization kettle were held for a period of time. After the completion of the third step, the content was cooled to room temperature, the content in the reaction vessel was taken out, and the properties of the polymer were analyzed. As shown in the analysis results in Table 1, the obtained polylactic acid had a weight average molecular weight of 150,000 and a low molecular weight component of 1.
The product had a high degree of polymerization of 5%. Comparative Example No. 1 in Table 1. 1-5
Was obtained by adding calcium carbonate in the first step and polymerizing under the same other process conditions. Instead of calcium carbonate, fine particle silica, magnesium stearate,
The polyethylene micropowder was added to each
o. 1-2, No. 1-3, No. 1-4.
In addition, when the low molecular weight component was analyzed by FT-NMR, the raw material lactide was the main component.

【0015】[0015]

【表1】 [Table 1]

【0016】(実施例2)実施例1における第1工程を
30mm径の二軸エクストルーダーによる溶融・混練押
し出し法とし、該第1工程から押し出された重合物を窒
素気流中にてチルドロール上で固化させた後ペレット化
し150℃までの所定温度まで降温し結晶化させる工程
を第2工程とし、該第2工程の結晶化物を流動床式加熱
釜中にて固相重合する工程を第3工程とした連続重合法
により、各種の重合組成物を原料とするポリ乳酸を得
た。表2に、各工程の主要な運転条件と重合生成物の物
性値をまとめて示す。
(Example 2) The first step in Example 1 is a melting / kneading extrusion method using a 30 mm diameter twin-screw extruder, and the polymer extruded from the first step is placed on a chill roll in a nitrogen stream. The step of solidifying the mixture in a pellet and then lowering the temperature to a predetermined temperature up to 150 ° C. for crystallization is referred to as a second step, and the step of solid-state polymerization of the crystallized product in the second step in a fluidized bed heating tank is referred to as a third step. By the continuous polymerization method as the process, polylactic acid was obtained from various polymerization compositions as raw materials. Table 2 summarizes the main operating conditions of each step and the physical property values of the polymerization products.

【表2】 [Table 2]

【0017】表2において、No.2−5は、比較例で
あって、No.2−1〜4は本発明品である。本発明品
は何れも平均分子量が高く、低分子量が少ない特長を有
する。
In Table 2, no. No. 2-5 is a comparative example. 2-1 to 4 are products of the present invention. Each of the products of the present invention has a high average molecular weight and a low low molecular weight.

【0018】(実施例3)実施例2においてポリエチレ
ングリコールに代えて、グリセリン、トリメチロールプ
ロパン、ネオペンチルグリコールを使用し、結晶化核剤
並びに第1工程〜第3工程の各工程条件を適宜変更して
数種のポリ乳酸を試作した。表3に、これらの結果を一
括して示す。表3に於て、A成分はポリエチレングリコ
ールに替えて第1工程中で重合原料として使用した成分
である。
Example 3 In Example 2, glycerin, trimethylolpropane, and neopentyl glycol were used in place of polyethylene glycol, and the crystallization nucleating agent and the conditions of each of the first to third steps were appropriately changed. And produced several kinds of polylactic acid. Table 3 summarizes these results. In Table 3, component A is a component used as a polymerization raw material in the first step in place of polyethylene glycol.

【表3】 [Table 3]

【0019】(実施例4) L−ラクチドに対しD−ラクチドを0.1〜10モル%
の範囲で所定モル比となるよう調製した重合原料に対
し、結晶化核剤として平均一次粒子径0.01μmの微
粒子シリカを0.03重量%配合し、実施例1の第1工
程〜第3工程に準じた運転条件でD/L共重合ポリ乳酸
を製造した。表4にD/L共重合ポリ乳酸の物性値を示
す。比較例No.4−は微粒子シリカを配合せずに製
造したポリ乳酸の物性である。
(Example 4) 0.1 to 10 mol% of D-lactide based on L-lactide
0.03% by weight of fine-particle silica having an average primary particle diameter of 0.01 μm as a crystallization nucleating agent was blended as a crystallization nucleating agent with respect to the polymerization raw material prepared to have a predetermined molar ratio in the range of the first step to the third step of Example 1. D / L copolymerized polylactic acid was produced under operating conditions according to the process. Table 4 shows the physical property values of the D / L copolymerized polylactic acid. Comparative Example No. 4-5 is a physical property of a polylactic acid produced without blending finely-divided silica.

【0020】[0020]

【表4】 表4に於て、No.4−5は明確な融点を示さず100
℃を中心としたブロードなピークであった。
[Table 4] In Table 4, no. 4-5 shows no apparent melting point and is 100
It was a broad peak centered at ° C.

【0021】[0021]

【発明の効果】本発明方法によれば、微粒子が核となっ
て結晶化が促進され、固相重合前の結晶化度を最大限に
高め、非晶相に選択的に未反応モノマーとポリマー末端
とが析出する効果が得られ、該非晶相での重合が促進さ
れる。その結果、従来方法では到底取得出来なかった様
な高重合度ポリ乳酸を製造できる。本発明品は分子量が
10万以上と高く、低分子量成分が3%以下と少ないた
め、溶融時の粘度が高いので、溶融紡糸における紡糸性
が良好である。その上、ノズルその他の紡糸機への低分
子成分の付着が少なく操業性にも勝る。得られたポリマ
ーの物性面では、ガラス転移温度が55℃以上で耐熱性
に優れる。
According to the method of the present invention, crystallization is promoted by fine particles as nuclei, crystallinity before solid phase polymerization is maximized, and unreacted monomer and polymer are selectively formed in the amorphous phase. The effect of precipitating with the terminal is obtained, and the polymerization in the amorphous phase is promoted. As a result, a highly polymerized polylactic acid that could not be obtained by the conventional method can be produced. Since the product of the present invention has a high molecular weight of 100,000 or more and a low molecular weight component as small as 3% or less, the viscosity at the time of melting is high, so that the spinnability in melt spinning is good. In addition, the adhesion of low-molecular components to nozzles and other spinning machines is small, and operability is superior. In terms of physical properties of the obtained polymer, the glass transition temperature is 55 ° C. or higher, and the heat resistance is excellent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 仁実 京都市中京区西ノ京桑原町1番地 株式 会社島津製作所 三条工場内 (72)発明者 小関 英一 京都市中京区西ノ京桑原町1番地 株式 会社島津製作所 三条工場内 (72)発明者 澤 誠治 京都市中京区西ノ京桑原町1番地 株式 会社島津製作所 三条工場内 (72)発明者 藤井 康宏 京都市中京区西ノ京桑原町1番地 株式 会社島津製作所 三条工場内 (56)参考文献 米国特許5359027(US,A) (58)調査した分野(Int.Cl.7,DB名) C08G 63/00 - 63/91 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hitomi Ohara, 1 Nishinokyo Kuwabaracho, Nakagyo-ku, Kyoto Shimazu Works Sanjo Plant (72) Inventor Eiichi Koseki 1, 1 Nishinokyo Kuwabaracho, Nakagyo-ku, Kyoto Shimazu Works Sanjo In-plant (72) Inventor Seiji Sawa 1 Nishinokyo Kuwabaracho, Nakagyo-ku, Kyoto Shimazu Corporation Sanjo Plant (72) Inventor Yasuhiro Fujii 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto Shimazu Plant Sanjo Plant (56) Reference Literature US Patent 5,359,027 (US, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08G 63/00-63/91

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 L−及び/又はD−ラクチドを重合原料
とし、溶融重合する第1工程と、該第1工程の重合温度
から所定温度に移行させて溶融重合生成物を冷却・固化
させる第2工程と、該第2工程に続いて所定温度に重合
生成物を保持して固相重合する第3工程よりなるポリ乳
酸の製造方法に於て、無機微粒子及び/又は有機成分よ
りなる結晶化核剤を重合原料に対し0.01〜1.0重
量%配合することを特徴とするポリ乳酸の製造方法。
1. A first step of melt-polymerizing L- and / or D-lactide as a raw material for polymerization, and a step of cooling and solidifying a molten polymerization product by shifting from a polymerization temperature of the first step to a predetermined temperature. In the method for producing polylactic acid, which comprises two steps and a third step in which the polymerization product is maintained at a predetermined temperature and then solid-phase polymerization is performed after the second step, the crystallization comprising inorganic fine particles and / or organic components is carried out. A method for producing polylactic acid, comprising adding a nucleating agent in an amount of 0.01 to 1.0% by weight based on a polymerization raw material.
【請求項2】 無機微粒子が、一次粒子サイズが0.1
μm以下である酸化物、炭酸化物、硫酸化物、水酸化物
及びハロゲン化物より選ばれた少なくとも1種の化合物
よりなることを特徴とする請求項1記載のポリ乳酸の製
造方法。
2. An inorganic fine particle having a primary particle size of 0.1
μm or less is an oxide, fluoride carbonate The process according to claim 1, wherein the polylactic acid which is characterized in that comprises at least one compound selected Ri by sulfates, hydroxides and halides thereof.
【請求項3】 有機成分が、ポリ乳酸の溶融体中におい
て0.1μm以下の微粒子状に分散され、且つ軟化点が
50℃以上の熱可塑性合成高分子よりなることを特徴と
する請求項1記載のポリ乳酸の製造方法。
3. The method according to claim 1, wherein the organic component is a thermoplastic synthetic polymer having a softening point of 50 ° C. or higher dispersed in a fine particle of 0.1 μm or less in a melt of polylactic acid. A method for producing the polylactic acid according to the above.
【請求項4】 重合原料におけるL/DまたはD/Lラ
クチドのモル比が、0.1〜0.01であることを特徴
とする請求項1〜3のいずれかに記載のポリ乳酸の製造
方法。
Wherein the molar ratio of L / D or D / L-lactide in the polymerization raw material, the production of polylactic acid according to claim 1, characterized in that a 0.1 to 0.01 Method.
【請求項5】 第1工程の溶融重合、第2工程の冷却・
固化、及び第3工程の固相重合がいずれも不活性雰囲気
中でなされることを特徴とする請求項1〜4のいずれか
記載のポリ乳酸の製造方法。
5. A first step of melt polymerization and a second step of cooling / cooling.
The solidification and the solid phase polymerization of the third step are all performed in an inert atmosphere .
The process for preparing polylactic acid according to.
【請求項6】 第1工程が二軸エクストルーダーを使用
して温度180℃〜220℃での溶融混練法にてなされ
ることを特徴とする請求項1〜5のいずれかに記載のポ
リ乳酸の製造方法。
6. The polylactic acid according to claim 1 , wherein the first step is performed by a melt-kneading method at a temperature of 180 ° C. to 220 ° C. using a twin-screw extruder. Manufacturing method.
【請求項7】 第1工程中に、ポリアルキレングリコー
ル、多価アルコール、及び環状ラクトンよりなる化合物
群から選ばれた少なくとも1種の成分を重合原料に配合
することを特徴とする請求項1〜6のいずれかに記載の
ポリ乳酸の製造方法。
7. The method according to claim 1, wherein at least one component selected from the group consisting of polyalkylene glycols, polyhydric alcohols and cyclic lactones is added to the polymerization raw material during the first step. 7. The method for producing polylactic acid according to any one of 6.
JP02092795A 1995-01-13 1995-01-13 Method for producing polylactic acid Expired - Fee Related JP3350605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02092795A JP3350605B2 (en) 1995-01-13 1995-01-13 Method for producing polylactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02092795A JP3350605B2 (en) 1995-01-13 1995-01-13 Method for producing polylactic acid

Publications (2)

Publication Number Publication Date
JPH08193123A JPH08193123A (en) 1996-07-30
JP3350605B2 true JP3350605B2 (en) 2002-11-25

Family

ID=12040858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02092795A Expired - Fee Related JP3350605B2 (en) 1995-01-13 1995-01-13 Method for producing polylactic acid

Country Status (1)

Country Link
JP (1) JP3350605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049044A2 (en) 2010-10-13 2012-04-19 Total Petrochemicals Research Feluy Polycarbonates as nucleating agents for polylactides.

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671547B2 (en) * 1996-09-13 2005-07-13 新日本理化株式会社 Polylactic acid resin composition
JP3684711B2 (en) * 1996-09-13 2005-08-17 新日本理化株式会社   Method for producing polylactic acid resin and polylactic acid resin obtained by the method
JP3599310B2 (en) * 1998-07-03 2004-12-08 ユニチカ株式会社 Polylactic acid monofilament and method for producing the same
CN101054438A (en) * 2007-04-24 2007-10-17 上海同杰良生物材料有限公司 Method of preparing solid state condensation viscosity enhancing polylactic acid
AT506040B1 (en) * 2007-11-14 2012-03-15 Jungbunzlauer Austria Ag PARTICULATE CATALYST AND CATALYST / STABILIZER SYSTEMS FOR THE PRODUCTION OF HIGH-MOLECULAR HOMO- AND COPOLYESTERS OF L-, D- OR D, L-MILKYLIC ACID
AT506038B1 (en) 2007-11-14 2015-02-15 Jungbunzlauer Austria Ag METHOD FOR THE PRODUCTION OF CYCLIC DIESTERS OF L, D AND D, L-MILKYLIC ACID
JP5361420B2 (en) * 2008-01-31 2013-12-04 ユニチカ株式会社 Polylactic acid-based long fiber nonwoven fabric and method for producing the same
KR101526636B1 (en) 2008-05-30 2015-06-05 킴벌리-클라크 월드와이드, 인크. Polylactic acid fibers
JP5645762B2 (en) * 2010-06-29 2014-12-24 日本ポリプロ株式会社 Crystalline distribution analysis method and apparatus for polyolefin
JP2018104596A (en) * 2016-12-27 2018-07-05 株式会社琉球テクノロジー Manufacturing method of polylactic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049044A2 (en) 2010-10-13 2012-04-19 Total Petrochemicals Research Feluy Polycarbonates as nucleating agents for polylactides.

Also Published As

Publication number Publication date
JPH08193123A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
JP4078855B2 (en) Polylactic acid block copolymer, process for producing the same, molded article, and polylactic acid composition
JP5763402B2 (en) Biodegradable aliphatic polyester particles and method for producing the same
JP3350605B2 (en) Method for producing polylactic acid
JPH0327585B2 (en)
US4654413A (en) Manufacturing of high molecular weight polyester
JP3359764B2 (en) Heat-resistant lactic acid-based polymer molding
JP2006307071A (en) Preparing process of polylactic acid
CN115232456B (en) Polyhydroxyalkanoate composition containing hydroxy acid nucleating agent, polyhydroxyalkanoate molded body and preparation method thereof
JP5175421B2 (en) Stereocomplex polylactic acid and method for producing the same
JPH1081739A (en) Polyester resin and its production
JP4656056B2 (en) POLYLACTIC ACID BLOCK COPOLYMER, PROCESS FOR PRODUCING THE SAME, MOLDED ARTICLE, AND POLYLACTIC ACID COMPOSITION
JP2006028336A (en) Method for producing polylactic acid block copolymer
JPH0379612A (en) Manufacture of bifurcated copolyester
EP0531485A1 (en) High molecular weight copolyester resins having low melting points
JP3350606B2 (en) Method for producing polylactic acid
JP2005520879A (en) Process for the production of modified thermoplastic polyesters
WO2010038860A1 (en) Polylactic acid composition and method for producing same
JP2008248176A (en) Method for producing stereocomplex polylactic acid
JP2533328B2 (en) Aromatic polyester
EP4039744A1 (en) Polyester resin blend and molded article formed therefrom
EP0258636B1 (en) Quickly crystallizing polyester compositions
EP1440104A1 (en) Process for the preparation of crystalline polycarbonate oligomers
JPH04183717A (en) Production of polyester
JP5177200B2 (en) Polylactic acid composition, molded article and method for producing polylactic acid composition
KR100257818B1 (en) Process for preparing of polyester compound resin having excellent properties and composition of the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees