JP3350226B2 - Data transfer receiver - Google Patents

Data transfer receiver

Info

Publication number
JP3350226B2
JP3350226B2 JP16724794A JP16724794A JP3350226B2 JP 3350226 B2 JP3350226 B2 JP 3350226B2 JP 16724794 A JP16724794 A JP 16724794A JP 16724794 A JP16724794 A JP 16724794A JP 3350226 B2 JP3350226 B2 JP 3350226B2
Authority
JP
Japan
Prior art keywords
magnetic field
data transfer
circuit
frequency
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16724794A
Other languages
Japanese (ja)
Other versions
JPH0832497A (en
Inventor
隆志 紙本
文雄 木村
達夫 三好
良夫 猪越
誠治 桑原
仁士 吉田
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP16724794A priority Critical patent/JP3350226B2/en
Publication of JPH0832497A publication Critical patent/JPH0832497A/en
Application granted granted Critical
Publication of JP3350226B2 publication Critical patent/JP3350226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Calculators And Similar Devices (AREA)
  • Computer And Data Communications (AREA)
  • Near-Field Transmission Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は無線ハンディターミナル
に代表される小型携帯情報機器等に利用される機器同士
の近接データ転送技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for transferring data between devices used in small portable information devices such as wireless handy terminals.

【0002】[0002]

【従来の技術】従来、小型携帯情報端末機器等に利用さ
れている近接データ転送技術は、データーの送受信部に
ある電磁コイル間に生じる電磁誘導現象を利用してい
る。この電磁誘導は、次式によって与えられる電場Eと
磁場Hの相互関係(すなわちマックスウェルの電磁方程
式)によって説明することができる。
2. Description of the Related Art Conventionally, a proximity data transfer technique used in a small portable information terminal device or the like utilizes an electromagnetic induction phenomenon generated between electromagnetic coils in a data transmitting / receiving section. This electromagnetic induction can be explained by the correlation between the electric field E and the magnetic field H given by the following equation (ie, Maxwell's electromagnetic equation).

【0003】 rot E=−μdH/dt (1) rot H=−εdE/dt (2) (1)、(2)においてμ、εはそれぞれ透磁率、誘電
率であり、tは時間である。
Rot E = −μdH / dt (1) rot H = −εdE / dt (2) In (1) and (2), μ and ε are magnetic permeability and dielectric constant, respectively, and t is time.

【0004】図1は従来の送受信部に電磁コイルを用い
た近接データ転送の概念図である送信部24の電磁コイ
ル25にデーター情報を含んだ交流電流26が入力され
ると交流磁場Hが発生するとともに、(1)にしたがっ
て誘導電場Eも発生する。すなわち、送信部24の電磁
コイル25に交流電流26が入力されると(1)にした
がい、磁場Bと誘導電場Eを成分とする電磁波27が送
信部電磁コイル25を発生源として、空間中に放射され
る。この空間放射された電磁波27が受信部28の電磁
コイル29で感知されると(1)及び(2)によって、
受信部28の電磁コイル29には誘導電流I30と誘導
磁場発生する。この誘導電流I30を検出することで、
送信側のデーター情報が受信側に転送できることにな
る。以上が電磁誘導を用いた近接データ転送技術の概要
である。この近接データ転送技術は携帯電話(自動車電
話)等やラヂオ等の無線通信技術等と比較すると、転送
スピード及び転送距離等の観点で劣るものの、回路構成
の簡便さから広く利用されている技術である。
FIG. 1 is a conceptual diagram of conventional proximity data transfer using an electromagnetic coil in a transmitting / receiving section. When an alternating current 26 containing data information is input to an electromagnetic coil 25 of a transmitting section 24, an alternating magnetic field H is generated. At the same time, an induction electric field E is also generated according to (1). That is, when the alternating current 26 is input to the electromagnetic coil 25 of the transmission unit 24, according to (1), an electromagnetic wave 27 having the magnetic field B and the induction electric field E as components is generated in the space by using the transmission unit electromagnetic coil 25 as a generation source. Radiated. When the spatially radiated electromagnetic wave 27 is detected by the electromagnetic coil 29 of the receiving unit 28, (1) and (2)
An induced current I30 and an induced magnetic field are generated in the electromagnetic coil 29 of the receiving unit 28. By detecting this induced current I30,
The data information on the transmitting side can be transferred to the receiving side. The above is the outline of the proximity data transfer technology using electromagnetic induction. Although this proximity data transfer technology is inferior in terms of transfer speed and transfer distance as compared with wireless communication technologies such as mobile phones (car phones) and radios, it is a technology that is widely used due to the simplicity of the circuit configuration. is there.

【0005】[0005]

【発明が解決しようとする課題】通常、小型携帯無線端
末機器には、親機との無線通信と端末同士のデーター転
送の両方の機能が必要とされる。このデーター転送は数
センチ以内または端末同士の接触状態で行われており、
先に説明した電磁コイルを用いた電磁誘導方式が必要と
されている。それゆえ、小型携帯無線端末機器は無線通
信用の数10MHzから数GHzの電波の送受信を行う
アナログ回路部分(以下、RF回路と略すと電磁誘導方
式による近接データー転送を行う比較的簡単なデーター
送受信回路部(以下、電磁誘導回路と略す)が内蔵され
ている。この電磁誘導回路の受信側の電磁コイルに発生
する誘導電流Iは(1)式及び(2)式から明白な様
に、転送すべき信号の周波数に比例して大きくなる性質
を持つ。それゆえ、転送信号の周波数が大きい領域にお
いては十分な受信感度が得られるが、低周波においては
感度不良となってしまう。
Normally, a small portable wireless terminal device is required to have both functions of wireless communication with a base unit and data transfer between terminals. This data transfer is performed within a few centimeters or in the state of contact between terminals,
There is a need for an electromagnetic induction system using the above-described electromagnetic coil. Therefore, a small portable wireless terminal device is a relatively simple data transmission / reception device that transmits and receives radio waves of several tens of MHz to several GHz for wireless communication (hereinafter simply referred to as an RF circuit, which performs proximity data transfer by an electromagnetic induction method). A circuit section (hereinafter abbreviated as an electromagnetic induction circuit) is built in. The induction current I generated in the electromagnetic coil on the receiving side of the electromagnetic induction circuit is transferred as apparent from the equations (1) and (2). This has the property of increasing in proportion to the frequency of the signal to be transmitted, so that sufficient reception sensitivity can be obtained in the region where the frequency of the transfer signal is high, but poor sensitivity occurs at low frequencies.

【0006】すなわち、通常の電磁誘導コイルを用いた
データー転送システムにおいては、高周波の信号しか転
送出来ないという大きな欠点があった。特に数十Hz以
下の低周波信号においては殆ど不可能といっても過言で
はなかった。この欠点によって、小型携帯無線端末等の
近接データ転送システムにおいては受信感度を大きくす
る為にむやみに転送信号を高周波化する必要性が生じて
おり、必然的にこの電磁誘導回路の消費電力も高くなっ
てしまうので、製品設計上大きな問題となっている。
That is, in a data transfer system using an ordinary electromagnetic induction coil, there is a serious drawback that only high-frequency signals can be transferred. In particular, it was not an exaggeration to say that it was almost impossible for low-frequency signals of several tens Hz or less. Due to this drawback, in a proximity data transfer system such as a small portable wireless terminal, it becomes necessary to increase the frequency of a transfer signal in order to increase the reception sensitivity, and the power consumption of this electromagnetic induction circuit is inevitably high. This is a major problem in product design.

【0007】以上の様な問題点は本質的に電磁誘導を用
いた方式においては必然的に生じる問題点である。上記
の問題点を回避するためにアモルファス磁気インピーダ
ンス素子をデータ受信回路に用いて問題点を解決しよう
とする試みがある。このアモルファス磁気インピーダン
ス素子(以下、MI素子と略す)は近年、高感度の磁気
センサー素子として注目されているバルク状または膜状
の素子であって、交流電流を通電した状態で磁場が印加
されると素子のインピーダンス成分が大きく変化する素
子である(例えば、マグネッティクス研究会資料番号M
AG−93−99「アモルファスMI素子FET200
MHzセンサー機能発振器」:電気学会)。このMI素
子の電気的等価回路は図7にて示すごとく、実抵抗成分
Rsとインダクタンス成分Lsより成り立っており、磁
場の印加によって、Rs及びLsの両方またはどちらか
片方が大きく変化する素子である。また、このMI素子
は以下の様な大きな特徴を持っている。
[0007] The above-described problems are inherently inevitable in systems using electromagnetic induction. In order to avoid the above problem, there is an attempt to solve the problem by using an amorphous magnetic impedance element in a data receiving circuit. This amorphous magnetic impedance element (hereinafter, abbreviated as MI element) is a bulk or film element that has recently attracted attention as a high-sensitivity magnetic sensor element, and a magnetic field is applied while an alternating current is applied. And an element in which the impedance component of the element greatly changes (for example, Magnetics Research Institute Material No. M
AG-93-99 "Amorphous MI device FET200
MHz sensor function oscillator ”: IEEJ). As shown in FIG. 7, the electrical equivalent circuit of this MI element is made up of a real resistance component Rs and an inductance component Ls, and both or one of Rs and Ls greatly changes when a magnetic field is applied. . Further, this MI element has the following significant features.

【0008】特徴(1)印加磁場に対するインピーダン
ス変化が高感度であって0.1ガウス以下の感度を持
つ。 特徴(2)静磁場から10MHz程度の高周波磁場まで
検出可能である。 特徴(3)長さ1mm以下、直径または厚み100μ以
下の超小型形状に加工可能である。
Feature (1) The impedance change with respect to the applied magnetic field is highly sensitive and has a sensitivity of 0.1 Gauss or less. Characteristic (2) Detectable from a static magnetic field to a high-frequency magnetic field of about 10 MHz. Feature (3) It can be processed into an ultra-small shape with a length of 1 mm or less and a diameter or thickness of 100 μ or less.

【0009】特徴(4)素子の形成条件、実装条件によ
って変化させる電気的パラメータ(Rs、Ls)とその
感度を自由に選択できる。すなわち、データー受信回路
を電磁コイルで構成する代わりに、このMI素子を用い
て受信回路を構成する試みが行われている。
Characteristic (4) The electrical parameters (Rs, Ls) and the sensitivities that can be changed according to the element forming and mounting conditions can be freely selected. That is, instead of forming the data receiving circuit with an electromagnetic coil, an attempt has been made to form a receiving circuit using this MI element.

【0010】しかし、MI素子の本来大きな利としてあ
る超小型の磁気感受素子としての従来の方法では、磁気
センサで外部磁場の変化を検出するためにLC発振回路
または水晶発振回路を組まなければならなかった。この
ために装置の小型化、低消費電流化を図ろうとする際に
著しい障害となるという問題があった。
However, in the conventional method as an ultra-small magnetic sensing element, which is originally a great advantage of the MI element, an LC oscillation circuit or a crystal oscillation circuit must be assembled in order to detect a change in an external magnetic field with a magnetic sensor. Did not. For this reason, there is a problem that it becomes a significant obstacle when trying to reduce the size and the current consumption of the device.

【0011】[0011]

【課題を解決するための手段】そこで、本発明では、通
常の電磁波によるデータ通信を行う受信部の局部発振回
路の高周波出力を分周することにより得られる高周波電
流を磁気センサの駆動用とし、この高周波電流によって
磁気センサに円周磁場を発生させることにより、磁気セ
ンサにおいて感知した外部磁場の変化を検出する構成と
した。
Therefore, according to the present invention, a high-frequency current obtained by dividing a high-frequency output of a local oscillation circuit of a receiving unit for performing data communication using ordinary electromagnetic waves is used for driving a magnetic sensor. By generating a circumferential magnetic field in the magnetic sensor using the high-frequency current, a change in the external magnetic field sensed by the magnetic sensor is detected.

【0012】[0012]

【作用】上記のように構成されたデータ転送受信装置に
おいては、通常の電磁波によるデータ通信を行う受信部
において、中間周波数を取り出すことを目的として設け
られた局部発振器の高周波出力を分周して得られる高周
波電流を磁気センサの駆動に用い、この高周波電流によ
って磁気センサに円周磁場を発生させることができるの
で、磁気センサの駆動に必要な高周波電流を発生させる
ためにLC発振回路または水晶発振回路を設ける必要が
なく、これらの発振回路の分だけ装置を小型化、低消費
電流化されたデータ転送受信装置を得ることができる。
In the data transfer receiving apparatus configured as described above, the receiving section for performing data communication using ordinary electromagnetic waves divides the high frequency output of the local oscillator provided for extracting the intermediate frequency. The high-frequency current obtained is used for driving the magnetic sensor, and a circumferential magnetic field can be generated in the magnetic sensor by the high-frequency current. Therefore, in order to generate the high-frequency current required for driving the magnetic sensor, an LC oscillation circuit or a crystal oscillation circuit is used. It is not necessary to provide a circuit, so that a data transfer receiving device in which the size of the device is reduced by the amount of these oscillation circuits and the current consumption is reduced can be obtained.

【0013】[0013]

【実施例】以下に、本発明の一実施例を図に基づいて説
明する。図2は、本発明に係わるデータ転送受信装置の
ブロック図である。図2において、電磁波によるデータ
通信を行う受信部においては、空中線1で受信した受信
信号を高周波増幅回路2で増幅した信号と、局部発振回
路4で発生した高周波とを、周波数混合器3で混合して
中間周波数にして、これを中間周波増幅回路5で増幅し
て、復調回路6で復調してデータ出力を得る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram of the data transfer receiving device according to the present invention. In FIG. 2, in a receiving unit that performs data communication using electromagnetic waves, a signal obtained by amplifying a reception signal received by the antenna 1 by a high frequency amplifier circuit 2 and a high frequency generated by a local oscillation circuit 4 are mixed by a frequency mixer 3. Then, the intermediate frequency is amplified by an intermediate frequency amplifier circuit 5 and demodulated by a demodulation circuit 6 to obtain a data output.

【0014】一方、振動磁場による通信においては、局
部発振回路4で発生した高周波電流を分周回路7で分周
して、適当な周波数の高周波電流にしてMI素子8に印
加する。この高周波電流によってMI素子8に円周交流
磁場が発生し、MI素子8の両端に交流電圧が発生す
る。ここでMI素子8の長さ方向に外部磁場を印加する
と、円周磁場の磁化ベクトルが回転して、この回転の方
向余弦分だけ円周方向の透磁率が減少する。これにより
MI素子2の両端の交流電圧の振幅が減少する。この原
理により、MI素子2において感知した外部磁場の変動
を、電流の振幅の変動に変換することができる。こうし
て得られた信号波を増幅回路9で増幅し、復調回路10
で復調してデータ出力を得る。
On the other hand, in communication using an oscillating magnetic field, a high-frequency current generated by the local oscillation circuit 4 is frequency-divided by a frequency dividing circuit 7 and applied to the MI element 8 as a high-frequency current of an appropriate frequency. This high-frequency current generates a circumferential AC magnetic field in the MI element 8, and an AC voltage is generated at both ends of the MI element 8. Here, when an external magnetic field is applied in the length direction of the MI element 8, the magnetization vector of the circumferential magnetic field rotates, and the magnetic permeability in the circumferential direction decreases by the cosine in the direction of the rotation. As a result, the amplitude of the AC voltage at both ends of the MI element 2 decreases. According to this principle, the fluctuation of the external magnetic field sensed in the MI element 2 can be converted into the fluctuation of the current amplitude. The signal wave thus obtained is amplified by the amplifier circuit 9 and the demodulation circuit 10
And demodulate to obtain a data output.

【0015】[0015]

【発明の効果】以上のように、本発明では上記のように
構成されたデータ転送受信装置においては、通常の電磁
波によるデータ通信を行う受信部の局部発振回路の高周
波出力を分周することにより得られる高周波電流を磁気
センサの駆動用として用い、磁気センサの駆動に必要な
高周波電流を発生させるためにLC発振回路または水晶
発振回路を設ける必要がなく、これらの発振回路の分だ
け装置を小型化、低消費電流化されたデータ転送受信装
置を得ることができるという効果がある。
As described above, according to the present invention, in the data transfer receiving apparatus configured as described above, the high frequency output of the local oscillation circuit of the receiving section for performing data communication using ordinary electromagnetic waves is divided. The obtained high-frequency current is used for driving a magnetic sensor, and there is no need to provide an LC oscillation circuit or a crystal oscillation circuit to generate the high-frequency current required for driving the magnetic sensor. There is an effect that it is possible to obtain a data transfer receiving device with reduced power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す図であって、本発明に係
わるデータ転送方式の受信部回路の構成を示すブロック
ダイヤグラムである。
FIG. 1 is a diagram showing an embodiment of the present invention, and is a block diagram showing a configuration of a receiving section circuit of a data transfer system according to the present invention.

【図2】従来の電磁誘導を用いた近接データ転送を示し
た概念図である。
FIG. 2 is a conceptual diagram showing a conventional proximity data transfer using electromagnetic induction.

【符号の説明】[Explanation of symbols]

1 空中線 2 高周波増幅回路 3 周波数混合器 4 局部発振回路 5 中間周波増幅回路 6 復調回路 7 分周回路 8 MI素子 9 増幅回路 10 復調回路 24 送信部 25 電磁コイル 26 交流電流 27 電磁波 28 受信部 29 電磁コイル 30 誘導電流I DESCRIPTION OF SYMBOLS 1 Antenna 2 High frequency amplifier circuit 3 Frequency mixer 4 Local oscillator circuit 5 Intermediate frequency amplifier circuit 6 Demodulator circuit 7 Divider circuit 8 MI element 9 Amplifier circuit 10 Demodulator circuit 24 Transmitter 25 Electromagnetic coil 26 AC current 27 Electromagnetic wave 28 Receiver 29 Electromagnetic coil 30 Induction current I

───────────────────────────────────────────────────── フロントページの続き (72)発明者 猪越 良夫 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (72)発明者 桑原 誠治 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (72)発明者 吉田 仁士 東京都江東区亀戸6丁目31番1号 セイ コー電子工業株式会社内 (56)参考文献 特開 平8−30923(JP,A) 実開 平4−137620(JP,U) 実開 平1−98876(JP,U) (58)調査した分野(Int.Cl.7,DB名) H04B 5/00 - 5/02 G06F 13/00 351 G06F 15/02 335 G01R 33/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshio Inakoshi 6-31-1, Kameido, Koto-ku, Tokyo Inside Seiko Electronic Industries Co., Ltd. (72) Inventor Seiji Kuwahara 6-31, Kameido, Koto-ku, Tokyo No. Seiko Electronics Co., Ltd. (72) Inventor Hitoshi Yoshida 6-31-1, Kameido, Koto-ku, Tokyo Seiko Electronics Co., Ltd. (56) References JP-A-8-30923 (JP, A) Kaihei 4-137620 (JP, U) JP-A-1-98876 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H04B 5/00-5/02 G06F 13/00 351 G06F 15/02 335 G01R 33/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 通常の無線通信によるデータ転送の他
に、端末同士のデータ転送を振動磁場によって行う小型
携帯データ転送受信装置において、データによって変調
された電磁波を受信して復調する受信部と、振動磁場を
利用した近接データ通信方式に関しては外部磁場によっ
てそのインピーダンス値が変化する性質を持つバルク状
あるいは膜状のアモルファス磁気センサ素子を有し、前
記受信部の局部発振回路の出力を、前記磁気センサ素子
によって感知された磁場変化を検出するために用いるこ
とを特徴とするデータ転送受信装置。
1. A small-sized portable data transfer receiving device that performs data transfer between terminals by an oscillating magnetic field in addition to data transfer by normal wireless communication, a receiving unit that receives and demodulates an electromagnetic wave modulated by data, The proximity data communication method using an oscillating magnetic field has a bulk or film-shaped amorphous magnetic sensor element whose impedance value changes according to an external magnetic field, and outputs an output of a local oscillation circuit of the receiving unit to the magnetic field. A data transfer receiving device used for detecting a change in a magnetic field sensed by a sensor element.
JP16724794A 1994-07-19 1994-07-19 Data transfer receiver Expired - Fee Related JP3350226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16724794A JP3350226B2 (en) 1994-07-19 1994-07-19 Data transfer receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16724794A JP3350226B2 (en) 1994-07-19 1994-07-19 Data transfer receiver

Publications (2)

Publication Number Publication Date
JPH0832497A JPH0832497A (en) 1996-02-02
JP3350226B2 true JP3350226B2 (en) 2002-11-25

Family

ID=15846193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16724794A Expired - Fee Related JP3350226B2 (en) 1994-07-19 1994-07-19 Data transfer receiver

Country Status (1)

Country Link
JP (1) JP3350226B2 (en)

Also Published As

Publication number Publication date
JPH0832497A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
US8532568B2 (en) Radio receiver and transmitter circuits and methods
US7487921B2 (en) Reader/writer and communication method thereof
EP0434817B1 (en) Proximity detecting apparatus
US6336031B1 (en) Wireless data transmission over quasi-static electric potential fields
EP1434160A3 (en) Non-contact IC card reading/writing apparatus
US20210203382A1 (en) Near field communication (nfc) device and method of detecting resonance frequency of the same
JP5894703B2 (en) Demodulation device, demodulation integrated element and modulation / demodulation integrated element
JP3350226B2 (en) Data transfer receiver
Kim et al. Giant magnetoimpedance receiver with a double-superheterodyne topology for magnetic communication
US6219529B1 (en) Wireless communication system using only the magnetic field component
JP3986701B2 (en) Wireless card communication device
JPH0888590A (en) Wireless data transfer system and constitution of transmission/reception part for wireless data transfer
JP2013165388A (en) Portable device and vehicle communication device using the same
JPS59170373A (en) Actuator control apparatus
JP4305599B2 (en) Portable radio with built-in variable antenna matching circuit
JP4666738B2 (en) Non-contact IC card reader / writer device
JP2945588B2 (en) Card type radio
EP0889607B1 (en) An electric vector potential based communications system
KR20020007838A (en) Apparatus for alarm when loss article in bag
JP2004048221A (en) Transmitter-receiver for communication between living bodies
RU98103672A (en) NQR - A SYSTEM FOR DETECTING MINES AND LUGGAGE CONTROL
NL1029589C2 (en) Measuring distance between tag and RFID reader unit, involves measuring phase difference between request signal from reader unit and response signal from tag
JPH09307487A (en) Magnetic field communication circuit and communication system using it
JP3362189B2 (en) Wireless IC card
JP3451846B2 (en) Contactless data carrier system

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees