JP3348118B2 - Rotary compressor for ammonia refrigerant using canned motor and method of operating the same - Google Patents

Rotary compressor for ammonia refrigerant using canned motor and method of operating the same

Info

Publication number
JP3348118B2
JP3348118B2 JP20289693A JP20289693A JP3348118B2 JP 3348118 B2 JP3348118 B2 JP 3348118B2 JP 20289693 A JP20289693 A JP 20289693A JP 20289693 A JP20289693 A JP 20289693A JP 3348118 B2 JP3348118 B2 JP 3348118B2
Authority
JP
Japan
Prior art keywords
ammonia
stator
storage space
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20289693A
Other languages
Japanese (ja)
Other versions
JPH0735074A (en
Inventor
和平 井上
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP20289693A priority Critical patent/JP3348118B2/en
Publication of JPH0735074A publication Critical patent/JPH0735074A/en
Application granted granted Critical
Publication of JP3348118B2 publication Critical patent/JP3348118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Frames (AREA)
  • Compressor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えばアンモニヤ冷媒
用回転圧縮機にキャンドモ−タが直結されたアンモニヤ
冷媒用圧縮装置において、特にキャンの損傷その他に起
因してアンモニヤ冷媒ガスが回転子収納空間より固定子
収納空間側に洩出した場合において、圧縮機の運転を即
時緊急停止することなくキャンの障害処置を講じる間、
アンモニヤ冷媒を外気に漏出させて公害を起こすことな
いよう安全性を損なわずに暫時の継続運転を可能ならし
めることのできるアンモニヤ冷媒用圧縮装置の構造及び
その運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia refrigerant compressor in which a canned motor is directly connected to, for example, a rotary compressor for ammonia refrigerant. In the event of leakage to the stator storage space side, while taking emergency measures to immediately stop the operation of the compressor,
The present invention relates to a structure of an ammonia refrigerant compression device capable of allowing a temporary continuous operation without impairing safety so as not to cause pollution by leaking the ammonia refrigerant to the outside air, and a method of operating the same.

【0002】[0002]

【従来の技術】従来、ヒートポンプ若しくは冷却用の冷
凍サイクルに使用する冷媒としてフロンを一般的に用い
ていたが、フロンは不燃性、安定的できわめて分解しに
くい性質を有するのであるが、該フロンが大気中に放出
され蓄積されると、オゾン層を破壊することから、その
使用が制限されるようになってきた。そこで、近年フロ
ンの代替冷媒として、従来からも実用されてきたアンモ
ニヤ冷媒が見直されているが、アンモニヤは刺激臭が強
く、可燃性、腐蝕性等のため有毒性ガスで公害をおこす
という問題が生じる。このため、前記冷凍サイクルから
の冷媒の漏洩に対しては極めて厳しく注視され、その一
環として圧縮機からの圧縮ガスを完全に無漏洩とするこ
とが必要で、圧縮機とともに圧縮機に直結一体化された
駆動用電動機を密封構造とした圧縮装置が用いられよう
としている。(注 従来は圧縮機と一体した密封型モー
タは使用されたことがない)
2. Description of the Related Art Conventionally, chlorofluorocarbon has been generally used as a refrigerant for a heat pump or a refrigeration cycle for cooling. However, chlorofluorocarbon has the property of being nonflammable, stable and extremely resistant to decomposition. When released into the atmosphere and accumulated, they destroy the ozone layer, thus limiting their use. Therefore, in recent years, ammonia refrigerants that have been practically used as alternatives to CFCs have been reviewed. Occurs. For this reason, the leakage of the refrigerant from the refrigeration cycle is extremely closely monitored, and as part of this, it is necessary to completely prevent the leakage of the compressed gas from the compressor, and it is directly connected to the compressor together with the compressor. A compression device in which the driving motor thus constructed has a sealed structure is being used. (Note: A sealed motor integrated with a compressor has never been used before.)

【0003】このようなアンモニヤ冷媒ガス圧縮機に用
いる電動機には圧縮機側の駆動軸受部から前記アンモニ
ヤ冷媒の漏出に対し、モータ側でこれを大気側と遮断し
密封構造とする密封型電動機を用いているが、特に固定
子線輪が前記アンモニヤ冷媒に対し、電気的絶縁性に耐
え得られない場合が多いために、固定子鉄心と回転子間
の狭い空隙に金属製薄肉円筒状のキャンを挿入してなる
キャンドモータを用いて、圧縮機と軸受を介して連通す
る回転子側に対し、固定子側を気密的に断絶するととも
に、固定子鉄心に設けられた固定子線輪からの交番磁束
を前記キャンを透して回転子に作用せしめこれにより回
転子を回転させるよう構成している。
A motor used in such an ammonia refrigerant gas compressor includes a hermetic motor having a sealed structure in which the leakage of the ammonia refrigerant from a drive bearing portion on the compressor side is cut off from the atmosphere side on the motor side to form a hermetic structure. However, since the stator wire loop often cannot withstand the electrical insulation of the ammonia refrigerant in many cases, a thin metal cylindrical canister is inserted into a narrow gap between the stator core and the rotor. Using a canned motor, the stator side is hermetically cut off from the rotor side communicating with the compressor via bearings, and the stator wire loop provided on the stator core is Alternating magnetic flux is applied to the rotor through the can to rotate the rotor.

【0004】しかし前記アンモニヤ冷媒の雰囲気の回転
子収納空間に対し、その外周側に位置する固定子収納空
間をキャンにより封止しても、その使用状態により前記
モータ内部で生ずる温度変化や前記キャンやその封止部
のOリングの温度疲労等に起因する経年変化等によりキ
ャンの封止機能が低下する場合があり、このような場合
回転子収納空間側より固定子収納空間側にアンモニヤ冷
媒が洩出し、アンモニヤに対して、前記空間は耐圧力構
造が採られることなく、また耐性のない前記固定子線輪
等が腐食をし始め、而も該固定子収納空間内に外気より
侵入する水分による腐食の助長があって、前記固定子線
輪の短絡、更には断線状態に至る恐れさえある。
However, even if the stator housing space located on the outer peripheral side of the rotor housing space in the atmosphere of the ammonia refrigerant is sealed with a can, the temperature change occurring inside the motor or the can housing depending on the usage condition. The sealing function of the can may be deteriorated due to aging due to temperature fatigue of the O-ring of the sealing portion or the like, and in such a case, the ammonia refrigerant is supplied from the rotor storage space side to the stator storage space side. The space does not have a pressure-resistant structure against leakage and ammonia, and the stator wire loop or the like, which has no resistance, starts to corrode, and water that enters from outside air into the stator housing space. The corrosion may be promoted by the above, and the stator wire loop may be short-circuited or even broken.

【0005】かかる欠点を解消する為に、本出願人は、
固定子収納空間即ちモータのフレーム、サイドカバーな
どを耐圧力構造とし前記固定子線輪並びにこの線輪に接
続される結線接続部と導出電線、この導出電線を更に機
外に導出する貫通端子等に対し、アンモニヤ冷媒ガスに
対する耐蝕及び耐絶縁性処理を施すとともに、該モータ
フレーム容器を耐圧構造とする技術を種々提案してい
る。
[0005] In order to eliminate such a drawback, the present applicant has
The stator housing space, that is, the frame, side cover, etc. of the motor have a pressure-resistant structure, the stator wire loop, the connection connection portion connected to the wire loop, and a lead wire, a through terminal for further leading this lead wire out of the machine. For this purpose, various techniques have been proposed for performing corrosion resistance and insulation resistance treatment against ammonia refrigerant gas and for making the motor frame container with a pressure-resistant structure.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記耐
蝕及び耐絶縁性処理を施してもその被膜自体にピンホー
ルがあった亀裂が生じた場合には、その部分より腐触が
広がり前記固定子線輪等の絶縁不良が生じやすい。本発
明は、かかる従来技術の欠点に鑑み、前記アンモニヤ冷
媒の雰囲気の回転子収納空間と固定子収納空間を気密的
に断絶するキャンのシール性能が万一劣化した場合にお
いても、外気側には冷媒の漏洩の全く起らないように固
定子収納空間を耐圧力構造とし、更に圧縮機の運転の緊
急即時停止することなくキャンの障害処置を講じる間、
安全性を損なわずに継続運転を可能ならしめたアンモニ
ヤ冷媒用回転圧縮装置の構造およびその運転方法を提供
する事を目的とする。
However, if a crack having a pinhole is formed in the coating itself even after the corrosion and insulation treatment, the corrosion spreads from that portion and the stator wire is spread. Insulation failure such as a ring is likely to occur. In view of the drawbacks of the prior art, the present invention, even in the event that the sealing performance of the canister that hermetically cuts off the rotor housing space and the stator housing space in the atmosphere of the ammonia refrigerant is deteriorated, The stator storage space has a pressure-resistant structure so that no leakage of refrigerant occurs, and furthermore, while taking emergency measures to stop the operation of the compressor without immediately stopping the operation of the compressor,
An object of the present invention is to provide a structure of a rotary compressor for ammonia refrigerant and a method of operating the same, which enable continuous operation without impairing safety.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記キャン
の外周側に位置する固定子収納空間を外界に対し耐圧力
気密構造とし、この内部にアンモニヤ冷媒が漏出した場
合、固定子線輪等のエナメル塗料その他の絶縁塗料に対
する耐絶縁性と一般にはアンモニヤ雰囲気圧力と反比例
関係にあり、これは非可逆性のあるものと可逆性のある
ものとその中間的性質のある事を見出した。(図2参
照) 一方キャンドモータは圧縮機の低圧力側に結合一体化さ
れるので、キャン内部圧力は圧縮機の吸気側、言い換え
ればほぼ常圧に維持されるが、特に回転圧縮機の場合は
圧縮機の回転が停止する事によりロータとケーシング間
の包絡線のシールが低下するために、吐出側の圧力が逆
流し、結果としてキャンドモータ内の回転子収納空間の
圧力が上昇する事が知見された。
The inventor of the present invention has made the stator housing space located on the outer peripheral side of the can have a pressure-tight and airtight structure against the outside world, and when the ammonia refrigerant leaks into this inside, the stator wire loop is formed. It has been found that the insulation resistance to enamel paints and other insulating paints is generally inversely proportional to the atmospheric pressure of ammonia, which is irreversible, reversible and in-between. (See FIG. 2) On the other hand, since the canned motor is integrally connected to the low pressure side of the compressor, the internal pressure of the can is maintained at the suction side of the compressor, in other words, almost at normal pressure. When the rotation of the compressor stops, the seal of the envelope between the rotor and the casing decreases, so that the pressure on the discharge side flows backward, and as a result, the pressure in the rotor storage space in the canned motor increases. It was found.

【0008】従って前記回転子収納空間の圧力上昇とと
もに、キャンのシール性が劣化した場合、固定子収納空
間側の圧力が上昇し、該固定子収納空間内の固定子線輪
等の耐絶縁性と耐腐触性の劣化が増進される。一方通常
のキャンドモータにおいては前記キャンのシール性が劣
化し、固定子収納空間側にアンモニヤ冷媒ガスの漏洩が
あった場合には前記空間は気密構造を採られていないの
で大気側に冷媒が漏出することになり、アンモニヤ冷媒
での再採用に最も躊躇されていたところである。而も従
来のキャンドモ−タの構造では、固定子収納空間内の固
定子線輪等の耐絶縁性と耐腐触性の劣化が増進された状
態で運転が継続され、前記モータは短絡事故が発生して
始めて停止する様な状態であった。従って、通常のキャ
ンドモータにおいては前記キャンのシール性が劣化し、
固定子収納空間側にアンモニヤガスの漏洩があった場合
に直ちに運転を停止し、前記キャンのシール部の修理を
行っていたが、前記漏洩は必ずしも昼間発生するもので
はなく、又、空調その他の負荷側の状況によって冷凍サ
イクル運転を直ちに停止する事は不可能である。
Therefore, when the pressure in the rotor housing space increases and the sealing performance of the can deteriorates, the pressure in the stator housing space side increases, and the insulation resistance of the stator wire loops and the like in the stator housing space increases. And deterioration of corrosion resistance is promoted. On the other hand, in a normal canned motor, the sealing performance of the can deteriorates, and when the ammonia refrigerant gas leaks to the stator housing space side, the refrigerant does not leak to the atmosphere side because the space does not have an airtight structure. And he was most hesitant to re-use it with ammonia refrigerant. However, in the conventional canned motor structure, the operation is continued in a state where the insulation resistance and the corrosion resistance of the stator wire and the like in the stator housing space are degraded, and the motor is short-circuited. It was in a state where it stopped only after it occurred. Therefore, in a normal canned motor, the sealing performance of the can deteriorates,
If there was leakage of ammonia gas on the stator storage space side, the operation was stopped immediately and the seal part of the can was repaired, but the leakage did not necessarily occur during the day, and air conditioning and other It is impossible to immediately stop the refrigeration cycle operation depending on the situation on the load side.

【0009】そこで本願は前記固定子空間を外気に対し
て耐圧力気密構造とし、外気への冷媒を完全に封止した
点を第1の特徴とする。しかしながら前記固定子空間を
外気に対して耐圧力気密構造とする事は圧縮機の回転が
停止する事により吐出側の圧力が逆流し、キャンのシー
ル性が劣化した場合、固定子収納空間側の圧力が上昇
し、該固定子収納空間内の固定子線輪等の耐絶縁性と耐
腐触性の劣化が増進される。従って本発明は、前記空間
内におけるアンモニヤ漏洩の検知後は、前記固定子収納
空間内のアンモニヤ冷媒圧力を排除する運転を行う点を
第2の特徴とする。即ち具体的には前記キャンの外周側
に位置する固定子収納空間内におけるアンモニヤ漏洩を
検知した後にも継続して運転をおこないつつも、回転圧
縮機側の負荷運転の停止要請があった場合に、直ちに前
記キャンドモータを停止させる事なく、所定時間運転を
行い、少なくとも固定子収納空間内におけるアンモニヤ
圧力をほぼ常圧下に低下させた後キャンドモータの回転
を停止させ、その後キャンドモータモータの損傷、修復
の処置をおこなうものである。
Therefore, the first feature of the present invention is that the stator space has a pressure-tight and airtight structure with respect to the outside air, and the refrigerant to the outside air is completely sealed. However, making the stator space a pressure-resistant airtight structure against the outside air means that when the rotation of the compressor stops, the pressure on the discharge side reversely flows and the sealing performance of the can deteriorates. The pressure increases, and the deterioration of insulation resistance and corrosion resistance of the stator wire loop and the like in the stator housing space is enhanced. Therefore, the second feature of the present invention is that an operation for removing the ammonia refrigerant pressure in the stator housing space is performed after the detection of the ammonia leak in the space. That is, specifically, when there is a request to stop the load operation on the rotary compressor side while continuing to operate even after detecting the ammonia leak in the stator housing space located on the outer peripheral side of the can. Without stopping the canned motor immediately, performing the operation for a predetermined time, reducing the ammonia pressure in the stator housing space to substantially normal pressure, and then stopping the rotation of the canned motor, and thereafter, It is for repairing.

【0010】この場合前記固定子収納空間を外界に対し
気密構造とする事が外界よりの水分等の侵入を防ぎ、耐
腐触性及び耐絶縁性が一層向上する。そして勿論前記運
転により耐腐触性及び耐絶縁性の進行は遅延するが、基
本的にアンモニヤが漏洩状態にあるためにアンモニヤが
前記固定子収納空間内及び該固定子収納空間と対面する
部位及び部材に対し、耐腐触性及び耐絶縁性耐アンモニ
ヤ処理を施すのがよい。この場合、その被覆処理には絶
縁抵抗を始め、その他の性質に対しても可逆性のある材
料を用いることが好ましいことが最も必要で、これによ
り一次的のアンモニヤ冷媒雰囲気中に置かれても快復可
能となる。又前記アンモニヤ漏洩を検知するセンサは、
固定子収納空間内に配設するのがよい。
In this case, making the stator housing space airtight with respect to the outside prevents the invasion of moisture and the like from the outside and further improves the corrosion resistance and insulation resistance. And, of course, the progress of the corrosion resistance and the insulation resistance is delayed by the operation, but since the ammonia is basically in a leaking state, the portion where the ammonia is in the stator housing space and the stator housing space and The member is preferably subjected to corrosion resistance and insulation resistance and ammonia resistance treatment. In this case, it is most necessary to use a material that is reversible with respect to other properties, such as insulation resistance, in the coating process, so that it can be placed in a primary ammonia refrigerant atmosphere. It will be recoverable. Also, the sensor for detecting the ammonia leak is as follows:
It is good to arrange in the stator storage space.

【0011】[0011]

【作用】かかる技術手段によれば、キャンのシール性劣
化により固定子収納空間内にアンモニヤ冷媒ガスが流入
した場合でも、回転圧縮機側の負荷運転の停止要請があ
った場合に、直ちに前記キャンドモータを停止させる事
なく、実質的に所定時間無負荷運転を行う為に、圧縮機
側のロータ/ケーシング間のシール性能が低下する事な
く、キャンドモータ側に洩出するアンモニヤ圧力をの吸
入圧力とほぼ同一に維持する事が出来、言換えれば固定
子収納空間内の固定子線輪等の耐絶縁性と耐腐触性の劣
化が増進されない雰囲気状態を維持できるために、固定
子線輪等の絶縁抵抗の劣化が促進されずに継続運転を行
う事が出来、従って定期的な保守点検等のバックアップ
体制の時点まで、短絡等が生じる事なく安全に継続運転
とることができる。
According to the above technical means, even if ammonia refrigerant gas flows into the stator housing space due to deterioration of the sealing property of the can, the can compressor is immediately turned off when there is a request to stop the load operation on the rotary compressor side. In order to perform the no-load operation for a predetermined time without stopping the motor, the suction pressure of the ammonia pressure leaking to the canned motor side without lowering the sealing performance between the rotor and the casing on the compressor side. In other words, the stator wire loop in the stator housing space can be maintained in an atmosphere in which the deterioration of insulation resistance and corrosion resistance is not promoted. The continuous operation can be performed without promoting the deterioration of the insulation resistance, etc.

【0012】[0012]

【実施例】以下、図面に基いて本発明の実施例を例示的
に詳しく説明する。但し、この実施例に記載されている
構成部品の寸法、材質、形状、その相対配置等は、特に
特定的な記載がない限り、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。先ず
図2は、アンモニヤ冷媒ガス雰囲気中の固定子線輪等の
絶縁抵抗値とガス圧力との関係を示しており、例えばA
が一般の絶縁材でB曲線はエナメル処理をした場合、A
がポリエチレンなどでコーテング処理をした場合の2種
の材料の特性曲線を表してある。本図より理解されるよ
うに耐触性のよい絶縁剤で絶縁処理を施してもアンモニ
ヤ冷媒雰囲気中では、その圧力の増加に伴って短時間の
内に電気的絶縁性が低下してしまうが、Bの非可逆性の
従来のものは快復することがない。可逆性のある前記の
Aのようなコーテングでは、ガス圧に余り影響を受けな
い許容範囲内にある絶縁特性をもった材料を選択すれば
冷媒圧力の低い範囲では絶縁抵抗が高く暫時の運転を継
続することが可能でこの間に内部のガスを排除すること
が可能となる。そしてポリエチレンは前記図2より明ら
かなように、耐アンモニヤ性が高いために後記する固定
子に巻装する固定子線輪や導出電線の被覆或いは結線接
続の導電部、貫通端子の密封部の絶縁処理に用いるのが
よい。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, unless otherwise specified. It is only an example. First, FIG. 2 shows a relationship between an insulation resistance value of a stator coil and the like in an ammonia refrigerant gas atmosphere and a gas pressure.
Is a general insulation material and the curve B is A
3 shows characteristic curves of two kinds of materials when coated with polyethylene or the like. As can be understood from this figure, even if the insulation treatment is performed with an insulating agent having good contact resistance, in an ammonia refrigerant atmosphere, the electrical insulation deteriorates within a short time as the pressure increases. , B will not recover. In a coating such as A, which has reversibility, if a material having an insulating property within an allowable range that is not so affected by the gas pressure is selected, the insulation resistance is high in a low range of the refrigerant pressure, and the temporary operation is performed. It is possible to continue and during this time it is possible to eliminate the gas inside. As apparent from FIG. 2 above, polyethylene has a high resistance to ammonia, so that the insulation of the conductive part for covering or connecting the stator wire loop or lead-out wire wound on the stator and the lead-through terminal, which will be described later, Good for processing.

【0013】図1は、本発明の実施例に係る流体機械に
一体結合したキャンドモ−タの一部切欠断面図を示して
おり、1は、キャンドモ−タ2に直結駆動されるアンモ
ニヤ冷媒ガス圧縮用の油冷式スクリュー圧縮機その他の
回転圧縮機で、高圧口(吐出口11)と低圧口(吸気口
12)を有し平行な軸線をもつ相交わる2つのボア(筐
筒)からなる作用空間を有するケーシングと、前記ボア
内に配置され、360°以下の包み角を有する互いに噛
合される一対の雄、雌ロータからなり、スライド弁によ
るスライド制御により圧縮比と負荷/無負荷運転制御を
行う事が出来る。係る構成は周知である。
FIG. 1 is a partially cutaway cross-sectional view of a canned motor integrally connected to a fluid machine according to an embodiment of the present invention. Reference numeral 1 denotes an ammonia refrigerant gas compression directly driven to a canned motor 2. Of oil-cooled screw compressors and other rotary compressors for use with two intersecting bores (housings) having a high pressure port (discharge port 11) and a low pressure port (inlet port 12) and having parallel axes. A casing having a space, and a pair of male and female rotors disposed in the bore and engaged with each other and having a wrap angle of 360 ° or less, the compression ratio and the load / no-load operation control are controlled by slide control by a slide valve. Can do it. Such a configuration is well known.

【0014】一方、該圧縮機1に直結されたキャンドモ
−タ2の構成について説明するに、円筒状の外殻フレー
ム21の内周面には固定子鉄心22が嵌着され、該固定
子鉄心22に巻回された固定子線輪23は、その線輪端
を固定子鉄心22の両側から軸方向に突出させている。
回転子24は、キャン25を介して固定子鉄心22の内
径に対して僅かな空隙を存して対向配置すると共に、中
心に貫通装着された回転軸26を介してフレーム21軸
方向両端側に配設した円板状ブラケット27の中心部の
軸受支持部に嵌着された軸受28に回転自在に支承され
ている。更に回転軸26は、圧縮機1内に延設し、該圧
縮機1のロータ13、14にトルクを伝達する。尚、軸
受28には公知の様に潤滑油が強制潤滑されている。又
前記ブラケット27と固定子鉄心22側端間には夫々ブ
ラケット27側にリング状のフランジ部29aを有する
補強筒29を配設すると共に、前記固定子鉄心22内周
面と補強筒29の内周面の回転子収納空間24Aと対面
する部位にキャン25を嵌挿させるとともに、必要に応
じて、軸受28の支持部の外周側をキャン25の内径よ
り若干小径の円筒状に突出させるとともに、軸方向にO
リングを介装させて回転子収納空間24Aをその外周側
に位置する固定子収納空間22Aに対し、封止してい
る。このフレーム21、ブラケット27で構成される固
定子収納空間は耐圧力密封構造をなしている。
On the other hand, the construction of the canned motor 2 directly connected to the compressor 1 will be described. A stator core 22 is fitted on an inner peripheral surface of a cylindrical outer shell frame 21 and the stator core 22 is fitted. The stator wire loop 23 wound around 22 has its wire end projected axially from both sides of the stator core 22.
The rotor 24 is opposed to the inner diameter of the stator core 22 via the can 25 with a small gap therebetween, and is disposed on both ends in the axial direction of the frame 21 via the rotating shaft 26 which is mounted at the center. The disk-shaped bracket 27 is rotatably supported by a bearing 28 fitted to a bearing support at the center of the disk-shaped bracket 27. Further, the rotating shaft 26 extends inside the compressor 1 and transmits torque to the rotors 13 and 14 of the compressor 1. The bearing 28 is forcibly lubricated with lubricating oil as is well known. A reinforcing cylinder 29 having a ring-shaped flange portion 29a is provided between the bracket 27 and the stator core 22 side on the bracket 27 side, respectively. The can 25 is fitted into a portion of the peripheral surface facing the rotor storage space 24A, and, if necessary, the outer peripheral side of the support portion of the bearing 28 is projected into a cylindrical shape slightly smaller in diameter than the inner diameter of the can 25, O in the axial direction
The rotor housing space 24A is sealed to the stator housing space 22A located on the outer peripheral side by interposing a ring. The stator housing space constituted by the frame 21 and the bracket 27 has a pressure-resistant sealing structure.

【0015】32は、キャン25のシール性劣化により
固定子収納空間22A側に浸入したアンモニヤガスを検
知する冷媒検出センサで、外殻フレーム21の内周面側
に配置し、その信号検知用リード線をフレーム21外周
側に導出可能に構成している。33は、例えば3相に巻
装した固定子線輪23を所定の結線接続した後、導出電
線(不図示)を外殻フレーム21の壁部より機外に貫通
させる封止型貫通端子で、前記固定子線輪23及び導出
電線は、夫々外殻フレーム21内でアンモニヤ冷媒ガス
に触れる機会があるため、ポリエチレン材で電気的絶縁
被覆を施した電線を用いるとともに、各相の前記接続部
及び貫通端子33の絶縁部や封止部に夫々に絶縁層を形
成した後、その表面をポリエチレン材からなる耐アンモ
ニヤ処理層によって被覆する。又固定子線輪23、前記
センサ32用リード線も同様にこれらの電線及び端子部
について、一旦電気的絶縁処理を施してからその上にポ
リエチレン材からなる耐アンモニヤ処理層によって被覆
する。
Reference numeral 32 denotes a refrigerant detection sensor for detecting ammonia gas that has entered the stator housing space 22A due to deterioration of the sealing performance of the can 25. The refrigerant detection sensor is disposed on the inner peripheral surface side of the outer frame 21 and has a signal detection lead. The wire can be led out to the outer peripheral side of the frame 21. Reference numeral 33 denotes a sealed-type through terminal for passing out a lead wire (not shown) from the wall of the outer shell frame 21 to the outside after connecting the stator wire loops 23 wound in, for example, three phases in a predetermined manner. The stator wire loop 23 and the lead wires each have an opportunity to come into contact with the ammonia refrigerant gas in the outer shell frame 21. Therefore, while using wires that are electrically insulated and coated with a polyethylene material, the connecting portions and After an insulating layer is formed on each of the insulating portion and the sealing portion of the through terminal 33, the surface thereof is covered with an ammonia-resistant layer made of a polyethylene material. Similarly, the stator wire loop 23 and the lead wires for the sensor 32 are also subjected to an electrical insulation treatment once for these electric wires and terminal portions, and then covered with an ammonia-resistant layer made of a polyethylene material.

【0016】次に本実施例におけるアンモニヤ冷媒用の
固定子収納空間への冷媒漏洩時の圧縮装置運転方法を説
明する。先ずキャン25のシール能が円滑に機能してい
る間は、言い換えれば正常の運転時ではセンサが固定子
収納空間22A側のアンモニヤ洩出を検知しない間は、
キャンドモータの運転が行われる。そしてキャン25の
シール能が劣化して、固定子収納空間22A側にアンモ
ニヤ冷媒ガスが漏洩した場合は、これをセンサが直ちに
検知し冷媒排出の運転に切換える。即ち前記固定子収納
空間22A内におけるアンモニヤ漏洩を検知した後にも
継続して運転をおこないつつもアンモニヤ冷媒の排出を
行い終了後(STEP5)にキャンドモータの回転を停
止させる。
Next, a description will be given of a method of operating the compressor when the refrigerant leaks into the stator housing space for the ammonia refrigerant in this embodiment. First, while the sealing ability of the can 25 is functioning smoothly, in other words, during normal operation, while the sensor does not detect leakage of ammonia in the stator storage space 22A side,
The operation of the canned motor is performed. When the sealing ability of the can 25 deteriorates and the ammonia refrigerant gas leaks to the stator housing space 22A side, the sensor immediately detects this and switches to the operation of discharging the refrigerant. That is, while detecting the ammonia leak in the stator housing space 22A, the operation is continued, the ammonia refrigerant is discharged, and the rotation of the canned motor is stopped after the end (STEP 5).

【0017】これにより固定子収納空間22A側は、ア
ンモニヤ冷媒ガス圧力の上昇による固定子線輪23等の
絶縁抵抗の低下を招くことなく、固定子線輪には支承を
及ぼすことなく、臨機に対応処置を講じ、キャンの万一
の損傷に対しても冷媒を外気側に全く漏洩させることな
く信頼性よく運転をすることが可能になるので、冷媒が
外気側に全く漏洩し公害等を発するようなこともなく安
全性を確保することができる。
As a result, the stator housing space 22A does not cause a decrease in the insulation resistance of the stator wire ring 23 or the like due to the increase in the ammonia refrigerant gas pressure, does not exert any bearing on the stator wire ring, and has no Taking appropriate measures, even in the unlikely event that the can is damaged, it is possible to operate reliably without causing the refrigerant to leak to the outside air at all, so that the refrigerant leaks to the outside air at all and causes pollution, etc. Safety can be ensured without such a problem.

【0018】[0018]

【発明の効果】以上記載した如く本発明によれば、圧縮
機側よりアンモニヤ冷媒の環境下におけるキャンの万一
の損傷に対し回転子収納空間と固定子収納空間を耐圧力
気密的に構成しキャンの封止機能が劣化した場合におい
ても、外気側に冷媒を全く漏洩させることがなくキャン
の障害処置を講じる事が出来る。またキャンのみの修復
のみで差支えなく、固定子線輪の短絡などによるモータ
の焼損を阻止できるものである。
As described above, according to the present invention, the rotor accommodating space and the stator accommodating space are configured to be pressure-resistant and airtight against emergency damage to the can under the environment of the ammonia refrigerant from the compressor side. Even if the sealing function of the can deteriorates, it is possible to take measures for the failure of the can without causing the refrigerant to leak to the outside air at all. Also, the motor can be prevented from being burned due to a short circuit of the stator wire loop or the like, by simply restoring only the can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係るアンモニヤ冷媒圧縮装置
のキャンドモ−タの一部破断断面図を表す。作用図であ
る。
FIG. 1 is a partially broken sectional view of a canned motor of an ammonia refrigerant compression device according to an embodiment of the present invention. FIG.

【図2】アンモニヤ冷媒ガス雰囲気中にある固定子線輪
等の電気的絶縁抵抗とガス圧力との関係を示す特性曲線
グラフ図を表す。
FIG. 2 is a characteristic curve graph showing a relationship between an electric insulation resistance of a stator coil or the like in an ammonia refrigerant gas atmosphere and a gas pressure.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 キャンドモ−タ 23 固定子線輪 24 回転子 22 固定子鉄心 25 キャン 26 回転軸 12 冷媒検出センサ DESCRIPTION OF SYMBOLS 1 Compressor 2 Cand motor 23 Stator wire 24 Rotor 22 Stator iron core 25 Can 26 Rotation axis 12 Refrigerant detection sensor

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F04B 39/00 F04B 49/10 F04C 29/10 H02K 3/44 H02K 5/128 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F04B 39/00 F04B 49/10 F04C 29/10 H02K 3/44 H02K 5/128

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外殻フレーム内周側に固設した固定子鉄
心と、回転軸を介して軸受により支持された回転子と前
記固定子鉄心との間の狭い空隙に金属製薄肉円筒状のキ
ャンを挿入したキャンドモータにアンモニヤ冷媒用圧縮
機を直結し、圧縮機側軸封部より洩出したアンモニヤ冷
媒を回転子収納空間で封止可能に構成したアンモニヤ冷
媒用回転圧縮装置において 前記キャンの外周側に位置する固定子収納空間を耐圧力
密封構造とするとともに、前記固定子収納空間内に位
する電装部品に対し耐アンモニヤ処理剤を被覆処理し、
更に該固定子収納空間にアンモニヤ漏洩検知センサを配
して、該アンモニヤ漏洩検知センサによって前記固定
子収納空間へのアンモニヤの漏洩が検知されると、アン
モニヤ冷媒の排出終了の後、前記キャンドモータの回転
を停止するようにしたことを特徴とするアンモニヤ冷媒
用回転圧縮装置
1. A stator iron fixed to an inner peripheral side of an outer shell frame.
Rotor supported by bearings via a core and a rotating shaftAnd before
Between the stator iron coreMetal thin cylindrical key in a narrow space
Ammonia to the canned motorFor refrigerantcompression
Directly connected to the compressor, ammonia cold leaked from the compressor shaft seal
Ammonia-cooled so that the medium can be sealed in the rotor storage space
In medium rotary compressor,  The stator storage space located on the outer peripheral side of the can
Sealed structureAlong withInside the stator storage spaceSecond placePlace
To the electrical components to be treated with an ammonia-resistant treatment agent,
Further, an ammonia leak detection sensor is provided in the stator storage space.
SettingThen, the fixed by the ammonia leak detection sensor
If leakage of ammonia into the child storage space is detected,
After the discharge of the monya refrigerant, the rotation of the canned motor is started.
To stopAmmonia refrigerant characterized by the following
Rotary compression device.
【請求項2】 前記耐アンモニヤ処理剤にポリエチレン
その他の可逆性のある材料を用いた請求項1記載のアン
モニヤ冷媒用回転圧縮装置
2. The rotary compression device for an ammonia refrigerant according to claim 1, wherein said ammonia-resistant treatment agent is made of polyethylene or another reversible material .
【請求項3】 外殻フレーム内周側に固設した固定子鉄
心と、回転軸を介して軸受により支持された回転子と前
記固定子鉄心との間の狭い空隙に金属製薄肉円筒状のキ
ャンを挿入して回転子収納空間を密封構造としてなるキ
ャンドモータにアンモニヤ用回転圧縮機を直結し、圧縮
機側より洩出したアンモニヤを前記回転子収納空間で封
止可能に構成したアンモニヤ用回転圧縮装置の運転方法
において 前記キャンの外周側に位置する固定子収納空間に配置さ
れたアンモニヤ漏洩検知センサによって前記固定子収納
空間内におけるアンモニヤ漏洩が検知された後にも継続
して運転をおこないつつも、回転圧縮機側の負荷運転の
停止要請があった場合に、直ちに前記キャンドモータを
停止させる事なく、アンモニヤ冷媒圧力排除の為に所定
時間運転を行い、少なくとも固定子収納空間内における
アンモニヤ圧力をほぼ常圧下に低下させた後キャンドモ
ータの回転を停止させる事を特徴とするアンモニヤ用回
転圧縮装置の運転方法
3. A stator iron fixed to an inner peripheral side of an outer shell frame.
Rotor supported by bearings via a core and a rotating shaftAnd before
Between the stator iron coreMetal thin cylindrical key in a narrow space
Key to make the rotor storage space a hermetic structure
Directly connects a rotary compressor for ammonia to the
The leaked ammonia from the machine side is sealed in the rotor storage space.
Method of operating rotary compression device for ammonia that can be stopped
At,  In the stator storage space located on the outer peripheral side of the canArranged
Stator storage by leaked ammonia leak detection sensor
In spaceLeaks in waterWas detectedContinue after
While the load is running on the rotary compressor side.
When there is a stop request, immediately start the canned motor.
Predetermined to eliminate ammonia refrigerant pressure without stopping
Time operation, at least in the stator storage space
After reducing the ammonia pressure to almost normal pressure,
Rotation for ammonia, characterized by stopping the rotation of the motor
Operation method of rolling compression device.
JP20289693A 1993-07-23 1993-07-23 Rotary compressor for ammonia refrigerant using canned motor and method of operating the same Expired - Fee Related JP3348118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20289693A JP3348118B2 (en) 1993-07-23 1993-07-23 Rotary compressor for ammonia refrigerant using canned motor and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20289693A JP3348118B2 (en) 1993-07-23 1993-07-23 Rotary compressor for ammonia refrigerant using canned motor and method of operating the same

Publications (2)

Publication Number Publication Date
JPH0735074A JPH0735074A (en) 1995-02-03
JP3348118B2 true JP3348118B2 (en) 2002-11-20

Family

ID=16464999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20289693A Expired - Fee Related JP3348118B2 (en) 1993-07-23 1993-07-23 Rotary compressor for ammonia refrigerant using canned motor and method of operating the same

Country Status (1)

Country Link
JP (1) JP3348118B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515990B2 (en) 2010-04-06 2014-06-11 株式会社Ihi Turbo compressor and turbo refrigerator
US8593024B2 (en) * 2010-04-12 2013-11-26 Hamilton Sundstrand Space Systems International, Inc. Implementation of a non-metallic barrier in an electric motor

Also Published As

Publication number Publication date
JPH0735074A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
EP1291528B1 (en) Scroll compressor and refrigerating system using ammonia group refrigerant
WO2015136977A1 (en) Compressor and refrigeration cycle device
JP2003527538A (en) Motor protector on non-orbiting scroll
JP2010001859A (en) Electric compressor
KR20010035865A (en) Apparatus for preventing superheating of scroll compressor
US20090285703A1 (en) Motor-Driven Compressor
JP3348118B2 (en) Rotary compressor for ammonia refrigerant using canned motor and method of operating the same
JP5013714B2 (en) Electric compressor
JP6416645B2 (en) Hermetic compressor
CN100396929C (en) Compressor and overload protecting apparatus
JPS6131685A (en) Compressor
JP2005171943A (en) Hermetic compressor for ammonia refrigerant
JP2010106683A (en) Compressor
JP7270158B2 (en) Compressor motor, compressor, and method for manufacturing compressor motor
JP3893904B2 (en) Electric compressor
JPH10318173A (en) Refrigerant compressor
JP2007192184A (en) Electric compressor
WO2003083308A1 (en) Rotary compressor
JP4062586B2 (en) Compressor for ammonia refrigerant
JP7165896B2 (en) Compressor and refrigeration cycle device using the same
JP4104534B2 (en) Hermetic compressor
KR0136048Y1 (en) Hermetic rotary compressor
JP2596474Y2 (en) Fully sealed motor
JP5243088B2 (en) Electric compressor
JP2001263239A (en) Hermetically sealed compressor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees