JP3346490B2 - Hexagonal pressurized fluidized bed boiler main body suspension structure and main body reinforcement structure - Google Patents

Hexagonal pressurized fluidized bed boiler main body suspension structure and main body reinforcement structure

Info

Publication number
JP3346490B2
JP3346490B2 JP12577493A JP12577493A JP3346490B2 JP 3346490 B2 JP3346490 B2 JP 3346490B2 JP 12577493 A JP12577493 A JP 12577493A JP 12577493 A JP12577493 A JP 12577493A JP 3346490 B2 JP3346490 B2 JP 3346490B2
Authority
JP
Japan
Prior art keywords
hexagonal
boiler
main body
steam
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12577493A
Other languages
Japanese (ja)
Other versions
JPH06337102A (en
Inventor
勝実 菊地
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP12577493A priority Critical patent/JP3346490B2/en
Publication of JPH06337102A publication Critical patent/JPH06337102A/en
Application granted granted Critical
Publication of JP3346490B2 publication Critical patent/JP3346490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は六角形加圧流動層ボイラ
に係わり、更に詳しくは、六角形加圧流動層ボイラの本
体吊下げ構造と本体補強構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hexagonal pressurized fluidized-bed boiler, and more particularly, to a suspended structure and a main body reinforcing structure of a hexagonal pressurized fluidized-bed boiler.

【0002】[0002]

【従来の技術】加圧下で石炭を流動燃焼させる加圧流動
層ボイラ(Pressurised Fluidized Bed Combuster)は、
ガスタービンと組み合わせたコンバインドサイクルによ
り40%以上の熱効率を有し、炉内脱硫率が高く、NO
x の発生量が少ない、等の特徴を有することから、従来
の微粉焚ボイラに代わる新型ボイラとして現在開発が進
められている。かかる加圧流動層ボイラは、例えば図8
に示すように、ボイラ本体1、サイクロン2、ベッド材
貯蔵容器3、等が圧力容器4内に格納された構成のもの
であり、外部から供給さた石炭Cをボイラ本体1内で燃
焼させ、その排ガスはサイクロン2に送られ、サイクロ
ン2で灰が除去された排ガスが外部のガスタービン(図
示せず)に供給され仕事(例えば発電機の駆動)をする
ようになっている。また、ボイラ本体1内には、石炭
灰、砂等のベッド材が下方から供給される空気Aにより
流動した流動層Bが形成されており、この流動層B内に
は、水蒸気を発生させるための蒸発器5、過熱器6、及
び再熱器7が挿入されている。流動層B内で石炭の燃焼
により発生した熱により、蒸発器5内で水が蒸発して水
蒸気となり、過熱器6内で水蒸気が更に加熱されて過熱
蒸気となり、この過熱蒸気は外部に設けられた蒸気ター
ビン(図示せず)で膨張し仕事をする。更に、蒸気ター
ビンで温度が下がった蒸気は、再熱器7で再度加熱され
て過熱蒸気となり、外部の蒸気タービンで再び仕事をす
るようになっている。図5は、ボイラ本体1が六角柱の
形態をなす六角形加圧流動層ボイラ(以下、六角流動層
ボイラという)の全体構成図である。この図において、
六角流動層ボイラは、図8と同様に、ボイラ本体1、サ
イクロン2、ベッド材貯蔵容器3、等が圧力容器4内に
格納された構成のものであり、外部から供給さた石炭を
ボイラ本体1内で燃焼させ、その排ガスが排ガスマニホ
ールドを介してサイクロン2に送られ、サイクロン2で
灰が除去された排ガスは外部のガスタービン(図示せ
ず)に供給され仕事をするようになっている。図6は、
六角流動層ボイラのボイラ本体まわりを示す斜視図であ
り、六角柱のボイラ本体1とその底部10、及びボイラ
本体1を吊り下げる支持梁9からなる。ボイラ本体1と
その底部10は明瞭化のため分離して示している。ボイ
ラ本体1は、3つの菱形柱1a、1b、1cが隣接した
構成であり、内部には仕切りがなく、六角柱の各面は水
管壁からなり、六角柱の各隅部はヘッダで構成されてい
る。3つの菱形柱1a、1b、1cの上面には菱形の開
口があり、この開口から内部の層内管を取り出せるよう
になっている。ボイラ本体1の底部10は、六角形と三
叉で構成された蒸気ヘッダ8と、灰シュート11とから
なり、蒸気ヘッダ8の下面から灰シュート11を介して
灰を含んだベッド材を取り出すことができるようになっ
ている。また、ボイラ本体1の底部10には3つの菱形
柱1a、1b、1cのそれぞれに対応して、低温再熱蒸
気用の蒸気ヘッダ20(Cold ReheatPipe)が2本づつ対
向して配置されている(図には菱形柱1a用だけを示
す)。図7は、図5のA−A線における水平断面図であ
る。この図において、ボイラ本体1は、水平断面が六角
形の内部を有し、6つの鉛直な水管壁12a、12b
と、六角形の閉じたバックステー14とからなる。ま
た、六角形の内部は、中心から互いに120°隔てた3
本の仮想一点鎖線で3つの空間に区分される。すなわ
ち、六角形の内部は、隣接する2つの水管壁12a、1
2bを平行四辺形の2辺とする水平断面が平行四辺形の
3空間からなる。それぞれの空間には、一方の水管壁1
2aに平行で、かつ他方の水管壁12bに一端が隣接
し、互いに鉛直面が平行な第1の層内管群16aと、一
方の水管壁12aに平行で、かつ前記第1の層内管群1
6aの他端に一端が隣接し、互いに鉛直面が平行な第2
の層内管群16bとが配置されている。
2. Description of the Related Art A pressurized fluidized bed boiler (Pressurized Fluidized Bed Combuster) that fluidly burns coal under pressure is
Combined cycle combined with gas turbine has thermal efficiency of 40% or more, high desulfurization rate in furnace, NO
Due to its features such as low x generation, it is currently being developed as a new type of boiler that replaces the conventional fine-powder boiler. Such a pressurized fluidized bed boiler is shown in FIG.
As shown in FIG. 1, the boiler body 1, the cyclone 2, the bed material storage container 3, and the like are configured to be stored in the pressure vessel 4, and the coal C supplied from the outside is burned in the boiler body 1, The exhaust gas is sent to the cyclone 2, and the exhaust gas from which the ash has been removed by the cyclone 2 is supplied to an external gas turbine (not shown) to perform work (for example, drive a generator). Further, a fluidized bed B in which bed materials such as coal ash and sand are fluidized by air A supplied from below is formed in the boiler main body 1. Evaporator 5, superheater 6, and reheater 7 are inserted. Due to the heat generated by the combustion of the coal in the fluidized bed B, the water evaporates in the evaporator 5 to become steam, and the steam is further heated in the superheater 6 to become superheated steam. This superheated steam is provided outside. The steam turbine (not shown) expands and works. Further, the steam whose temperature has been lowered by the steam turbine is heated again by the reheater 7 to become superheated steam, and works again by the external steam turbine. FIG. 5 is an overall configuration diagram of a hexagonal pressurized fluidized-bed boiler (hereinafter, referred to as a hexagonal fluidized-bed boiler) in which the boiler body 1 has a hexagonal column shape. In this figure,
The hexagonal fluidized-bed boiler has a configuration in which a boiler main body 1, a cyclone 2, a bed material storage container 3, and the like are stored in a pressure vessel 4, as in FIG. 1, the exhaust gas is sent to a cyclone 2 via an exhaust gas manifold, and the exhaust gas from which the ash has been removed by the cyclone 2 is supplied to an external gas turbine (not shown) for work. . FIG.
It is a perspective view which shows the boiler main body periphery of a hexagonal fluidized-bed boiler, It consists of the boiler main body 1 of a hexagonal column, its bottom part 10, and the support beam 9 which suspends the boiler main body 1. FIG. The boiler body 1 and its bottom 10 are shown separately for clarity. The boiler body 1 has a configuration in which three rhombic columns 1a, 1b, and 1c are adjacent to each other. There are no partitions inside, each surface of the hexagonal column is formed of a water pipe wall, and each corner of the hexagonal column is formed of a header. Have been. On the upper surfaces of the three rhombic columns 1a, 1b, 1c, there are rhombic openings, through which the inner tube can be taken out. The bottom portion 10 of the boiler main body 1 is composed of a steam header 8 formed of a hexagon and a three-pronged portion, and an ash chute 11, and a bed material containing ash can be taken out from the lower surface of the steam header 8 via the ash chute 11. I can do it. Further, two steam headers 20 (Cold Reheat Pipes) for low-temperature reheat steam are arranged on the bottom 10 of the boiler main body 1 so as to face each of the three rhombic columns 1a, 1b, and 1c. (Only the diamond-shaped pillar 1a is shown in the figure). FIG. 7 is a horizontal sectional view taken along line AA of FIG. In this figure, a boiler body 1 has a hexagonal horizontal section and six vertical water pipe walls 12a, 12b.
And a hexagonal closed back stay 14. The inside of the hexagon is 3 ° away from the center by 120 °.
The book is divided into three spaces by a virtual dashed line. That is, the inside of the hexagon is formed by two adjacent water pipe walls 12a, 1a.
A horizontal section having 2b as two sides of a parallelogram is formed of three parallelogram spaces. Each space has one water pipe wall 1
A first inner tube group 16a which is parallel to 2a and one end of which is adjacent to the other water tube wall 12b and whose vertical planes are parallel to each other; and the first layer tube group which is parallel to one water tube wall 12a and Inner tube group 1
6a, one end of which is adjacent to the other end and whose vertical faces are parallel to each other.
And the in-layer tube group 16b.

【0003】[0003]

【発明が解決しようとする課題】図6に示したようにボ
イラ本体1は支持梁9により吊り下げられ、下方に自由
に膨張できるようになっている。従って、支持梁9には
ボイラ本体1とその内部のベッド材(流動媒体)の総重
量である大きな荷重(例えば約1200トン)が作用す
る。また、支持梁9は、3つの菱形柱1a、1b、1c
の上面の菱形開口から内部の層内管を取り出すため、菱
形開口の上方に梁を設けることができない。そのため、
支持梁9は、図示のように三叉部分9aと六角形部分9
bからなり、三叉部分9aに全重量の約半分の重さが作
用する。すなわち、三叉部分9aに接続する頂点Aのそ
れぞれには全重量の約1/4(約300トン)が作用
し、三叉部分9aと接続しない頂点Bのそれぞれには全
重量の約1/12(約100トン)しか作用しないこと
がわかった。このため図示のように六角形部分9bの6
辺のうちの3辺の両側に張出し部を設け、この張出し部
を圧力容器の内面で支持すると、頂点Aと頂点Bとで受
ける荷重が不均一であり、頂点Aからの張出し部を支持
する圧力容器に部分的に過大な応力が発生する問題点が
あった。本発明の第1の発明は、かかる問題点を解決す
るために創案されたものである。すなわち、本発明の第
1の発明の目的は、支持梁の張出し部に作用する荷重を
均一化し、圧力容器に生じる応力を低減することができ
る六角形加圧流動層ボイラの本体吊下げ構造を提供する
ことにある。
As shown in FIG. 6, the boiler body 1 is suspended by a support beam 9 so that it can be freely expanded downward. Accordingly, a large load (for example, about 1200 tons), which is the total weight of the boiler main body 1 and the bed material (fluid medium) therein, acts on the support beam 9. The support beam 9 has three rhombic columns 1a, 1b, 1c.
A beam cannot be provided above the diamond-shaped opening because the inner layer tube is taken out from the diamond-shaped opening on the upper surface of the diamond. for that reason,
The support beam 9 includes a triangular portion 9a and a hexagonal portion 9 as shown.
and about half of the total weight acts on the forked portion 9a. That is, approximately 1/4 (approximately 300 tons) of the total weight acts on each of the vertices A connected to the fork 9a, and approximately 1/12 of the total weight on each of the vertices B not connected to the fork 9a. (Approximately 100 tons). For this reason, as shown in FIG.
If overhangs are provided on both sides of three sides of the sides and the overhangs are supported on the inner surface of the pressure vessel, the loads received at the vertices A and B are uneven, and the overhangs from the apex A are supported. There is a problem that an excessive stress is partially generated in the pressure vessel. The first invention of the present invention has been made to solve such a problem. That is, an object of the first invention of the present invention is to provide a hexagonal pressurized fluidized-bed boiler main body suspension structure capable of equalizing the load acting on the projecting portion of the support beam and reducing the stress generated in the pressure vessel. To provide.

【0004】また、上述した六角流動層ボイラにおい
て、圧力容器内は高圧であり(例えば10ata)、ボ
イラ本体1の内外差圧は6000mmAq〜7000m
mAqに達し、ボイラ本体には6〜7ton/m2 の外
圧が作用する。図7に示したように、ボイラ本体1の内
部には層内管群16a、16bが密に配置されており、
これらは図示しない連結部材で連結されているので、外
圧を受けることができる。しかし、図6に示すように、
ボイラ本体1の底部10は、六角形と三叉で構成された
蒸気ヘッダ8と、灰シュート11とからなり、蒸気ヘッ
ダ8で囲まれる3つの平行四辺形の部分にはその一辺F
に平行に複数の連結蒸気管22が配列されている。この
ため連結蒸気管22で連結されない蒸気ヘッダ8(図に
Fで示す)は、外圧を受けると内側に撓み、大きな応力
が発生する問題点があった。本発明の第2の発明は、か
かる問題点を解決するために創案されたものである。す
なわち、本発明の第2の発明の目的は、差圧による外圧
を受けてもボイラ本体の底部の蒸気ヘッダに大きな撓み
や応力が発生しない本体補強構造を提供することにあ
る。
In the above-mentioned hexagonal fluidized-bed boiler, the pressure inside the pressure vessel is high (for example, 10 ata), and the pressure difference between the inside and outside of the boiler body 1 is 6000 mmAq to 7000 m.
mAq, and an external pressure of 6 to 7 ton / m 2 acts on the boiler body. As shown in FIG. 7, in-boiler tube groups 16a and 16b are densely arranged inside the boiler main body 1,
Since they are connected by a connecting member (not shown), they can receive an external pressure. However, as shown in FIG.
The bottom portion 10 of the boiler main body 1 is composed of a steam header 8 formed of a hexagon and a trifurcation, and an ash chute 11, and three parallelogram portions surrounded by the steam header 8 have one side F thereof.
Are connected in parallel to each other. Therefore, there is a problem that the steam header 8 (shown by F in the figure) not connected by the connecting steam pipe 22 bends inward when subjected to an external pressure, and a large stress is generated. The second invention of the present invention has been made to solve such a problem. That is, an object of the second invention of the present invention is to provide a main body reinforcing structure in which a steam header at the bottom of a boiler main body does not generate large bending or stress even when subjected to an external pressure due to a differential pressure.

【0005】[0005]

【課題を解決するための手段】本発明によれば、圧力容
器内に格納され内部に流動層を形成するボイラ本体と、
該ボイラ本体を吊り下げる支持梁とを備え、前記ボイラ
本体は、互いに隣接した3つの菱形柱からなり、前記支
持梁は、前記3つの菱形柱の上面境界線に沿って圧力容
器の中心から半径方向に3方向に延びる三叉部分と、前
記ボイラ本体の六角形の上面と整合した六角形部分とか
らなり、前記三叉部分の外端は前記六角形部分の6つの
頂点のうち1つおきの3つの頂点Aに連結されており、
前記六角形部分は、更に、三叉部分が連結された3つの
頂点Aから六角形の辺に沿って延びる2つの張出し部分
と、三叉部分が連結されない3つの頂点Bから六角形の
辺の一方に沿って延びる1つの張出し部分とを有し、前
記張出し部分の外端は、圧力容器の内面に支持されてい
る、ことを特徴とする六角形加圧流動層ボイラの本体吊
下げ構造が提供される。
According to the present invention, a boiler body stored in a pressure vessel and forming a fluidized bed therein,
A support beam for suspending the boiler body, wherein the boiler body comprises three diamond-shaped pillars adjacent to each other, and the support beam has a radius from the center of the pressure vessel along the upper surface boundary of the three diamond-shaped pillars. And a hexagonal portion aligned with the hexagonal top surface of the boiler body, and the outer end of the trifurcation portion is formed at every third vertex of the six vertices of the hexagonal portion. Connected to two vertices A,
The hexagonal portion further includes two overhanging portions extending along three sides of the hexagon from three vertices A to which the three-pointed portion is connected, and one of the sides of the hexagon from three vertices B to which the three-pointed portion is not connected. And an outer end of the overhang portion is supported on an inner surface of the pressure vessel. You.

【0006】更に本発明によれば、圧力容器内に格納さ
れたボイラ本体の下面に設けられた蒸気ヘッダと、該蒸
気ヘッダより下方に延び水管壁で構成された灰シュート
とを備え、前記ボイラ本体は、互いに隣接した3つの菱
形柱からなり、前記蒸気ヘッダは、前記3つの菱形柱の
下面境界線に沿って圧力容器の中心から半径方向に3方
向に延びる三叉部分と、前記ボイラ本体の六角形の下面
と整合した六角形部分とからなり、前記三叉部分と前記
六角形部分の6つの辺のうち1つおきの3つの辺Eは、
残る辺Fに平行な複数の連結蒸気管で連結され、前記連
結蒸気管で連結されない辺Fと最も外方の連結蒸気管
は、六角形部分の前記辺Eに平行でかつ間隔を隔てた複
数の支持蒸気管で連結されている、ことを特徴とする六
角形加圧流動層ボイラの本体補強構造が提供される。
Further, according to the present invention, there is provided a steam header provided on the lower surface of a boiler main body stored in a pressure vessel, and an ash chute extending below the steam header and constituted by a water pipe wall. The boiler body includes three rhombic columns adjacent to each other, the steam header includes a three-pronged portion extending in three directions in the radial direction from the center of the pressure vessel along a lower surface boundary of the three rhombic columns, and the boiler body. A hexagonal portion aligned with the hexagonal lower surface of the hexagonal portion, and every other three sides E among the six sides of the trifurcated portion and the hexagonal portion are:
A plurality of connecting steam pipes connected by a plurality of connecting steam pipes parallel to the remaining side F, and a side F and an outermost connecting steam pipe not connected by the connecting steam pipe are parallel to and spaced apart from the side E of the hexagonal portion. The main body reinforcement structure of the hexagonal pressurized fluidized-bed boiler, which is connected by the supporting steam pipe of (1).

【0007】[0007]

【作用】上記本発明の第1の構成によれば、ボイラ本体
を吊り下げる支持梁が、三叉部分と六角形部分とからな
り、三叉部分の外端が六角形部分の6つの頂点のうち1
つおきの3つの頂点Aに連結され、更に六角形部分は、
三叉部分が連結された3つの頂点Aから六角形の辺に沿
って延びる2つの張出し部分と、三叉部分が連結されな
い3つの頂点Bから六角形の辺の一方に沿って延びる1
つの張出し部分とを有し、張出し部分の外端は、圧力容
器の内面に支持されているので、三叉部分に全重量の約
半分の重量が作用しても、三叉部分に接続する頂点Aの
それぞれには全重量の約1/8(約150トン)しか作
用しない。従って、三叉部分と接続しない頂点Bに作用
する全重量の約1/12(約100トン)の荷重に近く
なり、頂点Aと頂点Bとで受ける荷重が均一化され、頂
点Aからの張出し部を支持する圧力容器4に発生する部
分的な応力を低減することができる。
According to the first configuration of the present invention, the supporting beam for suspending the boiler body is composed of a trifurcated portion and a hexagonal portion, and the outer end of the trifurcated portion is one of the six vertexes of the hexagonal portion.
Connected to every third vertex A, and the hexagonal part
Two protruding portions extending along three sides of the hexagon from three vertices A to which the three-pronged portion is connected, and 1 extending along one of the sides of the hexagon from three vertices B to which the three-pronged portion is not connected.
Since the outer end of the overhanging portion is supported on the inner surface of the pressure vessel, even if approximately half of the total weight acts on the fork, the apex of the vertex A connecting to the fork Each acts on only about 1/8 (about 150 tons) of the total weight. Therefore, the load is close to about 1/12 (about 100 tons) of the total weight acting on the vertex B that is not connected to the trifurcation, and the loads received at the vertex A and the vertex B are equalized. Can be reduced.

【0008】更に、本発明の第2の構成によれば、ボイ
ラ下面の蒸気ヘッダが、三叉部分と六角形部分とからな
り、三叉部分と六角形部分の6つの辺のうち1つおきの
3つの辺Eが、残る辺Fに平行な複数の連結蒸気管で連
結され、連結蒸気管で連結されない辺Fと最も外方の連
結蒸気管とが、六角形部分の前記辺Eに平行でかつ間隔
を隔てた複数の支持蒸気管で連結されているので、支持
蒸気管と連結蒸気管に連結された辺Fの蒸気ヘッダの剛
性が高くなり、外圧を受けても撓みにくく、発生する応
力も小さくなる。
Further, according to the second configuration of the present invention, the steam header on the lower surface of the boiler is composed of a trifurcated portion and a hexagonal portion, and every other three of the six sides of the trifurcated portion and the hexagonal portion is formed. Two sides E are connected by a plurality of connecting steam pipes parallel to the remaining side F, and the side F not connected by the connecting steam pipe and the outermost connecting steam pipe are parallel to the side E of the hexagonal portion and Since the steam headers are connected by a plurality of support steam pipes spaced apart from each other, the rigidity of the steam header on the side F connected to the support steam pipe and the connection steam pipe increases, and the steam header hardly bends even when subjected to external pressure, and the generated stress also decreases. Become smaller.

【0009】[0009]

【実施例】以下、本発明の好ましい実施例を図面を参照
して説明する。なお、各図において共通する部分には同
一の符号を付して使用する。上述した図5及び図7は、
本発明による加圧流動層ボイラにおけるヘッダと蒸気管
との連結構造についても同様であり、ここでは重複を避
けるため説明を省略する。図1は、本発明による六角形
加圧流動層ボイラの本体吊下げ構造と本体補強構造を示
す図6と同様の斜視図であり、図2は、図1の平面図で
ある。図1及び図2において、本発明による六角形加圧
流動層ボイラの本体吊下げ構造は、圧力容器4内に格納
され内部に流動層を形成するボイラ本体1と、該ボイラ
本体1を吊り下げる支持梁9とを備え、ボイラ本体1
は、互いに隣接した3つの菱形柱1a、1b、1cから
なる。また、支持梁9は、3つの菱形柱1a、1b、1
cの上面境界線に沿って圧力容器4の中心から半径方向
に3方向に延びる三叉部分9aと、ボイラ本体1の六角
形の上面と整合した六角形部分9bとからなり、三叉部
分9aの外端は六角形部分9bの6つの頂点のうち1つ
おきの3つの頂点Aに連結されている。六角形部分9b
は、更に、三叉部分9aが連結された3つの頂点Aから
六角形の辺に沿って延びる2つの張出し部分30と、三
叉部分9aが連結されない3つの頂点Bから六角形の辺
の一方に沿って延びる1つの張出し部分31とを有し、
張出し部分30、31の外端は、圧力容器4の内面に支
持されている。かかる構成により、三叉部分に全重量の
約半分の重量が作用しても、三叉部分に接続する頂点A
のそれぞれには全重量の約1/8(約150トン)しか
作用しない。従って、三叉部分と接続しない頂点Bに作
用する全重量の約1/12(約100トン)の荷重に近
くなり、頂点Aと頂点Bとで受ける荷重が均一化され、
頂点Aからの張出し部を支持する圧力容器4の部分に発
生する応力を低減することができる。
Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. 5 and 7 described above,
The same applies to the connection structure between the header and the steam pipe in the pressurized fluidized bed boiler according to the present invention, and the description is omitted here to avoid duplication. FIG. 1 is a perspective view similar to FIG. 6 showing a main body suspension structure and a main body reinforcement structure of a hexagonal pressurized fluidized bed boiler according to the present invention, and FIG. 2 is a plan view of FIG. 1 and 2, a main body suspension structure of a hexagonal pressurized fluidized bed boiler according to the present invention includes a boiler body 1 that is stored in a pressure vessel 4 and forms a fluidized bed therein, and suspends the boiler body 1. A boiler body 1 having a support beam 9
Consists of three rhombic columns 1a, 1b, 1c adjacent to each other. The support beam 9 has three rhombic columns 1a, 1b, 1
c, a triangular portion 9a extending radially in three directions from the center of the pressure vessel 4 along the upper boundary of the pressure vessel 4, and a hexagonal portion 9b aligned with the hexagonal upper surface of the boiler main body 1. The end is connected to every other three vertices A among the six vertices of the hexagonal portion 9b. Hexagon part 9b
Further, two overhanging portions 30 extending along three sides of the hexagon from three vertices A to which the three-forked portions 9a are connected, and one of the sides of the hexagon from three vertices B to which the three-forked portions 9a are not connected. And one extending portion 31 extending
The outer ends of the overhang portions 30 and 31 are supported on the inner surface of the pressure vessel 4. With such a configuration, even if approximately half of the total weight acts on the fork, the apex A connected to the fork
Only about 1/8 of the total weight (about 150 tons). Therefore, the load is close to about 1/12 (about 100 tons) of the total weight acting on the vertex B that is not connected to the forked part, and the loads received at the vertex A and the vertex B are uniformed.
Stress generated in the portion of the pressure vessel 4 that supports the overhang from the vertex A can be reduced.

【0010】図3は、図2のC部分の拡大斜視図であ
る。この図において、張出し部分30の外端は水平な支
持部材32の上面に載せられ、支持部材32の両端部に
は吊り金具33が設けられ、この吊り金具33は水平な
ピン34により、ほぼ垂直な吊り部材35の下端に連結
され、吊り部材35の上端は水平な別のピン36により
圧力容器4の内面に枢着されている。張出し部分31の
支持構造も同様である。かかる構成により、支持梁9の
半径方向及び円周方向の移動を許容し、かつ支持梁9に
作用する下向き荷重を圧力容器4に円滑に伝達すること
ができる。
FIG. 3 is an enlarged perspective view of a portion C in FIG. In this figure, the outer end of the overhang portion 30 is placed on the upper surface of a horizontal support member 32, and hanging members 33 are provided at both ends of the supporting member 32. The upper end of the suspension member 35 is pivotally connected to the inner surface of the pressure vessel 4 by another horizontal pin 36. The same applies to the support structure of the overhang portion 31. With this configuration, it is possible to allow the support beam 9 to move in the radial direction and the circumferential direction, and to smoothly transmit the downward load acting on the support beam 9 to the pressure vessel 4.

【0011】図4は、図1のD−D線における側面断面
図である。図1及び図4において、本発明による六角形
加圧流動層ボイラの本体補強構造は、圧力容器内に格納
されたボイラ本体1の下面に設けられた蒸気ヘッダ8
と、蒸気ヘッダ8より下方に延び水管壁で構成された灰
シュート11とを備える。また、ボイラ本体は、互いに
隣接した3つの菱形柱1a、1b、1cからなる。更
に、本発明によれば、蒸気ヘッダ8は、3つの菱形柱1
a、1b、1cの下面境界線に沿って圧力容器の中心か
ら半径方向に3方向に延びる三叉部分8aと、ボイラ本
体1の六角形の下面と整合した六角形部分8bとからな
り、三叉部分8aと六角形部分8bの6つの辺のうち1
つおきの3つの辺Eは、残る辺Fに平行な複数の連結蒸
気管22で連結され、連結蒸気管22で連結されない辺
Fと最も外方の連結蒸気管22は、六角形部分8bの前
記辺Eに平行でかつ間隔を隔てた複数の支持蒸気管24
で連結されている。かかる構成により支持蒸気管24と
連結蒸気管22に連結された辺Fの蒸気ヘッダ8bの剛
性が高くなり、外圧を受けても撓みにくく、発生する応
力も小さくなる。
FIG. 4 is a side sectional view taken along line DD of FIG. 1 and 4, a main body reinforcing structure of a hexagonal pressurized fluidized-bed boiler according to the present invention includes a steam header 8 provided on a lower surface of a boiler main body 1 stored in a pressure vessel.
And an ash chute 11 extending below the steam header 8 and formed of a water pipe wall. Further, the boiler main body is composed of three rhombic columns 1a, 1b, 1c adjacent to each other. Furthermore, according to the invention, the steam header 8 comprises three rhombic columns 1
a triangular portion 8a extending in three directions in the radial direction from the center of the pressure vessel along the lower boundary lines of the a, 1b and 1c, and a hexagonal portion 8b aligned with the hexagonal lower surface of the boiler body 1; 8a and one of the six sides of the hexagonal portion 8b
Every other three sides E are connected by a plurality of connecting steam pipes 22 parallel to the remaining side F, and the side F not connected by the connecting steam pipe 22 and the outermost connecting steam pipe 22 are connected to the hexagonal portion 8b. A plurality of supporting steam pipes 24 parallel to and spaced from the side E;
Are connected by With this configuration, the rigidity of the steam header 8b on the side F connected to the supporting steam pipe 24 and the connecting steam pipe 22 is increased, so that the steam header 8b is less likely to bend even when subjected to an external pressure, and the generated stress is reduced.

【0012】[0012]

【発明の効果】上述したように、本発明の第1の構成に
よれば、頂点Aと頂点Bとで受ける荷重が均一化され、
頂点Aからの張出し部を支持する圧力容器4の部分に発
生する応力を低減することができる。また、第2の構成
によれば、蒸気ヘッダ8bの剛性が高くなり、外圧を受
けても撓みにくく、発生する応力も小さくなる。従っ
て、本発明による六角形加圧流動層ボイラの本体吊下げ
構造と本体補強構造は、支持梁の張出し部に作用する荷
重を均一化し、圧力容器の部分に生じる応力を低減する
ことができ、かつ差圧による外圧を受けてもボイラ本体
の底部の蒸気ヘッダに大きな撓みや応力が発生しない、
優れた効果を有する。
As described above, according to the first configuration of the present invention, the loads received at the vertices A and B are made uniform,
Stress generated in the portion of the pressure vessel 4 that supports the overhang from the vertex A can be reduced. Further, according to the second configuration, the rigidity of the steam header 8b is increased, and the steam header 8b is less likely to bend even when subjected to an external pressure, and the generated stress is reduced. Therefore, the main body suspension structure and the main body reinforcement structure of the hexagonal pressurized fluidized bed boiler according to the present invention can equalize the load acting on the projecting portion of the support beam and reduce the stress generated in the pressure vessel part, And even if it receives an external pressure due to the differential pressure, no large bending or stress is generated in the steam header at the bottom of the boiler body.
Has excellent effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による六角流動層ボイラのボイラ本体ま
わりを示す斜視図である。
FIG. 1 is a perspective view showing the periphery of a boiler main body of a hexagonal fluidized bed boiler according to the present invention.

【図2】図1の平面図である。FIG. 2 is a plan view of FIG.

【図3】図2のC部分の拡大斜視図である。FIG. 3 is an enlarged perspective view of a portion C in FIG. 2;

【図4】図1のD−D線における側面断面図である。FIG. 4 is a side sectional view taken along line DD of FIG. 1;

【図5】六角形加圧流動層ボイラの全体構成図である。FIG. 5 is an overall configuration diagram of a hexagonal pressurized fluidized-bed boiler.

【図6】六角流動層ボイラのボイラ本体まわりを示す斜
視図である。
FIG. 6 is a perspective view showing a periphery of a boiler main body of a hexagonal fluidized bed boiler.

【図7】図4のA−Aにおける水平断面図である。FIG. 7 is a horizontal sectional view taken along the line AA in FIG. 4;

【図8】従来の加圧流動層ボイラの全体構成図である。FIG. 8 is an overall configuration diagram of a conventional pressurized fluidized bed boiler.

【符号の説明】[Explanation of symbols]

1 ボイラ本体 2 サイクロン 3 ベッド材貯蔵容器 4 圧力容器 5 蒸発器 6 過熱器 7 再熱器 8 蒸気ヘッダ 8a 三叉部分 8b 六角形部分 9 支持梁 9a 三叉部分 9b 六角形部分 10 ボイラ本体の底部 11 灰シュート 12a、12b 水管壁 16a、16b 層内管群 18 蒸気ヘッダ 20 低温再熱蒸気用の蒸気ヘッダ 22 連結蒸気管 24 支持蒸気管 30、31 張出し部分 32 支持部材 33 吊り金具 34、36 ピン 35 吊り部材 A 空気 B 流動層 C 石炭 DESCRIPTION OF SYMBOLS 1 Boiler main body 2 Cyclone 3 Bed material storage container 4 Pressure vessel 5 Evaporator 6 Superheater 7 Reheater 8 Steam header 8a Trifurcation part 8b Hexagon part 9 Support beam 9a Trifurcation part 9b Hexagon part 10 Bottom part of boiler body 11 Ash Chutes 12a, 12b Water pipe walls 16a, 16b In-layer pipe group 18 Steam header 20 Steam header for low-temperature reheat steam 22 Connected steam pipe 24 Support steam pipe 30, 31 Overhang 32 Support member 33 Suspension fitting 34, 36 Pin 35 Suspension member A Air B Fluidized bed C Coal

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F22B 37/24 F22B 1/02 F23C 10/16 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) F22B 37/24 F22B 1/02 F23C 10/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧力容器内に格納され内部に流動層を形
成するボイラ本体と、該ボイラ本体を吊り下げる支持梁
とを備え、 前記ボイラ本体は、互いに隣接した3つの菱形柱からな
り、 前記支持梁は、前記3つの菱形柱の上面境界線に沿って
圧力容器の中心から半径方向に3方向に延びる三叉部分
と、前記ボイラ本体の六角形の上面と整合した六角形部
分とからなり、 前記三叉部分の外端は前記六角形部分の6つの頂点のう
ち1つおきの3つの頂点Aに連結されており、 前記六角形部分は、更に、三叉部分が連結された3つの
頂点Aから六角形の辺に沿って延びる2つの張出し部分
と、三叉部分が連結されない3つの頂点Bから六角形の
辺の一方に沿って延びる1つの張出し部分とを有し、 前記張出し部分の外端は、圧力容器の内面に支持されて
いる、ことを特徴とする六角形加圧流動層ボイラの本体
吊下げ構造。
A boiler main body which is stored in a pressure vessel and forms a fluidized bed therein; and a support beam for suspending the boiler main body, wherein the boiler main body comprises three rhombic columns adjacent to each other, The support beam comprises a trifurcated portion extending in three directions in the radial direction from the center of the pressure vessel along the upper surface boundary of the three rhombic columns, and a hexagonal portion aligned with the hexagonal upper surface of the boiler body; The outer ends of the trifurcated portions are connected to every other three vertices A among the six vertices of the hexagonal portion, and the hexagonal portions are further connected to three vertices A to which the triangular portions are connected. It has two overhanging portions extending along the sides of the hexagon, and one overhanging portion extending along one of the sides of the hexagon from three vertices B to which the trifurcated portions are not connected, and the outer end of the overhanging portion is Supported on the inner surface of the pressure vessel Body suspended structure of hexagonal pressurized Doso boiler which by that, that said.
【請求項2】 圧力容器内に格納されたボイラ本体の下
面に設けられた蒸気ヘッダと、該蒸気ヘッダより下方に
延び水管壁で構成された灰シュートとを備え、 前記ボイラ本体は、互いに隣接した3つの菱形柱からな
り、 前記蒸気ヘッダは、前記3つの菱形柱の下面境界線に沿
って圧力容器の中心から半径方向に3方向に延びる三叉
部分と、前記ボイラ本体の六角形の下面と整合した六角
形部分とからなり、 前記三叉部分と前記六角形部分の6つの辺のうち1つお
きの3つの辺Eは、残る辺Fに平行な複数の連結蒸気管
で連結され、 前記連結蒸気管で連結されない辺Fと最も外方の蒸気蒸
気管は、六角形部分の前記辺Eに平行でかつ間隔を隔て
た複数の支持蒸気管で連結されている、ことを特徴とす
る六角形加圧流動層ボイラの本体補強構造。
2. A steam header provided on a lower surface of a boiler main body stored in a pressure vessel, and an ash chute extending below the steam header and formed of a water pipe wall, wherein the boiler main bodies are mutually connected. The steam header comprises three adjacent rhombic columns, wherein the steam header includes a trifurcated portion extending in three directions in the radial direction from the center of the pressure vessel along a lower boundary of the three rhombic columns, and a hexagonal lower surface of the boiler body. And a triangular portion aligned with the triangular portion and every other three sides E of the six sides of the hexagonal portion are connected by a plurality of connecting steam pipes parallel to the remaining side F, The side F not connected by the connecting steam pipe and the outermost steam steam pipe are connected by a plurality of supporting steam pipes parallel to and spaced from the side E of the hexagonal portion. Reinforcement structure of rectangular pressurized fluidized bed boiler
JP12577493A 1993-05-27 1993-05-27 Hexagonal pressurized fluidized bed boiler main body suspension structure and main body reinforcement structure Expired - Fee Related JP3346490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12577493A JP3346490B2 (en) 1993-05-27 1993-05-27 Hexagonal pressurized fluidized bed boiler main body suspension structure and main body reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12577493A JP3346490B2 (en) 1993-05-27 1993-05-27 Hexagonal pressurized fluidized bed boiler main body suspension structure and main body reinforcement structure

Publications (2)

Publication Number Publication Date
JPH06337102A JPH06337102A (en) 1994-12-06
JP3346490B2 true JP3346490B2 (en) 2002-11-18

Family

ID=14918509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12577493A Expired - Fee Related JP3346490B2 (en) 1993-05-27 1993-05-27 Hexagonal pressurized fluidized bed boiler main body suspension structure and main body reinforcement structure

Country Status (1)

Country Link
JP (1) JP3346490B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410473B (en) * 1995-10-16 2003-05-26 Ae Energietechnik Gmbh Support structure for metal-jacketed suspended devices
CN111169832B (en) * 2020-01-13 2021-07-20 哈尔滨锅炉厂有限责任公司 Combined hanging device for double-layer annular header

Also Published As

Publication number Publication date
JPH06337102A (en) 1994-12-06

Similar Documents

Publication Publication Date Title
JP3346490B2 (en) Hexagonal pressurized fluidized bed boiler main body suspension structure and main body reinforcement structure
CN101558265B (en) Evaporator surface structure of a circulating fluidized bed boiler and a circulating fluidized bed boiler with such an evaporator surface structure
US20090178779A1 (en) Heat exchanger
US4637455A (en) Support rack for tubes immersed in a fluidized bed
AU2017436110B2 (en) A boiler construction
JP3346491B2 (en) Connection structure of header and steam pipe in pressurized fluidized bed boiler
JP3906876B2 (en) Seismic structure of inner pipe in hexagonal pressurized fluidized bed boiler.
JP3473637B2 (en) Inner bed tube of pressurized fluidized bed boiler
JP3094696B2 (en) Hexagon pressurized fluidized bed boiler
JP3346494B2 (en) Hexagonal pressurized fluidized bed boiler trifurcated duct
JPH06193803A (en) Support structure of intra-bed tube in fluidized bed boiler
JP3094697B2 (en) Furnace wall structure of hexagonal pressurized fluidized bed boiler
CN112325307A (en) Rapid cooler of sintering flue gas incinerator
JP3477697B2 (en) Cyclone support structure in hexagonal boiler
JP7492359B2 (en) Boiler and power plant equipped with same
JP3738917B2 (en) Reinforcement structure of cyclone in pressurized fluidized bed boiler
JP3094698B2 (en) Hexagon pressurized fluidized bed boiler heat transfer tube penetration structure
JP2545340Y2 (en) Heat transfer tube structure of boiler
JP3513908B2 (en) Aeration structure of large fluidized bed
JPH0428961B2 (en)
CN114060787A (en) Screen type heating surface and circulating fluidized bed boiler with same
JPH0626601A (en) Pressurized fluidized bed type boiler
JPH0128285B2 (en)
JPH07127803A (en) Structure of upper header corner at front wall of fluidized bed type container of pressurized fluidized bed boiler
JPS6086305A (en) Boiler device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees