JP3346380B2 - Method for removing fine voids on casting surface and stirring tool used for the method - Google Patents
Method for removing fine voids on casting surface and stirring tool used for the methodInfo
- Publication number
- JP3346380B2 JP3346380B2 JP2000287051A JP2000287051A JP3346380B2 JP 3346380 B2 JP3346380 B2 JP 3346380B2 JP 2000287051 A JP2000287051 A JP 2000287051A JP 2000287051 A JP2000287051 A JP 2000287051A JP 3346380 B2 JP3346380 B2 JP 3346380B2
- Authority
- JP
- Japan
- Prior art keywords
- casting
- tool
- stirring
- probe
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えばアルミニウ
ム合金鋳物の表面における微細空隙除去方法およびこれ
に用いる攪拌ツールに関する。尚、本明細書において、
特にことわらない限り、表面とは鋳物の表面および表層
を指し、微細空隙とは表面の微細な凹凸および表層の微
細な空隙の何れか一方または双方を指称する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing minute voids on a surface of, for example, an aluminum alloy casting and a stirring tool used for the method. In this specification,
Unless otherwise specified, the surface refers to the surface and the surface layer of the casting, and the fine void refers to either or both of fine irregularities on the surface and fine voids in the surface layer.
【0002】[0002]
【従来の技術】アルミニウムまたはその合金(以下、単
にアルミニウムと称する)からなる鋳物またはダイカス
ト製品の表層付近には、溶湯に固溶されていた水素ガス
や金属収縮に起因する約0.1〜0.5mmの微細な空
隙が生じ易い。また、アルミニウムやその他の金属、合
金からなる鋳物表面の鋳肌には、微細な凹凸を生じる場
合がある。これらの微細な空隙や凹凸が表層や表面に存
在していると、アルミニウム製などの鋳物製品の機械的
性質や表面処理特性を顕著に低下させてしまう。2. Description of the Related Art In the vicinity of a surface layer of a casting or a die-cast product made of aluminum or an alloy thereof (hereinafter, simply referred to as aluminum), hydrogen gas dissolved in a molten metal or about 0.1 to 0 due to metal shrinkage. Fine voids of 0.5 mm are likely to occur. Also, fine irregularities may occur on the casting surface of the casting surface made of aluminum, other metals, and alloys. If these minute voids and irregularities are present on the surface layer or surface, the mechanical properties and surface treatment characteristics of a cast product such as aluminum are significantly reduced.
【0003】このため、例えばアルミニウム鋳物表面の
微細な凹凸を除去すべく、アルミニウム鋳物材の表面改
質法が提案されている(特開平10−183316号公
報)。この方法は、アルミニウム鋳物の表面に高速回転
するプローブを接触させて摩擦熱により軟化させる摩擦
攪拌溶接処理を施すことにより、微細な凹凸を除去する
表面改質法である(上記公報参照)。しかしながら、上記
の改質方法では、アルミニウムなどの鋳物において、表
面の凹凸よりも強度低下の影響が大きい表層付近におけ
る微細な空隙ついては、何ら検討されていない。[0003] For this reason, for example, in order to remove fine irregularities on the surface of an aluminum casting, a method for modifying the surface of an aluminum casting has been proposed (Japanese Patent Laid-Open No. 10-183316). This method is a surface modification method for removing fine irregularities by subjecting a surface of an aluminum casting to a probe that rotates at high speed and performing friction stir welding to soften the frictional heat (see the above publication). However, in the above-mentioned reforming method, no study has been made on fine voids in the vicinity of the surface layer where the influence of strength reduction is greater than that of surface irregularities in castings such as aluminum.
【0004】また、鋳物における広い面積に渉る表面や
表層を、改質して微細な凹凸や空隙を効率良く除去する
には、前記プローブの径を太くして使用することが考え
られる。しかし、太径のプローブを有するツールを用い
て改質処理領域を拡げることは、プローブ自体の強度や
係るプローブを有するツールを含む設備の点から自ずと
制限が生じる。このため、攪拌ツールにおける通常サイ
ズのプローブを、広範な鋳物の表面に沿って接触させ且
つ移動させる操作を複数回に渉って繰り返す操作が必要
となる。しかしながら、各操作毎において鋳物表面から
プローブを抜いた跡に、プローブに倣った形状の凹みが
生じてしまい、却って鋳物の強度低下を招来する、とい
う問題がある。しかも、上記凹みを同じ素材の金属で穴
埋め処理を行うと、更に工数が増え且つコスト高にな
る、という問題もあった。In order to efficiently remove fine irregularities and voids by modifying the surface and surface layer over a wide area of the casting, it is conceivable to use the probe with a large diameter. However, the use of a tool having a large-diameter probe to expand the reforming treatment area is naturally limited in terms of the strength of the probe itself and equipment including the tool having the probe. For this reason, it is necessary to repeat the operation of bringing the normal-sized probe in the stirring tool into contact with and moving along the surface of a wide range of castings a plurality of times. However, there is a problem that a dent having a shape following the probe is formed at the trace where the probe is pulled out from the casting surface in each operation, and the strength of the casting is rather lowered. Moreover, if the recess is filled with metal of the same material, there is a problem that the number of steps is further increased and the cost is increased.
【0005】[0005]
【発明が解決すべき課題】本発明は、以上にて説明した
従来の技術における問題点を解決し、鋳物表面や表層に
おける微細な空隙や凹凸を確実且つ効率良く除去し得る
鋳物表面の微細空隙除去方法およびこれに用いる攪拌ツ
ールを提案する、ことを課題とする。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and enables fine voids and irregularities on the casting surface and surface layer to be reliably and efficiently removed. It is an object to propose a removing method and a stirring tool used for the removing method.
【0006】[0006]
【課題を解決するための手段】本発明は、上記課題を解
決するため、鋳物表面に対し回転しつつ移動する本体お
よびプローブを含む攪拌ツールの操作において、その挿
入および抜き出し操作を少なくすると共に、鋳物におい
て流動化した金属材料の外部への飛散を抑制し且つ攪拌
ツールの移動軌跡に形成される攪拌部における金属材料
の供給不足を解消する、ことに着想して成されたもので
ある。即ち、本発明の鋳物表面の微細空隙除去方法は、
鋳物の表面に沿って回転しつつ移動する本体およびその
底面の中心部から突出するプローブを含む攪拌ツール
を、上記底面が鋳物の表面に当接または略当接しつつ上
記プローブを鋳物の表面付近に挿入して微細な空隙を除
去するに際し、上記攪拌ツールを平面視において鋳物の
表面に対して、Uターン、あるいは直角または任意角度
のターンを含みつつ、移動軌跡が互いに隣接するように
連続移動させる、ことを特徴とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention reduces the number of insertion and withdrawal operations in the operation of a stirring tool including a main body and a probe rotating while moving with respect to a casting surface. The present invention has been made with the idea of suppressing the metal material fluidized in the casting from scattering to the outside and eliminating the supply shortage of the metal material in the stirring section formed on the movement trajectory of the stirring tool. That is, the method for removing fine voids on the casting surface of the present invention,
A stirring tool including a main body that moves while rotating along the surface of the casting and a probe protruding from the center of the bottom surface, the probe is positioned near the surface of the casting while the bottom surface abuts or substantially abuts the surface of the casting. When removing the minute gap by inserting, the stirring tool is continuously moved so that the movement trajectories are adjacent to each other while including a U-turn or a right or arbitrary angle turn with respect to the surface of the casting in plan view. , Characterized in that.
【0007】これによれば、攪拌ツールの本体底面とプ
ローブとが回転しつつ移動した鋳物表面付近には、鋳物
素材の金属材料が固相状態で攪拌され流動化して固化し
た緻密な組織の攪拌部が、上記ツールの移動軌跡に沿っ
て形成される。尚、係る移動軌跡とは、鋳物の表面に沿
って、攪拌ツールのプローブおよび本体の底面が移動し
た軌跡を指す。また、攪拌ツールを鋳物表面に沿って直
線移動した後、Uターンさせて元の移動軌跡に隣接して
攪拌部を連続形成したり、係る直線移動とUターンとを
複数回に渉り繰り返して広い範囲の鋳物表面を移動さ
せ、これら鋳物表層の微細な空隙や表面の凹凸を除去す
ることができる。あるいは、攪拌ツールを鋳物表面に沿
って直線移動させた後、直角のLターンをさせて元の移
動軌跡に隣接して移動し且つ更にLターンと直線移動と
を交互に繰り返したり、同心円に近似した渦巻き状に移
動軌跡を隣接させつつ鋳物表面の中心部と周辺との間を
移動させて、広い範囲の鋳物表層の微細な空隙や表面の
凹凸を除去することもできる。しかも、上記攪拌ツール
の移動は連続して行うため、当該ツールのプローブを最
後に抜き出した跡に残る凹みを1箇所のみに制限でき、
鋳物表面付近の強度低下を抑制することもできる。ある
いは、鋳物表面の形態により複数回の移動操作を行う場
合でも、プローブを抜き出した跡の凹みを最小限にする
ことができる。According to this, near the surface of the casting where the probe and the bottom of the main body of the stirring tool have moved while rotating, the metal material of the casting material is stirred in a solid state, and the dense structure which is fluidized and solidified is stirred. A part is formed along the movement locus of the tool. In addition, such a movement locus refers to a locus where the probe of the stirring tool and the bottom surface of the main body have moved along the surface of the casting. Further, after the stirring tool is linearly moved along the casting surface, it is U-turned to continuously form the stirring portion adjacent to the original movement trajectory, or the linear movement and the U-turn are repeated several times. By moving the casting surface in a wide range, it is possible to remove fine voids and surface irregularities on the surface layer of the casting. Alternatively, after the stirring tool is moved linearly along the casting surface, a right-angled L-turn is made to move adjacent to the original movement trajectory, and the L-turn and the linear movement are alternately repeated or approximated to a concentric circle. By moving between the center and the periphery of the casting surface while adjoining the moving trajectories in a spiral shape, it is possible to remove fine voids and surface irregularities in the casting surface layer over a wide range. In addition, since the movement of the stirring tool is performed continuously, the dent remaining in the trace of the last extraction of the probe of the tool can be limited to only one place,
It is also possible to suppress a decrease in strength near the casting surface. Alternatively, even when the moving operation is performed a plurality of times depending on the shape of the casting surface, the dent of the trace from which the probe is extracted can be minimized.
【0008】尚、攪拌ツールにおける本体の底面(ショ
ルダ)は、鋳物表面に対しこれを押圧しつつ接触(当接ま
たは略当接)して、当該ツールのプローブによって鋳物
素材の固相状態で流動化された金属材料の外部への飛散
を抑制している。係る攪拌ツールは、鋳物の金属材料よ
りも更に高融点で且つ硬質の金属または合金、例えば高
速度工具鋼から成形されたものが用いられる。また、攪
拌ツールは、いわゆる摩擦攪拌接合に用いられる円柱形
の本体とその底面の中心部から突出するプローブとを含
む接合ツールと同様の形態であれば、特に制限しない
が、後述するようにツールの底面において周縁からプロ
ーブの基端部に向けて渦巻き状に突出する凸条を有する
ものが特に好適に用いられる。The bottom surface (shoulder) of the main body of the stirring tool contacts (abuts or substantially abuts on) the casting surface while pressing it against the casting surface, and flows in the solid state of the casting material by the probe of the tool. This suppresses scattering of the converted metal material to the outside. As the stirring tool, a metal or an alloy having a higher melting point and a harder metal than the metal material of the casting, for example, a tool formed from high-speed tool steel is used. The stirring tool is not particularly limited as long as it has the same form as a welding tool including a cylindrical main body used for so-called friction stir welding and a probe protruding from the center of the bottom surface thereof. In particular, those having a ridge that spirally protrudes from the peripheral edge toward the base end of the probe on the bottom surface of the probe are particularly preferably used.
【0009】また、前記攪拌ツールのプローブにより攪
拌された鋳物の表面付近において隣接する攪拌部同士
が、互いに重複する部分を含む、鋳物表面の微細空隙除
去方法も含まれる。これによれば、鋳物素材の金属材料
が固相状態で攪拌され流動化された緻密な組織の攪拌部
が、隣接する先に形成された攪拌部に沿って、互いに重
複部分を有した状態で形成される。従って、鋳物表面の
微細な凹凸は基より、表層付近の微細な空隙を確実に除
去することができるため、鋳物表面付近を緻密な組織に
して当該鋳物製品の強度を高め所要の特性を発揮させる
ことができる。[0009] The present invention also includes a method for removing minute voids on the surface of a casting, in which adjacent stirring portions near the surface of the casting stirred by the probe of the stirring tool include portions overlapping each other. According to this, the stirrer of the dense structure in which the metal material of the casting material is stirred and fluidized in the solid state has an overlapping portion along the stirrer formed adjacent to the former. It is formed. Therefore, the fine irregularities on the surface of the casting can be surely removed from the base, and the minute voids near the surface layer can be reliably removed. be able to.
【0010】更に、前記攪拌ツールを鋳物の表面におけ
る隣接する移動軌跡に移動させるに際し、第1の攪拌に
おけるツール本体の底面の押し込み量に対し、これに隣
接する第2の攪拌におけるツール本体の底面の押し込み
量を鋳物の深さ方向に0.1mm以上深くする、鋳物表
面の微細空隙除去方法も含まれる。これによれば、攪拌
ツールの当初寄りの移動軌跡に形成される第1の攪拌部
の表面は、ツール本体の底面に押圧されて僅かに窪む
が、連続して形成される隣接する移動軌跡に形成される
第2の攪拌部の表面が更に窪む。このため、第2以降の
攪拌部に供給する流動化した金属材料の供給量を適正化
でき、供給不足により攪拌部内に空隙を形成する内部欠
陥を確実に防止することができる。尚、上記第1の攪拌
および第2の攪拌は、攪拌ツールを移動させる際の当初
寄りと終点寄りの攪拌位置を相対的に示すものである。
また、増加する押し込み量が0.1mm未満では表面欠
陥を生じる場合があるため、これを除いたものである。
更に、増加させる押し込み量の上限は特に規定しない
が、例えば0.5mmを越えると攪拌部の表面の両側に
沿って押し出された金属材料のバリの発生が顕著になる
ため、これ以下が望ましい。より望ましい増加押し込み
量は、0.15〜0.25mmの範囲である。Further, when the stirring tool is moved to an adjacent movement trajectory on the surface of the casting, the pressing amount of the bottom of the tool main body in the first stirring is smaller than the bottom of the tool main body in the second stirring adjacent thereto. The method also includes a method of removing fine voids on the surface of the casting, in which the indentation of the casting is increased by 0.1 mm or more in the depth direction of the casting. According to this, the surface of the first stirring portion formed on the movement locus of the stirring tool closer to the beginning is slightly pressed by the bottom surface of the tool main body, but the adjacent movement locus formed continuously. The surface of the second agitating section formed at the bottom is further depressed. For this reason, the supply amount of the fluidized metal material to be supplied to the second and subsequent stirring units can be optimized, and internal defects that form voids in the stirring unit due to insufficient supply can be reliably prevented. The first stirring and the second stirring relatively indicate the stirring positions near the beginning and the end point when the stirring tool is moved.
Further, if the increasing amount of indentation is less than 0.1 mm, a surface defect may occur, and this is excluded.
Further, the upper limit of the amount of indentation to be increased is not particularly defined, but if it exceeds 0.5 mm, for example, burrs of the metal material extruded along both sides of the surface of the agitating portion become remarkable. A more desirable increased indentation is in the range of 0.15 to 0.25 mm.
【0011】加えて、前記攪拌ツールを鋳物の表面に沿
って回転しつつ移動するに際して、攪拌ツールの前記本
体およびプローブの軸心を、鋳物の表面に対し垂直姿勢
に保つ、鋳物表面の微細空隙除去方法も含まれる。これ
によれば、攪拌ツールをUターンまたはLターンなどさ
せる際に、そのままの姿勢で連続して移動操作を行うこ
とができ、直線移動部の攪拌部とUターンなどした曲が
り部の攪拌部とを均一な組織として形成することができ
る。更に、攪拌ツールの傾斜角度を調製する機能が不要
となると共に、攪拌ツールにおける本体とプローブおよ
びこれらを回転駆動する駆動源の配置や、係る駆動源と
本体およびプローブとの動力伝達機構を容易且つ簡素化
することも可能となる。In addition, when the stirring tool is moved while rotating along the surface of the casting, the axes of the main body and the probe of the stirring tool are maintained in a vertical position with respect to the casting surface, and a minute gap in the casting surface is provided. Removal methods are also included. According to this, when the stirring tool is made to make a U-turn or an L-turn, the moving operation can be continuously performed in the same posture, and the stirring part of the linear moving part and the stirring part of the bent part such as the U-turn can be used. Can be formed as a uniform structure. Further, the function of adjusting the inclination angle of the stirring tool becomes unnecessary, and the arrangement of the main body and the probe in the stirring tool and the driving source for rotating these components, and the power transmission mechanism between the driving source, the main body and the probe can be easily and easily performed. It can also be simplified.
【0012】一方、前記微細空隙除去方法に特に好適に
用いられる本発明の攪拌ツールは、鋳物の表面付近に挿
入し微細な空隙を除去するツールであって、鋳物の表面
に沿って回転しつつ移動する円柱形の本体と、この本体
の底面の中心部から突出するプローブと、上記本体の底
面において、この底面の周縁から上記プローブ基端部に
向けて渦巻き状に突出して設けられた凸条と、を含む、
ことを特徴する。これによれば、鋳物表面付近に挿入さ
れるプローブによって塑性・流動化された金属材料は、
鋳物表面に押圧しつつ接触する本体の底面に設けた渦巻
き状の凸条によって、プローブに向けて流動するように
誘導される。この結果、攪拌部において材料不足により
表面が凹む表面欠陥や、空隙形成による内部欠陥の発生
を確実に防止して緻密で均一な金属組織の攪拌部を、鋳
物表面付近の広い範囲に渉って連続形成することができ
る。On the other hand, the stirring tool of the present invention, which is particularly preferably used in the method for removing fine voids, is a tool inserted near the surface of a casting to remove fine voids, while rotating along the surface of the casting. A moving cylindrical main body, a probe protruding from the center of the bottom surface of the main body, and a ridge provided on the bottom surface of the main body so as to spirally protrude from the periphery of the bottom surface toward the base end of the probe. And including
It is characterized. According to this, the metal material plasticized and fluidized by the probe inserted near the casting surface,
A spiral ridge provided on the bottom surface of the main body that comes into contact with the casting surface while being pressed against the casting surface is guided to flow toward the probe. As a result, a stirrer with a dense and uniform metal structure by reliably preventing the occurrence of surface defects whose surface is dented due to lack of material in the stirrer and internal defects due to void formation, over a wide range near the casting surface. It can be formed continuously.
【0013】また、前記渦巻き状に突出する凸条は、前
記本体の底面において4分の3周巻き以上である、攪拌
ツールも含まれる。これによれば、ツール本体の底面付
近において、塑性・流動化した鋳物素材の金属材料が外
部に飛散し溢れ出す事態を防ぎ、攪拌部における表面欠
陥を一層確実に防ぐことができる。尚、上記凸条が4分
の3周巻き未満では、上述した効果が不十分になるた
め、これを除外した。[0013] The present invention also includes an agitation tool in which the spirally projecting ridges have three-quarters or more turns on the bottom surface of the main body. According to this, in the vicinity of the bottom surface of the tool body, it is possible to prevent the metal material of the plastic material that has been plasticized and fluidized from scattering and overflowing to the outside, and it is possible to more reliably prevent surface defects in the stirring section. In addition, if the above-mentioned ridge is less than three-quarters of a turn, the above-mentioned effect becomes insufficient, so that this is excluded.
【0014】更に、前記プローブの直径(d)に対する前
記底面を含む本体の直径(D)の比D/dが、1.8以上
である、攪拌ツールも含まれる。これによれば、プロー
ブに対し本体やその底面が太径となるため、プローブに
より塑性・流動化された鋳物素材の金属材料は、底面に
設けた渦巻き状の凸条により攪拌部内に留められ、表面
欠陥のない健全な攪拌部を形成できる。上記比D/d
が、1.8未満になると、プローブに対し本体底面の直
径が近付き、流動化した金属材料を底面付近に溜められ
ず、外部に飛散して表面欠陥を生じ得るため、この範囲
を除外した。尚、本発明の微細空隙除去方法および攪拌
ツールが適用される鋳物は、アルミニウム鋳物の他、鉄
鋳物、鋼鋳物、チタンおよびその合金の鋳物等も含まれ
る。[0014] Further, a stirring tool, wherein a ratio D / d of a diameter (D) of the main body including the bottom surface to a diameter (d) of the probe is 1.8 or more, is also included. According to this, since the main body and the bottom surface of the probe have a large diameter with respect to the probe, the metal material of the casting material plasticized and fluidized by the probe is retained in the stirring section by the spiral ridge provided on the bottom surface, A sound stirring part without surface defects can be formed. The above ratio D / d
However, when the diameter is less than 1.8, the diameter of the bottom surface of the main body approaches the probe, and the fluidized metal material cannot be stored near the bottom surface, but may be scattered outside to cause surface defects. The castings to which the method for removing fine voids and the stirring tool of the present invention are applied include not only aluminum castings but also iron castings, steel castings, castings of titanium and its alloys, and the like.
【0015】[0015]
【発明の実施の形態】以下において本発明の実施に好適
な形態を図面と共に説明する。図1(A),(B)は、本発
明の鋳物表面の微細空隙除去方法の概略と、これに用い
る攪拌ツール10の使用状態を示す。図示のように、ア
ルミニウム鋳物1の表面2に沿って、円柱形の本体12
とその底面(ショルダ)13の中心部から同軸心で突出す
るプローブ14とを含む攪拌ツール10を、回転させ且
つ図1(A)で右方向に移動させる。攪拌ツール10は、
500〜15000rpmの回転数で回転され、且つそ
の軸心に沿って1〜30kNの押し込み力を鋳物1の表
面2に向けて加えつつ、プローブ14を鋳物1の表層に
向けて挿入すると共に、図1(A)で右方向に50mm〜
2メートル/分の移動速度で送られる。図1(B)に示す
ように、プローブ14の周面には、ネジ(ネジ山とネジ
谷)16が形成されている。Preferred embodiments of the present invention will be described below with reference to the drawings. FIGS. 1A and 1B show an outline of a method for removing fine voids on a casting surface according to the present invention, and a use state of a stirring tool 10 used for the method. As shown, along the surface 2 of the aluminum casting 1, a cylindrical body 12 is provided.
A stirring tool 10 including a probe 14 projecting coaxially from the center of the bottom surface (shoulder) 13 is rotated and moved rightward in FIG. 1A. The stirring tool 10
The probe 14 is inserted toward the surface layer of the casting 1 while rotating at a rotation speed of 500 to 15000 rpm and applying a pushing force of 1 to 30 kN along its axis toward the surface 2 of the casting 1. 1 (A) 50mm to the right
It is sent at a moving speed of 2 meters / min. As shown in FIG. 1B, a screw (thread and thread valley) 16 is formed on the peripheral surface of the probe 14.
【0016】図1(A),(B)に示すように、攪拌ツール
10が通過した跡には、前記プローブ14によって固相
状態で塑性化および流動化された鋳物1のアルミニウム
が攪拌されつつ固化した緻密な組織の攪拌部4が形成さ
れる。また、係る攪拌部4の表面6は、攪拌ツール10
における本体12の底面13に押圧された結果、鋳物1
の表面2よりも約0.2mm程度と僅かに窪んでいる。
以上のような攪拌部4およびその表面6は、攪拌ツール
10の移動軌跡に沿って、連続して形成される。即ち、
攪拌部4の表面6は、攪拌ツール10の移動軌跡と共通
する。尚、プローブ14周面のネジ16は、アルミニウ
ムとの接触面積を増やして、上記流動化および攪拌作用
を促進させる働きを成す。As shown in FIGS. 1A and 1B, at the mark where the stirring tool 10 has passed, the aluminum of the casting 1 plasticized and fluidized in the solid state by the probe 14 is stirred. The agitation section 4 having a solidified and dense structure is formed. Further, the surface 6 of the stirring unit 4 is provided with a stirring tool 10.
As a result of being pressed against the bottom surface 13 of the main body 12 at
Is slightly depressed by about 0.2 mm from the surface 2 of FIG.
The stirring section 4 and its surface 6 as described above are continuously formed along the movement locus of the stirring tool 10. That is,
The surface 6 of the stirring section 4 is common to the movement locus of the stirring tool 10. The screw 16 on the peripheral surface of the probe 14 has a function of increasing the contact area with aluminum and promoting the above-mentioned fluidization and stirring action.
【0017】攪拌ツール10は、アルミニウム鋳物1よ
りも高融点で且つ硬質の例えば高速度工具鋼から成形さ
れ、図2(A)〜(C)に示すように、円柱形の本体12の
底面13に、当該底面13の周縁からプローブ14の基
端部に向けて、図2(B)の底面視で略2周の渦巻き状に
突出する凸条17を一体に有する。係る凸条17の渦巻
き方向は、図2(B)中の矢印で示すように、攪拌ツール
10が回転した際に、塑性化したアルミニウムをプロー
ブ14の基端部に向けて、強制的に流動させるように予
め設定される。図2(B),(A)中の符号18,19は、
上記渦巻き状の凸条17における両端部を示す。尚、凸
条17は、底面13において少なくとも4分の3周巻き
以上として突設することで、プローブ14により流動化
したアルミニウムが攪拌部4における表面6の中央付近
に集まり、外部への飛散を防止して表面欠陥を防ぐこと
ができる。因みに、上記攪拌ツール10における底面1
3を含む本体12の直径Dは15mmで、長さ約6mm
のプローブ14の直径dはネジ16のネジ谷径で6mm
であり、直径D,d間の比D/dは2.5である。係る
比D/dが1.8以上であるため、流動化したアルミニ
ウムの外部への飛散による漏れを防止できる。尚、ネジ
16は、例えばM7×1程度のネジ山外径とピッチとを
有する。The stirring tool 10 is formed of, for example, a high-speed tool steel having a melting point higher than that of the aluminum casting 1 and hard, and as shown in FIGS. 2A to 2C, a bottom surface 13 of a cylindrical main body 12. In addition, from the periphery of the bottom surface 13 toward the base end of the probe 14, there is integrally formed a spiral ridge 17 that protrudes in a spiral shape about two rounds when viewed from the bottom in FIG. As shown by the arrow in FIG. 2 (B), when the stirring tool 10 rotates, the plasticized aluminum is forced to flow toward the base end of the probe 14 when the stirring tool 10 rotates. It is set in advance so that Symbols 18 and 19 in FIGS. 2B and 2A are:
The both ends of the spiral ridge 17 are shown. The protruding ridges 17 project at least three-quarters or more rounds on the bottom surface 13 so that the aluminum fluidized by the probe 14 gathers near the center of the surface 6 of the stirring section 4 and scatters to the outside. Can prevent surface defects. Incidentally, the bottom surface 1 of the stirring tool 10
The diameter D of the main body 12 including 3 is 15 mm and the length is about 6 mm.
The diameter d of the probe 14 is 6 mm in the thread root diameter of the screw 16.
And the ratio D / d between the diameters D and d is 2.5. Since the ratio D / d is 1.8 or more, leakage of the fluidized aluminum due to scattering to the outside can be prevented. The screw 16 has, for example, a thread outer diameter of about M7 × 1 and a pitch.
【0018】図3は、本発明の鋳物表面の微細空隙除去
方法における1形態に関する。図3(A)に示すように、
アルミニウム鋳物1の矩形の表面2において、左上隅付
近に回転する攪拌ツール10を配置し、プローブ14を
鋳物1の表層に垂直に挿入すると共に、本体12の底面
13を表面2に対し押圧しつつ接触(当接)させて、先ず
スタートSさせる。この際、図3(B)に示すように、プ
ローブ14の付近における鋳物1の表層には、攪拌部4
が形成される。次に、スタートSの位置から図3(A)中
の矢印で示すように、攪拌ツール10を右方向に回転し
つつ移動させた後、Uターン7させる。この際、攪拌ツ
ール10の本体12およびプローブ14の軸心は鋳物1
の表面2に対し、垂直(直角)姿勢の状態で回転しつつ移
動しているため、Uターン7をスムーズに行うことがで
きる。FIG. 3 relates to one embodiment of the method for removing minute voids in a casting surface according to the present invention. As shown in FIG.
On the rectangular surface 2 of the aluminum casting 1, the rotating stirring tool 10 is arranged near the upper left corner, and the probe 14 is inserted vertically into the surface layer of the casting 1 while pressing the bottom surface 13 of the main body 12 against the surface 2. The contact (contact) is performed, and the start S is first performed. At this time, as shown in FIG. 3B, the surface of the casting 1 near the probe 14 is
Is formed. Next, as shown by the arrow in FIG. 3 (A), the stirring tool 10 is moved while rotating clockwise from the start S position, and then the U-turn 7 is performed. At this time, the axis of the main body 12 of the stirring tool 10 and the axis of the probe 14 are
The U-turn 7 can be performed smoothly because it is moving while rotating in a vertical (perpendicular) posture with respect to the surface 2 of the camera.
【0019】続いて、攪拌ツール10を左/右方向への
直線移動とこれらの間のUターン7とを交互に繰り返し
て行う。しかも、攪拌ツール10が通過した隣接する移
動軌跡に形成される攪拌部4,4は互いに重複するよう
予めツール10の移動経路を設定する。この結果、図3
(C)に示すように、互いに平行で隣接する複数の攪拌部
4が重複した状態で、図3(A)に示すように、アルミニ
ウム鋳物1の表面2におけるほぼ全面に渉って、攪拌部
4がジグザク状に形成される。尚、図3(A),(C)中の
符号Eは、攪拌ツール10の終点位置を示し、その中心
部にはプローブ14を抜いた跡の凹み9が形成される。Subsequently, the stirring tool 10 is alternately and linearly moved in the left / right direction and the U-turn 7 therebetween is alternately repeated. In addition, the moving paths of the tool 10 are set in advance so that the stirring units 4 and 4 formed on the adjacent movement trajectories through which the stirring tool 10 has passed overlap each other. As a result, FIG.
As shown in FIG. 3 (C), in a state where a plurality of adjacent stirring portions 4 are overlapped with each other, as shown in FIG. 3 (A), the stirring portions 4 extend over almost the entire surface 2 of the aluminum casting 1. 4 are formed in a zigzag shape. The symbol E in FIGS. 3A and 3C indicates the end point position of the stirring tool 10, and a recess 9 is formed in the center of the stirring tool 10 after the probe 14 has been pulled out.
【0020】前記図3における攪拌ツール10の移動に
際して、図4(A),(B)に示すように、隣接する攪拌部
4a,4bのうち、当初(第1)の攪拌部4aの表面6a
における鋳物1の表面2に対する窪み量n1に比べて、
その後に形成された第2の攪拌部4bの表面6bにおけ
る窪み量n2が僅かに大きくなるように、攪拌ツール1
0における第1・第2の押し込み量を調整している。こ
れにより、攪拌部4bに供給すべき流動化したアルミニ
ウムの供給量を適正化でき、供給不足により攪拌部4b
内に空隙を生じる内部欠陥を防止することができる。攪
拌ツール10において増加した押し込み量は、0.1m
m以上であり、望ましくは0.15mm以上である。
尚、増加すべき押し込み量をあまり増やすと、アルミニ
ウムの飛散により攪拌部4の表面6の両側に沿って生じ
るバリが増大するため、増加すべき押し込み量は0.5
mm以下、望ましくは0.25mm以下とする。これに
より、流動化したアルミニウムが攪拌部4a,4bから
外部に溢れ出ず、供給不足を生じないので、攪拌部4
a,4bにおいてアルミニウム不足による内部欠陥を確
実に防止することができる。When the stirring tool 10 in FIG. 3 is moved, as shown in FIGS. 4A and 4B, the surface 6a of the initial (first) stirring section 4a of the adjacent stirring sections 4a and 4b.
In comparison with the depression amount n1 with respect to the surface 2 of the casting 1 in
The stirring tool 1 is so set that the recess amount n2 in the surface 6b of the second stirring section 4b formed thereafter is slightly increased.
The first and second pushing amounts at 0 are adjusted. Thereby, the supply amount of the fluidized aluminum to be supplied to the stirring unit 4b can be optimized, and the stirring unit 4b
It is possible to prevent internal defects that cause voids inside. The pushing amount increased in the stirring tool 10 is 0.1 m
m or more, and preferably 0.15 mm or more.
If the pushing amount to be increased is increased too much, burrs generated along both sides of the surface 6 of the stirring section 4 due to scattering of aluminum increase, so the pushing amount to be increased is 0.5.
mm or less, desirably 0.25 mm or less. As a result, the fluidized aluminum does not overflow from the stirring sections 4a and 4b to the outside, and there is no shortage of supply.
In a and 4b, internal defects due to insufficient aluminum can be reliably prevented.
【0021】図4(C)は、攪拌ツール10の異なる移動
パターンを示し、平面視で正方形のアルミニウム鋳物1
の表面2において、左下隅の位置からツール10をスタ
ートSし、表面2の各辺に沿って直線移動と直角に曲が
るLターン8とを交互に繰り返した後、表面2の中央付
近の位置で終点Eとしてツール10を抜いたものであ
る。従って、鋳物1の表面2において隣接する攪拌部4
の内外3重の表面6a,6b,6cを略矩形に形成し、
表面2の中心部を除くほぼ全域において、表層付近の微
細な空隙や表面2の微細な凹凸を除去できる。また、図
4(D)は、表面2の左下寄りの位置から攪拌ツール10
をスタートSし、直線移動と直角に曲がるLターン8と
を交互に繰り返すと共に、途中でUターン7を含めて移
動させ、内外2重の攪拌部4の表面6a,6bを形成し
た後、スタートSに対して斜め外側の位置で終点Eでツ
ール10を抜いたものである。FIG. 4 (C) shows a different movement pattern of the stirring tool 10, which is a square aluminum casting 1 in plan view.
On the surface 2 of the surface 2, the tool 10 is started S from the position of the lower left corner, and after linearly moving along each side of the surface 2 and repeating the L-turn 8 that bends at a right angle, the tool 10 is alternately repeated. The tool 10 is omitted as the end point E. Therefore, the stirring section 4 adjacent to the surface 2 of the casting 1
The inner and outer triple surfaces 6a, 6b, 6c are formed in a substantially rectangular shape,
In almost all areas except the central part of the surface 2, fine voids near the surface layer and fine irregularities on the surface 2 can be removed. FIG. 4 (D) shows the stirring tool 10 from the lower left position on the surface 2.
And then alternately repeats the linear movement and the L-turn 8 that bends at a right angle, and moves along the U-turn 7 on the way to form the surfaces 6a and 6b of the inner and outer double stirring sections 4, and then starts. The tool 10 is pulled out at the end point E at a position diagonally outside of S.
【0022】更に、図4(E)は、表面2の左下隅の位置
から攪拌ツール10をスタートSし、直線移動と直角に
曲がるLターン8とを交互に繰り返すと共に、途中でU
ターン7を含めて移動させて、内外2重の攪拌部4の表
面6a,6bを形成した後、スタートSに隣接した位置
で終点Eとしてツール10を抜いたものである。また、
図4(F)は、表面2の左辺中央の位置から攪拌ツール1
0をスタートSし、表面2の中心部に向けて時計回り方
向にカーブし且つ渦巻き状に移動させて同心円に近似し
た渦巻き状の攪拌部4による表面6a,6b,6cを形
成した後、表面2の中心部付近で終点Eとしてツール1
0を抜いたものである。尚、図4(F)において、攪拌ツ
ール10のスタートSと終点Eとの位置をそれぞれ逆に
した移動パターンにしても良い。この場合、プローブ1
4が抜けた凹部9を表面2の周辺寄りの位置に形成する
ことができる。Further, FIG. 4E shows that the stirring tool 10 is started S from the position of the lower left corner of the surface 2 and alternately repeats the linear movement and the L-turn 8 which is bent at a right angle.
The tool 10 is removed as the end point E at a position adjacent to the start S after the surfaces 6a and 6b of the inner and outer double agitating sections 4 are formed by moving including the turn 7. Also,
FIG. 4 (F) shows the stirring tool 1 from the center of the left side of the surface 2.
0, the surface is curved in a clockwise direction toward the center of the surface 2 and is spirally moved to form the surfaces 6a, 6b, 6c by the spiral agitating portion 4 which approximates concentric circles. Tool 1 as end point E near the center of 2
It is the number that is out of zero. In FIG. 4F, a movement pattern in which the positions of the start S and the end point E of the stirring tool 10 may be reversed. In this case, probe 1
The recess 9 from which the hole 4 has come out can be formed at a position near the periphery of the surface 2.
【0023】以上のように、図2に示した攪拌ツール1
0を使用して図1、図3および図4に示した微細空隙除
去方法を行うことにより、攪拌ツール10のプローブ1
4が回転しつつ移動したアルミニウム鋳物1の表面2付
近には、アルミニウムが固相状態で攪拌・流動化されて
固化した緻密な組織の攪拌部4が、ツール10の移動軌
跡に沿って形成される。また、攪拌ツール10を鋳物1
の表面2に沿って直線移動した後、Uターン7させて元
の移動軌跡に隣接して攪拌部4を連続形成したり、係る
直線移動とUターン7とを複数回に渉り繰り返して広い
範囲の鋳物1の表面2を移動させ、これら鋳物1の表層
の微細な空隙や表面2の微細な凹凸を除去することがで
きる。更には、攪拌ツール10をアルミニウム鋳物1の
表面2に沿って直線移動した後、直角のLターン8をさ
せて元の移動軌跡に隣接して移動し且つ更にLターン8
と直線移動とを交互に繰り返したり、渦巻き状に移動軌
跡を隣接させつつ鋳物1の表面2の中心部と周辺との間
を移動させて、広い範囲の鋳物1の表層の微細な空隙や
表面2の微細な凹凸を除去することもできる。As described above, the stirring tool 1 shown in FIG.
1, 3, and 4 by using the probe 1 of the stirring tool 10.
In the vicinity of the surface 2 of the aluminum casting 1 to which the aluminum alloy 4 has moved while rotating, the agitation unit 4 having a dense structure in which aluminum is agitated and fluidized in a solid state and solidified is formed along the movement locus of the tool 10. You. In addition, the stirring tool 10 is
After linearly moving along the surface 2 of the above, the U-turn 7 is performed to continuously form the agitating portion 4 adjacent to the original movement trajectory, or the linear movement and the U-turn 7 are repeated a plurality of times and widened. By moving the surface 2 of the casting 1 within the range, fine voids in the surface layer of the casting 1 and fine irregularities on the surface 2 can be removed. Further, after the stirring tool 10 is linearly moved along the surface 2 of the aluminum casting 1, a right angle L-turn 8 is made to move adjacent to the original movement trajectory, and the L-turn 8 is further moved.
And the linear movement are alternately repeated, or moved between the center and the periphery of the surface 2 of the casting 1 while adjoining the movement trajectory in a spiral shape, so that the fine gaps and It is also possible to remove the two fine irregularities.
【0024】しかも、上記攪拌ツール10の移動は連続
して行うため、当該ツール10のプローブ14を最後に
抜き出した終点Eに残る凹み9を1箇所のみまたは最小
限にでき、アルミニウム鋳物1の表面2付近の強度低下
を抑制することもできる。また、鋳物1の表面2におい
て、プローブ14により形成され且つ隣接する攪拌部
4,4間には、互いの重複部が存在するため、表層付近
の微細な空隙を確実に除去して緻密な表層組織に改質で
きる。更に、隣接する攪拌部4a,4bにおける攪拌ツ
ール10における本体12の底面13の押し込み量を、
0.1〜0.5mmの範囲で順次増加させるため、追っ
て形成された攪拌部4b中において空隙を生じ得る内部
欠陥を予防できる。In addition, since the stirring tool 10 is moved continuously, the number of recesses 9 remaining at the end point E where the probe 14 of the tool 10 was lastly drawn can be reduced to only one or a minimum. A decrease in strength near 2 can also be suppressed. In addition, on the surface 2 of the casting 1, there is an overlapping portion between the agitating sections 4 and 4 formed by the probe 14 and adjacent to each other. Can be modified into tissue. Further, the pushing amount of the bottom surface 13 of the main body 12 in the stirring tool 10 in the adjacent stirring units 4a and 4b is
Since the diameter is sequentially increased in the range of 0.1 to 0.5 mm, it is possible to prevent internal defects that may cause voids in the subsequently formed stirring section 4b.
【0025】加えて、攪拌ツール10をその本体12お
よびプローブ14の軸心を、鋳物1の表面2に対し、垂
直姿勢の状態で回転しつつ移動させるため、前記Uター
ン7やLターン8の移動が容易となり、当該ツール10
自体の操作も容易となる。一方、攪拌ツール10は、そ
の本体12の底面に渦巻き状の凸条17を少なくとも4
分の3周巻き以上に渉って突設したので、プローブ14
により流動化したアルミニウムが攪拌部4における表面
6の中央付近に集まり、外部への溢れ出す事態を防止す
ることが可能となる。しかも、プローブ14の直径dに
対する本体12(底面13)の直径Dの比D/dを1.8
以上としたので、流動化したアルミニウムは、底面13
に設けた渦巻き状の凸条17により攪拌部4内に留めら
れ、表面欠陥のない健全な攪拌部4を確実に形成するこ
とができる。尚、本発明の微細空隙除去方法は、凸条1
7を有する攪拌ツール10に限らず、次述する凸条17
のない攪拌ツール10aを用いても実現可能である。In addition, in order to move the stirring tool 10 while rotating the axis of the main body 12 and the probe 14 with respect to the surface 2 of the casting 1 in a vertical posture, the U-turn 7 and the L-turn 8 Movement becomes easy and the tool 10
The operation itself is also easy. On the other hand, the stirring tool 10 has at least four spiral ridges 17 on the bottom surface of its main body 12.
The probe 14
This makes it possible to prevent the fluidized aluminum from collecting near the center of the surface 6 of the stirring section 4 and overflowing to the outside. Moreover, the ratio D / d of the diameter D of the main body 12 (bottom surface 13) to the diameter d of the probe 14 is 1.8.
As described above, the fluidized aluminum is deposited on the bottom surface 13.
The inside of the agitating portion 4 is fixed by the spiral ridge 17 provided on the agitating portion 4, and a sound agitating portion 4 free from surface defects can be reliably formed. Note that the method for removing microvoids according to the present invention employs the method of
Not only the stirring tool 10 having
This can be realized even by using the stirring tool 10a without the above.
【0026】[0026]
【実施例1,2】ここで本発明の具体的な実施例を比較
例と共に説明する。図5(A)は、前記攪拌ツール10を
用い、アルミニウム鋳物1の表面2付近を回転させつつ
移動させて、攪拌部4とその表面6とを形成した状態を
示す。この場合、攪拌ツール10の底面13は、鋳物1
の表面2に接触する程度とされ、鋳物1の表層には渦巻
き形の凸条17のみが挿入される。係るツール10にお
いて、底面13を含む本体12の直径Dは15mmで、
長さ6mmのプローブ14の直径dはネジ16のネジ谷
径で6mmであり、直径D,d間の比D/dは2.5で
ある。また、凸条17の断面寸法は、幅0.5mm、高
さ1mmである。Embodiments 1 and 2 Here, specific embodiments of the present invention will be described together with comparative examples. FIG. 5 (A) shows a state in which the stirring tool 10 is moved while rotating the surface of the aluminum casting 1 near the surface 2 to form the stirring section 4 and the surface 6 thereof. In this case, the bottom surface 13 of the stirring tool 10
And only the spiral ridge 17 is inserted into the surface layer of the casting 1. In such a tool 10, the diameter D of the main body 12 including the bottom surface 13 is 15 mm,
The diameter d of the probe 14 having a length of 6 mm is 6 mm in terms of the thread root diameter of the screw 16, and the ratio D / d between the diameters D and d is 2.5. The cross-sectional dimension of the ridge 17 is 0.5 mm in width and 1 mm in height.
【0027】図5(B),(C)は、異なる形態の攪拌ツー
ル10aとその使用状態を示す。攪拌ツール10aは、
いわゆる摩擦攪拌接合に用いられる接合ツールと同様の
もので、上記攪拌ツール10と同じ直径(D)15mmの
本体12と、その底面13aの僅かに凹んだ中心部から
突出し上記攪拌ツール10と同じ6mmの長さで且つ直
径(d)6mmのプローブ14、およびその周面に同じネ
ジ16を有する。尚、本体12の底面13aの周縁にお
けるすくい角θ1は10°である。図5(C)に示すよう
に、攪拌ツール10aは、アルミニウム鋳物1の表面2
に対して、その本体12およびプローブ14の軸心を前
進方向と反対側に数°傾斜(前進角θ2)させた状態で、
回転しつつ移動して用いられる。この場合、攪拌ツール
10aの表面2に対する押し込み量(ap)は、図5(C)
に示すように、鋳物1の表面2と上記底面13aにおけ
る軸心との垂直方向の距離で示される。FIGS. 5B and 5C show different types of stirring tools 10a and their use. The stirring tool 10a
It is the same as the welding tool used for the so-called friction stir welding, and has a body 12 having the same diameter (D) of 15 mm as the stirring tool 10 and a 6 mm projecting from the slightly recessed center portion of the bottom surface 13 a of the same as the stirring tool 10. And has a diameter (d) of 6 mm and the same screw 16 on its peripheral surface. The rake angle θ1 at the periphery of the bottom surface 13a of the main body 12 is 10 °. As shown in FIG. 5 (C), the stirring tool 10a is
In contrast, in a state where the axes of the main body 12 and the probe 14 are inclined several degrees (advance angle θ2) to the opposite side to the forward direction,
It is used while rotating and moving. In this case, the pushing amount (ap) of the stirring tool 10a against the surface 2 is as shown in FIG.
As shown in the figure, the vertical distance between the surface 2 of the casting 1 and the axis of the bottom surface 13a is shown.
【0028】ここで、厚さ20mmで、100mm×2
00mmの表面2を有するアルミニウム鋳物(JIS:
AC4C)1を5組用意した。また、3組の攪拌ツール
10と2組の攪拌ツール10aとを別途用意した。3組
の攪拌ツール10のうち、その本体12の底面13に渦
巻き形に突設した凸条17が1周巻きのものを実施例
1、4分の3周(3/4)巻きのものを実施例2、半周
(1/2)巻きのものを比較例1とした。また、2組の攪
拌ツール10aを比較例2,3とした。表1のように、
各例の攪拌ツール10,10aを、押し込み量(ap)の
有無、表面2に対する傾斜(前進角θ2)の有無で分け、
且つ同じ890rpmの回転数および500mm/分の
移動速度を伴って、各組のアルミニウム鋳物1の表面2
に沿って、長さ180mmの直線形にプローブ14を移
動させた。各例のツール10,10aにより形成された
鋳物1の攪拌部4を、個別に切断して目視によって、内
部欠陥や表面欠陥の有無を調べた。これらの結果も、各
例のツール10,10aに対応させた実施例1,2や比
較例1〜3として表1に示した。Here, a thickness of 20 mm, 100 mm × 2
Aluminum casting having a surface 2 of 00 mm (JIS:
5 sets of AC4C) 1 were prepared. Further, three sets of stirring tools 10 and two sets of stirring tools 10a were separately prepared. Of the three sets of agitating tools 10, one having a spiral ridge 17 projecting from the bottom surface 13 of the main body 12 in a spiral form is used in the first and third quarters (3/4). Example 2, half circumference
A (1/2) -wound coil was used as Comparative Example 1. Two sets of stirring tools 10a were used as Comparative Examples 2 and 3. As shown in Table 1,
The stirring tools 10 and 10a of each example are divided according to the presence or absence of the pushing amount (ap) and the presence or absence of the inclination (advance angle θ2) with respect to the surface 2,
And with the same rotation speed of 890 rpm and travel speed of 500 mm / min, the surface 2 of each set of aluminum castings 1
The probe 14 was moved in a straight line having a length of 180 mm along the line. The stirring portions 4 of the casting 1 formed by the tools 10 and 10a of each example were individually cut and visually inspected for internal defects and surface defects. These results are also shown in Table 1 as Examples 1 and 2 and Comparative Examples 1 to 3 corresponding to the tools 10 and 10a of each example.
【0029】[0029]
【表1】 [Table 1]
【0030】表1によれば、実施例1,2では欠陥がな
かったのに対し、半周分の渦巻き形の凸条17を有する
攪拌ツール10を用いた比較例1では攪拌部4の表面が
凹む表面欠陥が生じていた。比較例1では、凸条17が
半周分しかないため、プローブにより流動化したアルミ
ニウムが攪拌部4から外部に飛散したために表面欠陥が
生じた。また、攪拌ツール10aを垂直姿勢で用いた比
較例2では攪拌部4中に内部欠陥が生じていた。これ
は、凸条17のない攪拌ツール10aを垂直姿勢で使用
し且つ押し込み量(ap)を0.2mmで加えたため、流
動化したアルミニウムが攪拌部4中において不足した結
果、内部欠陥を生じたものである。尚、比較例3では、
比較例2と同じ押し込み量(ap)を加えたが、攪拌ツー
ル10aを3°傾斜させた結果、流動化したアルミニウ
ムが攪拌部4に留まったため、内部欠陥や表面欠陥を生
じていなかった。但し、比較例3のように、ツール10
aを3°傾斜させることは、鋳物1の広い表面2を連続
して移動させる際に、前記Uターン7などが困難で実用
的ではない。以上の結果から、本発明の微細空隙除去方
法およびこれに用いる攪拌ツール10の優位性が理解さ
れる。According to Table 1, there was no defect in Examples 1 and 2, whereas in Comparative Example 1 using the stirring tool 10 having a spiral ridge 17 of a half circumference, the surface of the stirring section 4 was A concave surface defect had occurred. In Comparative Example 1, since the ridge 17 had only a half circumference, the aluminum which was fluidized by the probe was scattered to the outside from the agitating section 4 to cause a surface defect. In Comparative Example 2 in which the stirring tool 10a was used in a vertical posture, an internal defect occurred in the stirring section 4. This is because the agitating tool 10a without the ridge 17 was used in a vertical position, and the indentation (ap) was added at 0.2 mm, so that the fluidized aluminum was insufficient in the agitating section 4, resulting in internal defects. Things. In Comparative Example 3,
Although the same indentation amount (ap) as in Comparative Example 2 was added, as a result of tilting the stirring tool 10a by 3 °, the fluidized aluminum remained in the stirring section 4, so that no internal defect or surface defect occurred. However, as in Comparative Example 3, the tool 10
It is not practical to incline a by 3 ° because the U-turn 7 and the like are difficult when continuously moving the wide surface 2 of the casting 1. From the above results, the superiority of the microvoid removing method of the present invention and the stirring tool 10 used for the method can be understood.
【0031】[0031]
【実施例3,4】厚さ20mmで、100mm×200
mmの表面2を有するアルミニウム鋳物(JIS:AC
4C)1を3組用意し、且つ3組の攪拌ツール10も用
意した。表2に示すように、各例のツール10の底面1
3の直径Dを15mmで共通とし、プローブ14の直径
d(ネジ16のネジ谷径)を変化させて、これらの比D/
dを3通りに変化させた。また、渦巻き形の凸条17の
巻数も表2のように変化させて、実施例3,4や比較例
4とした。これらを同じ890rpmの回転数および同
じ500mm/分の移動速度を伴って、各組のアルミニ
ウム鋳物1の表面2に沿って、長さ180mmの直線形
にプローブ14を個別に移動させた。各例のツール10
により形成された鋳物1の攪拌部4を、個別に切断して
目視により、内部欠陥や表面欠陥の有無を調べた。これ
らの結果も、各例のツール10に対応させた実施例3,
4や比較例4として表2に示した。Embodiments 3 and 4 100 mm x 200 mm with a thickness of 20 mm
aluminum casting (JIS: AC
4C) Three sets of 1 were prepared, and three sets of stirring tools 10 were also prepared. As shown in Table 2, the bottom surface 1 of the tool 10 of each example
3, the diameter D of the probe 14 is set to 15 mm in common, and the diameter d of the probe 14 (the thread root diameter of the screw 16) is changed so that the ratio D /
d was changed in three ways. Further, the number of turns of the spiral ridge 17 was changed as shown in Table 2 to obtain Examples 3 and 4 and Comparative Example 4. These were individually moved along the surface 2 of each set of aluminum castings 1 in a linear fashion with a length of 180 mm, with the same rotation speed of 890 rpm and the same moving speed of 500 mm / min. Tool 10 for each example
The stirrer 4 of the casting 1 formed by the above was cut individually and visually inspected for internal defects and surface defects. These results are also obtained in Example 3 corresponding to the tool 10 of each example.
4 and Comparative Example 4 are shown in Table 2.
【0032】[0032]
【表2】 [Table 2]
【0033】表2によれば、前記比D/dが1.8以上
で且つ凸条17が4分の3周巻き以上の実施例3,4で
は、何れにも欠陥は生じていなかった。これに対し、比
較例4では、凸条17を4分の3周巻きとしたにも拘わ
らず、前記比D/dは1.8未満であるため、その攪拌
部4に表面欠陥が生じていた。即ち、上記比D/dが
1.8未満であり、プローブ14の径dに対して底面1
3の径Dが相対的に小さくなるため、プローブ14によ
って流動化したアルミニウムが攪拌部4から溢れ出し、
ツール10の周囲から外部に飛散したためである。係る
結果により、上記比D/dを1.8以上とし且つ凸条1
7を4分の3周巻き以上とする本発明の攪拌ツール10
の優位性が、容易に理解される。According to Table 2, no defects occurred in Examples 3 and 4 in which the ratio D / d was 1.8 or more and the ridge 17 was wound three-quarters or more. On the other hand, in Comparative Example 4, since the ratio D / d was less than 1.8 despite the fact that the ridges 17 were wound three-quarters, surface defects occurred in the agitating part 4. Was. That is, the ratio D / d is less than 1.8, and the bottom surface 1 is smaller than the diameter d of the probe 14.
Since the diameter D of the sample 3 becomes relatively small, the aluminum fluidized by the probe 14 overflows from the stirring unit 4,
This is because it scattered from the periphery of the tool 10 to the outside. From these results, the ratio D / d was set to 1.8 or more and the ridge 1
The stirring tool 10 of the present invention in which 7 is 3/4 or more windings
The advantage of is easily understood.
【0034】[0034]
【実施例5,6】樹脂を射出成形するアルミニウム製の
金型は、一般に展伸用アルミニウム合金を圧延した圧延
材により製作され、そのキャビティの表面には例えばF
eメッキが耐熱・耐摩耗性のために被覆されている。し
かし、係る金型はコスト高であるため、アルミニウム鋳
物の適用が検討されている。ところが、アルミニウム鋳
物には鋳巣が内在するため、表面精度の良いキャビティ
が形成しにくい、という問題がある。このために、これ
まで実用化には至っていなかった。ここで、アルミニウ
ム鋳物製の射出成形金型について、本発明の微細空隙除
去方法を適用した実施例を行い、上述した問題点を解決
可能とした。先ず、図6(A)に示すように、厚さが30
mmで、100mm×200mmの表面22を有するア
ルミニウム(JIS:A5083)鋳物20を3組用意し
た。これらの鋳物20は、射出成形金型を製作するため
の模擬的な試験片である。Embodiments 5 and 6 An aluminum mold for injection-molding a resin is generally made of a rolled material obtained by rolling an aluminum alloy for spreading, and the surface of the cavity is made of, for example, F
e plating is coated for heat and wear resistance. However, since such a mold is expensive, application of an aluminum casting is being studied. However, there is a problem that a cavity with good surface accuracy is difficult to be formed due to the presence of a cavity in an aluminum casting. For this reason, it has not been put to practical use until now. Here, an example in which the method for removing fine voids of the present invention was applied to an injection molding die made of an aluminum casting was performed, and the above-described problems could be solved. First, as shown in FIG.
Three sets of aluminum (JIS: A5083) castings 20 having a surface 22 of 100 mm x 200 mm in mm were prepared. These castings 20 are simulated test pieces for producing an injection mold.
【0035】また、前記同様の攪拌ツール10を用意し
た。該ツール10は、その底面13を含む本体12の直
径Dは15mmで、長さ6mmのプローブ14の直径d
はネジ16のネジ谷径で7mmであり、直径D,d間の
比D/dは約2.1である。図6(B)に示すように、係
る攪拌ツール10を用いて、各組のアルミニウム鋳物2
0の表面22に対し、左側の位置に1つのUターン7を
含む平面視でU字形を呈し且つ互いに通過軌跡が重複す
る2本の攪拌部4からなる改質部24を、個別に形成し
た。また、表面22の右側の位置に、3つのUターン7
を交互に含む平面視でジグザグ形を呈し且つ互いに通過
軌跡が重複する4本の攪拌部4からなる改質部26を、
各組の鋳物20に個別に形成した。この際、攪拌ツール
10は鋳物20の表面22に対し垂直姿勢に保たれ、且
つ同じ890rpmの回転数と同じ500mm/分の移
動速度により回転させつつ移動させた。Further, a stirring tool 10 similar to the above was prepared. The tool 10 has a main body 12 including a bottom surface 13 having a diameter D of 15 mm and a diameter d of a probe 14 having a length of 6 mm.
Is a thread root diameter of the screw 16 of 7 mm, and a ratio D / d between the diameters D and d is about 2.1. As shown in FIG. 6 (B), each set of aluminum castings 2 is
On the surface 22 of the zero, a reforming unit 24 composed of two agitating units 4 having a U-shape in plan view including one U-turn 7 at the left position and having overlapping passages is formed individually. . Also, three U-turns 7 are located on the right side of the surface 22.
Are formed in a zigzag shape in a plan view including alternately and the passing trajectories overlap each other.
It was formed individually on each set of castings 20. At this time, the stirring tool 10 was kept vertical to the surface 22 of the casting 20, and moved while rotating at the same rotation speed of 890 rpm and the same movement speed of 500 mm / min.
【0036】そして、1組のアルミニウム鋳物20は、
その表面22において、改質部24,26共に、ツール
10における本体12の底面13の押し込み量を、当初
または直前の移動直線部に対し0.2mmずつ増加させ
た。これにより、得られた改質部24,26を有する鋳
物20を実施例5とした。また、別組の鋳物20におい
て、押し込み量を0.5mmずつ増加させたものを実施
例6とした。更に、別組の鋳物20において、押し込み
量を当初の0.2mmのまま一定に保ったものを比較例
5とした。Then, one set of the aluminum casting 20 is
On the surface 22, the amount of pushing of the bottom surface 13 of the main body 12 in the tool 10 is increased by 0.2 mm with respect to the initial or immediately preceding moving linear portion in both the modified portions 24 and 26. Thus, a casting 20 having the obtained modified portions 24 and 26 was used as Example 5. In addition, the casting 20 of another set, in which the pushing amount was increased by 0.5 mm, was set as Example 6. Further, in another casting 20, the one in which the amount of indentation was kept constant at the initial value of 0.2 mm was used as Comparative Example 5.
【0037】各例のアルミニウム鋳物20の改質部2
4,26を切断して目視により、内部欠陥や表面欠陥の
有無を調べた。その結果、実施例5,6の何れでも、欠
陥は生じていなかった。これに対し、比較例5では、微
細な内部欠陥が確認された。係る結果により、隣接する
攪拌部4毎にツール10を0.1mm以上で順次深く押
し込む本発明の微細空隙除去方法の優位性が理解され
る。尚、実施例6では、押し込み量が大きいため、攪拌
部4の両側に沿ってバリが顕著に形成されていた。この
ため、増加する押し込み量は0.5mmより小さい方が
望ましいと言える。Reforming part 2 of aluminum casting 20 of each example
4, 26 were cut and visually inspected for internal defects and surface defects. As a result, no defect occurred in any of Examples 5 and 6. On the other hand, in Comparative Example 5, fine internal defects were confirmed. From these results, it is understood that the superiority of the fine void removing method of the present invention in which the tool 10 is sequentially pushed deeper by 0.1 mm or more for each adjacent stirring unit 4. In Example 6, since the pushing amount was large, burrs were notably formed along both sides of the stirring section 4. For this reason, it can be said that the increasing pushing amount is preferably smaller than 0.5 mm.
【0038】[0038]
【実施例7】図6(A)に示したアルミニウム鋳物20を
別に2組用意した。1組には、図6(B)に示した改質部
24,26を前記同様にして形成した後、図6(C)に示
すように、改質部24,26の長手方向に沿った凹溝2
5,27を形成し、厚さ約2mmで断面略凹形の改質部
24a,26aを形成した後、その表面にFeメッキを
被覆した模擬的な射出成形金型28を製作した。これを
実施例7とした。上記改質部24a,26aは、射出成
形金型28におけるキャビティに相当する。尚、上記F
eメッキは、アルミニウム鋳物20の表面22にNi・
Crメッキ層を被覆した後、硫化第一鉄、フッ化ナトリ
ウム、およびピロガールを混合した鉄メッキ浴中におい
て通電することにより、Ni・Crメッキ層の上にFe
メッキ層を更に被覆するものである。一方、別組の図6
(A)に示した鋳物20に対し、直に上記と同じFeメッ
キを同じ条件で被覆して、得られた模擬的な射出成形金
型を比較例6とした。実施例7の改質部24a,26a
につき、Feメッキの状態を観察した結果、緻密で均一
なメッキ面であった。これに対し、比較例6では、表層
付近の鋳巣に起因する穴や凹凸が確認された。従って、
本発明による微細空隙除去方法は、アルミニウム製の射
出成形金型に有効に適用可能であることが裏付けられ
た。Embodiment 7 Two separate sets of the aluminum casting 20 shown in FIG. 6A were prepared. In one set, after the modified portions 24 and 26 shown in FIG. 6B are formed in the same manner as described above, as shown in FIG. 6C, the modified portions 24 and 26 are formed along the longitudinal direction of the modified portions 24 and 26. Groove 2
After forming modified portions 24a and 26a having a thickness of about 2 mm and a substantially concave cross section, a simulated injection molding die 28 having a surface coated with Fe plating was manufactured. This was designated as Example 7. The modified portions 24a and 26a correspond to cavities in the injection mold 28. The above F
e-plating is performed on the surface 22 of the aluminum casting 20 by Ni.
After coating the Cr plating layer, by applying an electric current in an iron plating bath in which ferrous sulfide, sodium fluoride, and pyrogal is mixed, Fe
It further covers the plating layer. On the other hand, another set of FIG.
The casting 20 shown in (A) was directly coated with the same Fe plating as described above under the same conditions, and the obtained simulated injection mold was used as Comparative Example 6. Modification units 24a and 26a of Embodiment 7
As a result of observing the state of Fe plating, a dense and uniform plated surface was obtained. On the other hand, in Comparative Example 6, holes and irregularities due to the porosity near the surface layer were confirmed. Therefore,
It has been confirmed that the method for removing fine voids according to the present invention can be effectively applied to an aluminum injection mold.
【0039】本発明は、以上に説明した形態や実施例に
限定されるものではない。例えば、前記攪拌部4の表面
6は、そのままで活用しても良いが、係る攪拌部4の大
半を残すように、表面6付近を切削する仕上げ加工を施
しても良い。また、攪拌ツール10の移動に際して、直
線移動部同士の間において、鋭角または鈍角のターンを
含めても良い。更に、攪拌ツール10におけるプローブ
14の先端面には、格子状または散点状の多数の凸部を
設けても良く、あるいは、プローブ14の周面に対し前
記ネジ16に替えて、その軸心に沿った複数の凹溝を設
けても良い。また、鋳物1の表面2には、前記平坦面に
限らず、緩いカーブにより突出または窪む曲面も含まれ
る。尚、攪拌ツール10,10aの回転を伴う各種の移
動パターンを、当該ツールを制御する例えばパーソナル
コンピュータのRAMなどに予め記憶させておき、直線
移動部の長さやUターンなどの径を随時入力可能とし
て、本発明の微細空隙除去方法を自動化することも可能
である。The present invention is not limited to the embodiments and embodiments described above. For example, the surface 6 of the stirring unit 4 may be used as it is, or a finishing process for cutting the vicinity of the surface 6 may be performed so that most of the stirring unit 4 remains. Further, when the stirring tool 10 is moved, an acute angle or an obtuse angle turn may be included between the linearly moving parts. Further, the tip surface of the probe 14 in the stirring tool 10 may be provided with a large number of lattice-like or scattered projections, or the circumferential surface of the probe 14 may be replaced with the screw 16 and its axis centered. May be provided. The surface 2 of the casting 1 is not limited to the flat surface, but includes a curved surface that protrudes or is depressed by a gentle curve. Various movement patterns accompanying the rotation of the stirring tools 10 and 10a are stored in advance in, for example, a RAM of a personal computer for controlling the tools, and the length of the linear moving portion and the diameter of the U-turn can be input at any time. As an alternative, it is possible to automate the method for removing fine voids of the present invention.
【0040】[0040]
【発明の効果】以上において説明した本発明の鋳物表面
の微細空隙除去方法によれば、攪拌ツールのプローブが
回転して移動した鋳物表面付近には、鋳物の金属材料が
固相状態で攪拌され流動化された緻密な組織の攪拌部
が、上記ツールの移動軌跡に沿って形成される。また、
攪拌ツールを鋳物表面に沿って直線移動した後、Uター
ンさせて元の移動軌跡に隣接して攪拌部を連続形成した
り、係る直線移動とUターンとを複数回に渉り繰り返し
て広い範囲の鋳物表面を移動させ、これら鋳物表層の微
細な空隙や表面の凹凸を除去できる。あるいは、攪拌ツ
ールを鋳物表面に沿って直線移動させた後、直角のLタ
ーンをさせて元の移動軌跡に隣接して移動し且つ更にL
ターンと直線移動とを交互に繰り返したり、渦巻き状に
移動軌跡を隣接させつつ鋳物表面の中心部と周辺との間
を移動させて、広い範囲の鋳物表層の微細な空隙や表面
の凹凸を除去することもできる。しかも、上記ツールの
移動は連続して行うため、当該ツールのプローブを最後
に抜き出した跡に残る凹みを1箇所または最小限にで
き、鋳物表面付近の強度低下を抑制することもできる。According to the method for removing fine voids on the casting surface of the present invention described above, the metal material of the casting is stirred in a solid state near the casting surface where the probe of the stirring tool has been rotated and moved. A fluidized, dense tissue agitator is formed along the movement trajectory of the tool. Also,
After linearly moving the stirring tool along the casting surface, it is U-turned to continuously form a stirring part adjacent to the original movement trajectory, or such linear movement and U-turn are repeated several times to cover a wide range. The surface of the casting can be moved to remove fine voids and irregularities on the surface of the casting. Alternatively, after the stirring tool is moved linearly along the casting surface, the L tool is moved adjacent to the original movement trajectory by making a right angle L turn, and
Turns and linear movements are alternately repeated, or moving between the center and the periphery of the casting surface while adjoining the movement trajectory in a spiral shape, to remove minute voids and surface irregularities on the casting surface layer over a wide range You can also. Moreover, since the tool is continuously moved, the number of dents left in the trace of the last extraction of the probe of the tool can be reduced to one or a minimum, and a reduction in strength near the casting surface can be suppressed.
【0041】また、請求項2の微細空隙除去方法によれ
ば、鋳物の金属材料が固相状態で攪拌・流動化された緻
密な組織の攪拌部が、隣接する先に形成された攪拌部に
沿って、互いに重複した状態で形成される。従って、鋳
物表面の微細な凹凸は基より、表層付近に存在する微細
な空隙を確実に除去することができるため、鋳物表面付
近を緻密な組織にして鋳物製品の強度を高め所要の特性
を発揮させ得る。更に、請求項3の微細空隙除去方法に
よれば、攪拌ツールの移動軌跡に形成される第1の攪拌
部の表面は、ツール本体の底面に押圧されて僅かに窪む
が、連続して形成される隣接する移動軌跡に形成される
第2の攪拌部の表面が更に窪む。この結果、鋳物素材の
流動化した金属材料が攪拌部に適正に供給されるので、
攪拌部中において材料不足による内部欠陥を確実に防止
できる。According to the minute void removing method of the present invention, the stirrer of the dense structure in which the metal material of the casting is stirred and fluidized in the solid state is replaced with the stirrer formed adjacently. Along with each other. Therefore, fine voids near the surface layer can be reliably removed from the base of the fine irregularities on the casting surface, so that the casting surface area has a dense structure to increase the strength of the casting product and exhibit the required characteristics. I can make it. Furthermore, according to the method for removing fine voids of the third aspect, the surface of the first stirring portion formed on the movement locus of the stirring tool is slightly pressed by the bottom surface of the tool body, but is continuously formed. The surface of the second stirrer formed on the adjacent moving trajectory is further depressed. As a result, the fluidized metal material of the casting material is appropriately supplied to the stirring section,
Internal defects due to a shortage of material can be reliably prevented in the stirring section.
【0042】一方、本発明の攪拌ツールによれば、鋳物
表面付近に挿入するプローブにより塑性・流動化された
金属材料は、鋳物表面に押圧しつつ接触する本体の底面
に設けた渦巻き状の凸条によって、プローブに向けて流
動するように誘導される。従って、攪拌部において材料
不足により表面が凹む表面欠陥や、内部欠陥の発生を確
実に防止して緻密で均一な金属組織の攪拌部を、鋳物表
面付近の広い範囲に渉って連続形成することができる。
また、請求項7の攪拌ツールによれば、プローブに対し
本体や底面が太径となるため、プローブにより塑性・流
動化された鋳物の金属材料は、底面に設けた渦巻き状の
凸条により攪拌部内に留められ、表面欠陥のない健全な
攪拌部を形成することができる。On the other hand, according to the stirring tool of the present invention, the metal material plasticized and fluidized by the probe inserted in the vicinity of the casting surface is formed into a spiral convex provided on the bottom surface of the main body which comes into contact with the casting surface while pressing the same. The streak induces flow toward the probe. Therefore, it is necessary to reliably prevent the occurrence of surface defects or internal defects whose surface is depressed due to lack of material in the stirrer, and to form a stirrer with a dense and uniform metal structure continuously over a wide range near the casting surface. Can be.
According to the stirring tool of claim 7, since the main body and the bottom face have a large diameter with respect to the probe, the metal material of the casting plasticized and fluidized by the probe is stirred by the spiral ridge provided on the bottom face. It is possible to form a sound stirring section free from surface defects by being fixed in the section.
【図1】(A)は本発明の微細空隙除去方法の概略を示す
斜視図、(B)は(A)中のB−B線に沿った視角による断
面図。FIG. 1A is a perspective view schematically showing a method for removing fine voids according to the present invention, and FIG. 1B is a cross-sectional view taken along a line BB in FIG.
【図2】(A),(B)は本発明の攪拌ツールを示す側面図
または底面図、(C)は(B)中のC−C線に沿った視角に
よる断面図。FIGS. 2A and 2B are side and bottom views showing the stirring tool of the present invention, and FIG. 2C is a sectional view taken along a line CC in FIG.
【図3】(A)は本発明の微細空隙除去方法の1形態を示
す平面図、(B),(C)は(A)中のB−B線に沿った視角
による異なる時点での断面図。3A is a plan view showing one embodiment of a method for removing microvoids according to the present invention, and FIGS. 3B and 3C are cross sections at different points in time along a line BB in FIG. FIG.
【図4】(A),(B)は本発明の微細空隙除去方法におけ
る攪拌ツールの押し込み態様を示す概略図、(C)〜(F)
は異なる形態の微細空隙除去方法を示す平面図。4 (A) and 4 (B) are schematic diagrams showing a pressing mode of a stirring tool in the method for removing microvoids of the present invention, and FIGS. 4 (C) to 4 (F).
FIG. 4 is a plan view showing a method for removing fine voids in a different form.
【図5】(A)は本発明の攪拌ツールの使用状態を示す概
略図、(B)は本発明の微細空隙除去方法に用い得る異な
る形態の攪拌ツールの断面図、(C)はその使用状態を示
す概略図。5A is a schematic view showing a use state of the stirring tool of the present invention, FIG. 5B is a cross-sectional view of a stirring tool of a different form which can be used in the method for removing microvoids of the present invention, and FIG. The schematic diagram which shows a state.
【図6】(A)〜(C)は本発明の微細空隙除去方法を用い
た射出成形金型の試験片の製作工程を示す概略図。6 (A) to 6 (C) are schematic views showing a process for producing a test piece of an injection mold using the method for removing fine voids according to the present invention.
1,20………アルミニウム鋳物(鋳物) 2,22………表面 4………………攪拌部 6………………攪拌部の表面(移動軌跡) 7………………Uターン 8………………Lターン(直角のターン) 10,10a…攪拌ツール 12……………本体 13,13a…底面 14……………プローブ 17……………凸条 n1,n2……押し込み量 1, 20 ... aluminum casting (casting) 2, 22 ... surface 4 ... stirrer 6 ... stirrer part surface (movement trajectory) 7 ... U Turn 8 L turn (right-angle turn) 10, 10a Stirring tool 12 Main body 13, 13a Bottom surface 14 Probe 17 Protrusion n1, n2 ... Indent amount
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2001−246458(JP,A) 特開2000−15426(JP,A) 特開2001−181809(JP,A) 特開2001−32058(JP,A) 特開2000−336465(JP,A) 特開2001−347360(JP,A) 特開2001−347359(JP,A) 特開 平10−183316(JP,A) 特表 平7−505090(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 29/00 B23K 20/12 310 B23K 103:10 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP 2001-246458 (JP, A) JP 2000-15426 (JP, A) JP 2001-181809 (JP, A) JP 2001-32058 (JP, A A) JP-A-2000-336465 (JP, A) JP-A-2001-347360 (JP, A) JP-A-2001-347359 (JP, A) JP-A-10-183316 (JP, A) JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B22D 29/00 B23K 20/12 310 B23K 103: 10
Claims (8)
体およびその底面の中心部から突出するプローブを含む
攪拌ツールを、上記底面が鋳物の表面に当接または略当
接しつつ上記プローブを鋳物の表面付近に挿入して微細
な空隙を除去するに際し、 上記攪拌ツールを平面視において鋳物の表面に対して、
Uターン、あるいは直角または任意角度のターンを含み
つつ、移動軌跡が互いに隣接するように連続移動させ
る、ことを特徴とする鋳物表面の微細空隙除去方法。An agitating tool including a main body rotating and moving along a surface of a casting and a probe protruding from a center portion of a bottom surface of the main body, the probe being moved while the bottom surface abuts or substantially abuts the surface of the casting. When removing the minute voids by inserting near the surface of the casting, the stirring tool with respect to the surface of the casting in plan view,
A method for removing fine voids on a casting surface, wherein the method includes a U-turn or a turn at a right angle or an arbitrary angle and continuously moving so that the movement trajectories are adjacent to each other.
た鋳物の表面付近において隣接する攪拌部同士が、互い
に重複する部分を含む、 ことを特徴とする請求項1の鋳物表面の微細空隙除去方
法。2. The method according to claim 1, wherein adjacent stirring portions near the surface of the casting stirred by the probe of the stirring tool include portions overlapping each other.
する移動軌跡に移動させるに際し、第1の攪拌における
ツール本体の底面の押し込み量に対し、これに隣接する
第2の攪拌におけるツール本体の底面の押し込み量を鋳
物の深さ方向に0.1mm以上深くする、 ことを特徴とする請求項1または2の鋳物表面の微細空
隙除去方法。3. When the stirring tool is moved to an adjacent movement trajectory on the surface of the casting, the amount of depression of the bottom of the tool body in the first stirring is smaller than the bottom of the tool body in the second stirring adjacent to the tool. 3. The method for removing fine voids on a casting surface according to claim 1 or 2, wherein the amount of indentation is increased by 0.1 mm or more in the depth direction of the casting.
しつつ移動するに際して、攪拌ツールの前記本体および
プローブの軸心を、鋳物の表面に対し垂直姿勢に保つ、
ことを特徴とする請求項1乃至3の何れかに記載の鋳物
表面の微細空隙除去方法。4. When the stirring tool is moved while rotating along the surface of the casting, the axes of the main body and the probe of the stirring tool are maintained in a vertical position with respect to the surface of the casting.
The method for removing fine voids on a casting surface according to any one of claims 1 to 3, wherein:
するツールであって、 鋳物の表面に沿って回転しつつ移動する円柱形の本体と 上記本体の底面の中心部から突出するプローブと、 上記本体の底面において、この底面の周縁から上記プロ
ーブ基端部に向けて渦巻き状に突出して設けられた凸条
と、を含む、ことを特徴する攪拌ツール。5. A tool inserted near the surface of a casting to remove minute voids, comprising: a cylindrical main body rotating and moving along the surface of the casting; and a probe protruding from a center of a bottom surface of the main body. And a ridge provided on the bottom surface of the main body so as to spirally protrude from a periphery of the bottom surface toward the base end of the probe.
の底面において4分の3周巻き以上である、ことを特徴
する請求項5に記載の攪拌ツール。6. The stirring tool according to claim 5, wherein the spirally projecting ridge is three-quarters or more turns on the bottom surface of the main body.
を含む本体の直径(D)の比D/dが、1.8以上であ
る、 ことを特徴する請求項5または6に記載の攪拌ツール。7. The stirring according to claim 5, wherein a ratio D / d of a diameter (D) of the main body including the bottom surface to a diameter (d) of the probe is 1.8 or more. tool.
ルを用いる、ことを特徴とする、請求項1乃至4の何れ
かに記載の鋳物表面の微細空隙除去方法。8. The method for removing fine voids in a casting surface according to claim 1, wherein the joining tool according to any one of claims 5 to 7 is used.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000287051A JP3346380B2 (en) | 2000-09-21 | 2000-09-21 | Method for removing fine voids on casting surface and stirring tool used for the method |
AU2001288080A AU2001288080A1 (en) | 2000-09-21 | 2001-09-20 | Method of removing fine cavities from surface of casting and agitating tool usedtherefor |
PCT/JP2001/008191 WO2002024382A1 (en) | 2000-09-21 | 2001-09-20 | Method of removing fine cavities from surface of casting and agitating tool used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000287051A JP3346380B2 (en) | 2000-09-21 | 2000-09-21 | Method for removing fine voids on casting surface and stirring tool used for the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002096158A JP2002096158A (en) | 2002-04-02 |
JP3346380B2 true JP3346380B2 (en) | 2002-11-18 |
Family
ID=18770868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000287051A Expired - Fee Related JP3346380B2 (en) | 2000-09-21 | 2000-09-21 | Method for removing fine voids on casting surface and stirring tool used for the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3346380B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7448528B2 (en) * | 2003-08-12 | 2008-11-11 | The Boeing Company | Stir forming apparatus and method |
JP4792271B2 (en) * | 2005-10-13 | 2011-10-12 | 財団法人大阪産業振興機構 | Method for modifying alloy compact and alloy compact |
JP4928326B2 (en) * | 2007-03-29 | 2012-05-09 | 日立Geニュークリア・エナジー株式会社 | Method for improving the progress of stress corrosion cracking in welded structures |
JP2008261352A (en) * | 2007-04-10 | 2008-10-30 | Showa Denko Kk | Metal part with screw hole and method of manufacturing same and liner for pressure vessel and method of manufacturing same |
JP5336761B2 (en) * | 2008-05-08 | 2013-11-06 | 日本軽金属株式会社 | Friction stir welding method |
JP4755236B2 (en) * | 2008-09-29 | 2011-08-24 | 三菱重工業株式会社 | Friction stir welding method |
JP4911157B2 (en) * | 2008-10-29 | 2012-04-04 | 日本軽金属株式会社 | Method and structure for joining thick materials |
JP5734556B2 (en) * | 2009-10-16 | 2015-06-17 | 株式会社ブリヂストン | Manufacturing method of cylindrical mold |
JP5644217B2 (en) * | 2010-07-12 | 2014-12-24 | 日本軽金属株式会社 | Rotating tool for forming gap and method for forming gap |
JP6393931B2 (en) | 2014-10-15 | 2018-09-26 | 三菱重工エンジニアリング株式会社 | Plastic processing method of magnesium alloy |
US20170241372A1 (en) * | 2014-10-21 | 2017-08-24 | Hitachi Automotive Systems, Ltd. | Method for manufacturing piston for internal combustion engine and frictional hole sealing device for piston for internal combustion engine |
JP7152119B2 (en) | 2019-04-03 | 2022-10-12 | 株式会社不二越 | Friction stir welding tool |
-
2000
- 2000-09-21 JP JP2000287051A patent/JP3346380B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002096158A (en) | 2002-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3346380B2 (en) | Method for removing fine voids on casting surface and stirring tool used for the method | |
JP4792271B2 (en) | Method for modifying alloy compact and alloy compact | |
US8220693B2 (en) | Modified surfaces using friction stir processing | |
PL176524B1 (en) | Method of and apparatus for frictional welding with mixing the interior of a weld | |
KR102351841B1 (en) | Method of manufacturing sintered parts | |
JP2020032429A (en) | Heat exchanger plate manufacturing method | |
JP3181287B2 (en) | Metal surface processing method | |
JP2002224859A (en) | Friction stir tool and method for using it | |
JP2001047261A (en) | Manufacture of metal-based composite material | |
JP4407113B2 (en) | Joining method | |
JP4190179B2 (en) | Friction stir welding method | |
US4398407A (en) | Sizing of powder metal parts | |
US2438405A (en) | Method for manufacturing bimetallic bodies | |
JP2007275980A (en) | Structure reforming method of casting | |
CN107921577A (en) | Joint method | |
JP7272153B2 (en) | Joining method and manufacturing method of composite rolled material | |
JPH0344121B2 (en) | ||
RU2775418C1 (en) | Method for obtaining a metal sheet | |
JP6578782B2 (en) | Joining method | |
JP6578800B2 (en) | Joining method | |
JP2020131246A (en) | Joining method and composite rolling material manufacturing method | |
JPH11104887A (en) | Manufacture of welding wire | |
JP2018008302A (en) | Welding method | |
JP2001347360A (en) | Surface treatment method of metal member | |
JP2021115588A (en) | Frictional agitation joining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020806 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080906 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090906 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090906 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100906 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110906 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |