JP3345742B2 - Fireproof insulation board - Google Patents

Fireproof insulation board

Info

Publication number
JP3345742B2
JP3345742B2 JP10421297A JP10421297A JP3345742B2 JP 3345742 B2 JP3345742 B2 JP 3345742B2 JP 10421297 A JP10421297 A JP 10421297A JP 10421297 A JP10421297 A JP 10421297A JP 3345742 B2 JP3345742 B2 JP 3345742B2
Authority
JP
Japan
Prior art keywords
plate
heat
thickness
experiment
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10421297A
Other languages
Japanese (ja)
Other versions
JPH10299129A (en
Inventor
省吾 松岸
Original Assignee
小松フォークリフト株式会社
有限会社松岸研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小松フォークリフト株式会社, 有限会社松岸研究所 filed Critical 小松フォークリフト株式会社
Priority to JP10421297A priority Critical patent/JP3345742B2/en
Publication of JPH10299129A publication Critical patent/JPH10299129A/en
Application granted granted Critical
Publication of JP3345742B2 publication Critical patent/JP3345742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Special Wing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍倉庫建物の外
壁材、間仕切り材等として用いられる耐火断熱板材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fire-resistant and heat-insulating plate used as an outer wall material, a partition member and the like of a freezer warehouse building.

【0002】[0002]

【従来の技術】冷凍倉庫建物としては、軸組みされた建
物躯体に外壁材を取付けて外壁とし、室内を用途に応じ
て間仕切り材で複数の室に間仕切りし、その建物躯体の
上部に屋根材を取付けて屋根としたものが一般的であ
る。
2. Description of the Related Art In a freezer warehouse building, an outer wall is attached to a framed building frame to form an outer wall, and the room is partitioned into a plurality of rooms by a partitioning material according to the application, and a roofing material is provided above the building frame. It is common to attach a roof.

【0003】前述の外壁材、間仕切り材としては樹脂系
断熱材により成る板材が知られ、この板材は断熱性能が
優れているから室内と室外や、隣接した室を断熱するこ
とができる。
As the above-mentioned outer wall material and partition material, a plate material made of a resin-based heat insulating material is known, and since this plate material has excellent heat insulating performance, it can insulate the inside and outside of a room or an adjacent room.

【0004】しかしながら、前述の板材は不燃性でない
ために耐火性の優れた冷凍倉庫建物とする場合には、予
め耐火構造の外壁材、間仕切り材を構築し、その外壁
材、間仕切り材の表面に後から前述の樹脂系断熱材より
成る断熱板を取付けて耐火断熱外壁、間仕切りとする
か、外壁材、間仕切り材の表面に溶融した断熱材を吹き
つけて断熱層として耐火断熱外壁、間仕切りとしてい
る。
However, when the above-mentioned plate material is not incombustible and is used as a frozen warehouse building having excellent fire resistance, an outer wall material and a partition material having a fire-resistant structure are constructed in advance, and the outer wall material and the partition material are formed on the surface of the outer wall material and the partition material. A heat insulating plate made of the above-mentioned resin-based heat insulating material is attached later to form a fire-resistant heat-insulating outer wall or partition, or a molten heat-insulating material is sprayed on the surface of the external wall material or the partition material to form a heat-insulating outer wall or partition as a heat insulating layer. .

【0005】前述のように、耐火構造の外壁材、間仕切
り材を現場で構築し、その後に表面に断熱板を取付けた
り、溶融した断熱材を吹きつけて耐火断熱外壁、間仕切
りとする工法であると、多くの工数を要するので施工コ
ストが高くなるばかりか、施工期間が長くなってしま
う。
[0005] As described above, this is a construction method in which an outer wall material and a partition material having a fireproof structure are constructed on site, and then a heat insulating plate is attached to the surface, or a molten heat insulating material is sprayed to form a fireproof heat insulating outer wall and a partition. This requires a large number of man-hours, which not only increases the construction cost, but also lengthens the construction period.

【0006】前述の工法の問題点を解決する工法として
は、軸組みした建物躯体に耐火断熱板材を取付ける工法
が知られ、この工法であれば板材を予め工場で製造して
建築現場において取付ければ良いから、工数が低減して
施工コストを安くできるし、施工期間を短くできる。
As a method of solving the problems of the above-mentioned method, a method is known in which a fire-resistant and heat-insulating plate is attached to a framed building frame. In this method, the plate is manufactured in advance in a factory and then attached at a building site. Therefore, the number of steps can be reduced, the construction cost can be reduced, and the construction period can be shortened.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述の
耐火断熱板材はセメント系不燃材より成る耐火板と樹脂
系断熱材より成る断熱板を直接張り合わせたものであ
り、セメント系不燃材のために大重量となり、取扱いが
面倒となる。また、火災時の火炎による高温度で加熱さ
れた熱は不燃材より成る耐火板を透過し、樹脂系断熱材
より成る断熱板との接合部の断熱層に阻まれた圧縮熱は
更に高温度になり、樹脂系断熱材より成る断熱板を瞬時
に延焼させる欠点があり、耐火性能が十分でない。
However, the above-mentioned refractory and heat-insulating plate material is obtained by directly bonding a refractory plate made of a cement-based incombustible material and an insulating plate made of a resin-based heat-insulating material. It becomes heavy, and handling becomes troublesome. In addition, heat heated at a high temperature due to a flame at the time of a fire passes through a refractory plate made of a non-combustible material, and the compression heat blocked by a heat insulating layer at a junction with the heat insulating plate made of a resin-based heat insulating material further increases the temperature. This has the drawback of instantaneously spreading the heat of the heat insulating plate made of the resin-based heat insulating material, and the fire resistance is not sufficient.

【0008】また、前述の耐火断熱外壁材としては不燃
性断熱材を金属板で包み込んだものが開発されている
が、この不燃性断熱材の断熱性能は樹脂系断熱材と比較
して十分でなく、冷凍倉庫建物に要求されている−25
℃以上の低温に樹脂系断熱材と同等の断熱性能にするに
は、不燃性断熱材の厚さを相当量増す必要があり、建物
の使用有効面積の減少等の経済性に不利な問題がある。
As the above-mentioned fire-resistant heat-insulating outer wall material, a material in which a non-combustible heat-insulating material is wrapped with a metal plate has been developed. -25
In order to achieve the same thermal insulation performance as resin-based thermal insulation at a low temperature of ℃ or more, it is necessary to increase the thickness of non-combustible thermal insulation considerably, which is disadvantageous to economics such as a decrease in the effective area of the building. is there.

【0009】また、前述のように形成した耐火断熱板材
を複数隣接して接合して外壁、間仕切りとしているの
で、その接合部の隙間を接合材で閉塞しているが、その
接合材は樹脂系材又は難燃加工した樹脂材であるから耐
火性能が著しく劣り、火災時に溶融し炎が侵入して断熱
材に引火するので、耐火断熱材自体の耐火性が良くとも
外壁、間仕切りの耐火性が劣る。
Further, since a plurality of refractory and heat-insulating plate members formed as described above are joined adjacently to form an outer wall and a partition, a gap at the joint is closed by the joining material. The fire resistance is extremely poor because it is a material or a flame-retardant resin material.It melts at the time of a fire and the flame invades and ignites the heat insulating material. Inferior.

【0010】そこで、本発明は前述の課題を解決できる
ようにした耐火断熱板材を提供することを目的とする。
Accordingly, an object of the present invention is to provide a fire-resistant and heat-insulating plate which can solve the above-mentioned problems.

【0011】[0011]

【課題を解決するための手段】本発明は、厚さ180〜
200mmの発泡硬質ウレタンの断熱層1の厚さ方向両
面2,2に厚さ25mmの内側のけい酸カルシウム板1
1がそれぞれ設けられ、この各内側のけい酸カルシウム
板11にアルミナシリケート繊維紙13がそれぞれ接合
され、この各アルミナシリケート繊維紙13に厚さ5〜
8mmの外側のけい酸カルシウム板12がそれぞれ接合
され、この各外側のけい酸カルシウム板12に鋼板14
がそれぞれ接合されたことを特徴とする耐火断熱板材で
ある。
SUMMARY OF THE INVENTION The present invention has a thickness of 180 to
A calcium silicate plate 1 having a thickness of 25 mm on both sides 2, 2 in a thickness direction of a heat insulating layer 1 of a foamed rigid urethane of 200 mm.
Alumina silicate fiber paper 13 is bonded to each inner calcium silicate plate 11, and each of the alumina silicate fiber papers 13 has a thickness of 5 to 5.
An 8 mm outer calcium silicate plate 12 is joined, and each outer calcium silicate plate 12 is
Are fire-resistant and heat-insulating plate members which are respectively bonded.

【0012】[0012]

【0013】[0013]

【0014】[0014]

【作 用】本発明の耐火断熱板材は、断熱性に優れた
さ180〜200mmの発泡硬質ウレタンの断熱層1の
厚さ方向両面2,2に、厚さ25mmの内側のけい酸カ
ルシウム板11、アルミナシリケート繊維紙13、厚さ
5〜8mmの外側のけい酸カルシウム板12、鋼板14
をそれぞれ順次備えているので、その耐火断熱板材の両
面からの熱によって発泡硬質ウレタンの断熱層1が長期
間に亘って融触、引火しないから両面からの火災に耐え
ることができると共に、断熱性に優れ軽量とすることが
できる。したがって、外壁材、間仕切り板など広い用途
に用いることができる耐火断熱板材である。
[Action] The fire-resistant heat-insulating plate of the present invention has a thickness excellent in heat insulation.
A 25 mm thick inner calcium silicate plate 11, an alumina silicate fiber paper 13, a thickness of 180 mm to 200 mm on both sides 2, 2 in the thickness direction of a heat insulating layer 1 of foamed hard urethane
5-8 mm outer calcium silicate plate 12, steel plate 14
Respectively, so that the heat-insulating layer 1 made of foamed hard urethane does not melt and ignite over a long period of time due to heat from both sides of the fire-resistant heat-insulating plate. Excellent and lightweight. Therefore, it is a fire-resistant and heat-insulating plate material that can be used for a wide range of applications such as an outer wall material and a partition plate.

【0015】[0015]

【0016】[0016]

【0017】[0017]

【発明の実施の形態】図1に示すように、所定の厚さを
有する断熱層1と、この断熱層1の厚さ方向両面2,2
にそれぞれ設けた不燃層10で耐火断熱板材20として
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a heat insulating layer 1 having a predetermined thickness and two surfaces 2 and 2 of the heat insulating layer 1 in the thickness direction.
And a non-combustible layer 10 provided as a fire-resistant and heat-insulating plate 20.

【0018】前記断熱層1は発泡硬質ウレタン製であ
り、厚さが180mm程度で、比重は0.035であ
る。
The heat insulating layer 1 is made of foamed hard urethane, has a thickness of about 180 mm and a specific gravity of 0.035.

【0019】前記不燃層10は、内側の繊維を混入した
けい酸カルシウム板11と外側の繊維を混入したけい酸
カルシウム板12をアルミナシリケート繊維紙13を介
して接合し、外表面に鋼板14が接合してある。前記内
側のけい酸カルシウム板11は厚く(例えば厚さ25m
m)、外側のけい酸カルシウム板12は薄く(例えば厚
さ5〜8mm)、アルミナシリケート繊維紙13は厚さ
0.5mmである。
The non-combustible layer 10 is formed by bonding a calcium silicate plate 11 mixed with inner fibers and a calcium silicate plate 12 mixed with outer fibers via an alumina silicate fiber paper 13, and a steel plate 14 is formed on the outer surface. They are joined. The inner calcium silicate plate 11 is thick (for example, 25 m thick).
m), the outer calcium silicate plate 12 is thin (for example, 5 to 8 mm in thickness), and the alumina silicate fiber paper 13 is 0.5 mm in thickness.

【0020】前記鋼板14は厚さ0.4〜0.6mmの
着色亜鉛めっき鋼板であって、外観を見栄え良くすると
共に、剛性を高めるものである。前記鋼板14の端部は
鉤形に折り曲げられて内側のけい酸カルシウム板11を
保持している。
The steel plate 14 is a colored galvanized steel plate having a thickness of 0.4 to 0.6 mm, and has a good appearance and a high rigidity. The end of the steel plate 14 is bent in a hook shape to hold the inside calcium silicate plate 11.

【0021】前記耐火断熱板材20の一端部(断熱層1
の一端部)は凸部21を有し、他端部(断熱層1の他端
部)は凹部22を有している。2つの耐火断熱板材20
を接合した時に図2に示すように凸部21と凹部22が
嵌まり合うと共に、不燃層10間と断熱層1の厚さ方向
両側寄り部分間に隙間が生じる。
One end of the refractory heat insulating plate 20 (the heat insulating layer 1)
Has one end, and the other end (the other end of the heat insulating layer 1) has a concave portion 22. Two fire-resistant insulation boards 20
As shown in FIG. 2, the protrusions 21 and the recesses 22 fit together, and a gap is formed between the non-combustible layer 10 and the portion of the heat insulating layer 1 near both sides in the thickness direction.

【0022】前記隙間には接合材が充填してある。この
接合材はゼオライトを主原料としたベースト状物30
と、セラミックスファイバーブランケット(耐火性能
材)31と、アクリル系シーリング材32で成る。
The gap is filled with a bonding material. This joining material is a base material 30 mainly composed of zeolite.
, A ceramic fiber blanket (fire-resistant material) 31 and an acrylic sealing material 32.

【0023】前記セラミックスファイバーブランケット
31が断熱層1間の隙間に設けられ、このセラミックス
ファイバーブランケット31をバックアップ材としてベ
ースト状物30が内側のけい酸カルシウム板11間の隙
間に注入充填され、その外側にアクリルシーリング材3
2が充填される。前記ベースト状物30はポリサルファ
イド系シーリング材とゼオライトを3対7の割合で混合
したものである。
The ceramic fiber blanket 31 is provided in the gap between the heat insulating layers 1, and the ceramic fiber blanket 31 is used as a backup material to inject and fill the base material 30 into the gap between the inner calcium silicate plates 11. Acrylic sealing material 3
2 are filled. The base 30 is a mixture of a polysulfide-based sealing material and zeolite at a ratio of 3: 7.

【0024】次に耐火断熱板材の耐火実験を説明する。 (実験方法)後述する試験体を耐火板の9コの開口部に
それぞれ設け、そのものを炉内に入れ、表面から最高9
50℃まで加熱して各試験片の断熱層1と不燃層10の
接合部、即ち内側のけい酸カルシウム板11の裏面での
熱伝達温度を10分間隔で1時間に亘ってそれぞれ測定
する。
Next, a description will be given of a fire resistance test of the fire-resistant heat insulating plate. (Experimental method) Specimens to be described later were provided in each of the nine openings of the refractory plate, and the specimens were placed in a furnace.
Heating to 50 ° C., the heat transfer temperature at the joint between the heat insulating layer 1 and the non-combustible layer 10 of each test piece, ie, the back surface of the inner calcium silicate plate 11, is measured at intervals of 10 minutes for 1 hour.

【0025】(実験1)図3に示すように、発泡硬質ウ
レタンの断熱層30(厚さ約200mm)の両面に、繊
維入りのけい酸カルシウム板31(厚さ25mm)、鋼
板32(厚さ0.5mm)を順次重ね合せた試験体Aを
前述の条件で試験した。
(Experiment 1) As shown in FIG. 3, on both sides of a heat insulating layer 30 (thickness: about 200 mm) of foamed hard urethane, a calcium silicate plate 31 (thickness: 25 mm) containing fibers and a steel plate 32 (thickness: 0.5 mm) were superposed sequentially, and the specimen A was tested under the conditions described above.

【0026】(実験2)図4に示すように、実験1の試
験体Aのけい酸カルシウム板31の厚さを30mmとし
て前述の条件で試験した。
(Experiment 2) As shown in FIG. 4, the test piece A of Experiment 1 was tested under the above-mentioned conditions with the thickness of the calcium silicate plate 31 being 30 mm.

【0027】(実験3)図5に示すように、厚さ30m
mのけい酸カルシウム板31に厚さ10mmのけい酸カ
ルシウム板33を張り合せ、表面に鋼板32を設けた試
験体Aを前述の条件で試験した。
(Experiment 3) As shown in FIG.
A specimen A having a 10 mm-thick calcium silicate plate 33 attached to a m-calcium silicate plate 31 and a steel plate 32 provided on the surface was tested under the above-described conditions.

【0028】(実験4)図6に示すように、実験3の試
験体Aのけい酸カルシウム板33の厚さ20mmとして
前述の条件で試験した。
(Experiment 4) As shown in FIG. 6, a test piece A of Experiment 3 was tested under the above-described conditions with the calcium silicate plate 33 having a thickness of 20 mm.

【0029】(実験5)図7に示すように、厚さ25m
mのけい酸カルシウム板31と厚さ5mmのけい酸カル
シウム板33との間に厚さ0.5mmのアルミナシリケ
ート繊維紙35を介在させた試験体Aを、前述の条件で
試験した。
(Experiment 5) As shown in FIG.
Specimen A in which alumina silicate fiber paper 35 having a thickness of 0.5 mm was interposed between a calcium silicate plate 31 having a thickness of m and a calcium silicate plate 33 having a thickness of 5 mm was tested under the above-described conditions.

【0030】(実験6)図8に示すように、厚さ190
mmの発泡硬質ウレタンの断熱層30の両面に厚さ30
mmのセメント系板36を設け、その表面に厚さ0.5
mmの鋼板32を設けた試験体Aを、前述の条件で試験
した。
(Experiment 6) As shown in FIG.
mm thick foamed urethane heat insulation layer 30
mm cement-based plate 36 having a thickness of 0.5 mm on its surface.
The test piece A provided with the steel plate 32 mm was tested under the above-described conditions.

【0031】(実験7)図9に示すように、実験7の試
験体Aのセメント系板36を、厚さ15mmの2枚のセ
メント系板37を張り合せたものとした試験体Aを、前
述の条件で試験した。
(Experiment 7) As shown in FIG. 9, a specimen A obtained by bonding two cement-based plates 37 each having a thickness of 15 mm to the cement-based plate 36 of the specimen A in Experiment 7 was used. The test was performed under the conditions described above.

【0032】(実験8)図10に示すように、実験7の
試験体Aのセメント系板36を、厚さ25mmのセメン
ト系板38と厚さ5mmのセメント系板39を厚さ0.
5mmのアルミナシリケート繊維紙40を介在して張り
合せたものとした試験体Aを前述の条件で試験した。
(Experiment 8) As shown in FIG. 10, a cement-based plate 36 having a thickness of 25 mm and a cement-based plate 39 having a thickness of 5 mm were used as the cement-based plate 36 of the specimen A of Experiment 7 with a thickness of 0.1 mm.
Specimen A, which was laminated with a 5 mm alumina silicate fiber paper 40 therebetween, was tested under the conditions described above.

【0033】(実験結果)実験1から実験8までの各試
験体の測定温度平均値は、下記表1のようになった。た
だし引火とは断熱層30が燃焼したことを示す。
(Experimental Results) The average temperature measured at each test specimen from Experiment 1 to Experiment 8 was as shown in Table 1 below. However, ignition means that the heat insulating layer 30 has burned.

【0034】[0034]

【表1】 [Table 1]

【0035】このことから、実験1では1時間後の測定
温度が320℃となり、発泡硬質ウレタンは引火した。
同様に実験2では260℃となり、発泡硬質ウレタンは
引火した。
Thus, in Experiment 1, the measured temperature after one hour was 320 ° C., and the foamed hard urethane was ignited.
Similarly, in Experiment 2, the temperature reached 260 ° C., and the foamed rigid urethane ignited.

【0036】実験3では測定温度が170℃で実験1、
実験2と比べて低温であるが、発泡ウレタンの引火点1
30℃よりも高温であるので、発泡硬質ウレタンは引火
に至らないがほとんど融解した。
In Experiment 3, when the measurement temperature was 170 ° C. and in Experiment 1,
Although the temperature is lower than in Experiment 2, the flash point of urethane foam is 1
Since the temperature was higher than 30 ° C., the foamed hard urethane did not ignite but almost melted.

【0037】実験4では測定温度が120℃で、発泡硬
質ウレタンは引火しないが表面から深さ5cmが融解し
た。
In Experiment 4, the measurement temperature was 120 ° C., and the foamed hard urethane did not ignite, but melted at a depth of 5 cm from the surface.

【0038】実験5では測定温度85℃で、発泡硬質ウ
レタンはまったく変質しなかった。
In Experiment 5, at the measurement temperature of 85 ° C., the foamed hard urethane did not deteriorate at all.

【0039】実験6では40分後の測定温度が330℃
で、発泡硬質ウレタンは40分で引火した。
In Experiment 6, the measured temperature after 40 minutes was 330 ° C.
The foamed rigid urethane ignited in 40 minutes.

【0040】実験7では40分後の測定温度が310℃
と若干低くなったが、40分で発泡硬質ウレタンは引火
した。
In Experiment 7, the measured temperature after 40 minutes was 310 ° C.
However, the foamed rigid urethane ignited in 40 minutes.

【0041】実験8では50分後の測定温度が230℃
で、発泡硬質ウレタンは融解し、1時間後の測定温度が
250℃で、発泡硬質ウレタンは引火した。
In Experiment 8, the measured temperature after 50 minutes was 230 ° C.
Then, the foamed rigid urethane melted, the measurement temperature after one hour was 250 ° C., and the foamed rigid urethane was ignited.

【0042】以上のことから、実験5の試験体が1時間
耐火材で、他の実験の試験体は1時間以内に引火、融
解、一部融解した。
From the above, the test specimen in Experiment 5 was a refractory material for one hour, and the test specimens in other experiments were ignited, melted, and partially melted within one hour.

【0043】次に、接合材の実験例を説明する。 (実験1)図2に示す接合部の隙間にセラミックスファ
イバーブランケット31を設け、その表面側の隙間に、
耐火用アクリル系シーリング材を幅12mm、深さ30
mmに充填して前述の実験と同一の炉内で加熱した。こ
の結果、10分で耐火用アクリル系シーリング材が燃え
つき、断熱層である発泡硬質ウレタンに引火した。
Next, an experimental example of the joining material will be described. (Experiment 1) A ceramic fiber blanket 31 was provided in the gap between the joints shown in FIG.
Acrylic sealant for fireproof 12mm wide and 30mm deep
mm and heated in the same furnace as in the previous experiment. As a result, the acrylic sealant for fire resistance burned in 10 minutes, and the foamed hard urethane as the heat insulating layer was ignited.

【0044】(実験2)実験1の耐火用アクリル系シー
リング材に変えてけい酸カルシウムを耐火物として混合
した耐火用変成ポリサルファイド系シーリング材を用
い、同一条件で加熱した。この結果、1時間後にシーリ
ング材の樹脂のみが燃焼し、耐火物は残存したが、セラ
ミックスファイバーブランケット31の表面温度が30
0℃となり、発泡硬質ウレタンに引火した。
(Experiment 2) A modified polysulfide-based sealing material for refractory, in which calcium silicate was mixed as a refractory, was used in place of the acrylic sealing material for refractory of Experiment 1, and heated under the same conditions. As a result, after one hour, only the resin of the sealing material burned and the refractory remained, but the surface temperature of the ceramic fiber blanket 31 was 30 ° C.
The temperature reached 0 ° C., and the foamed rigid urethane ignited.

【0045】(実験3)ポリサルファイド系シーリング
材とゼオライトを3対7の割合で混合した変成ベースト
状物を接合材として接合部隙間に充填し、前述と同一条
件で加熱した。この結果、1時間後の接合材内部温度は
120℃で、発泡硬質ウレタンの一部が融解しただけで
あった。
(Experiment 3) A modified base material in which a polysulfide-based sealing material and zeolite were mixed at a ratio of 3 to 7 was filled as a joining material in a joint gap, and heated under the same conditions as described above. As a result, the internal temperature of the bonding material after one hour was 120 ° C., and only a part of the foamed rigid urethane was melted.

【0046】このことから、ゼオライトを主成分とする
ベースト状の接合材を用いることで1時間の加熱に耐え
られることが判明した。
From this, it was found that the use of a base-like joining material containing zeolite as a main component can withstand heating for one hour.

【0047】以上の実施の形態では、断熱層1の両面に
不燃層10をそれぞれ設けたが、金庫等の一方からの火
災に耐えれば良い場合には、断熱層1の一方の面に不燃
層10を設けた耐火断熱板材とすれば良い。
In the above embodiment, the non-combustible layers 10 are provided on both surfaces of the heat insulating layer 1, respectively. However, if it is sufficient to withstand fire from one side of the safe or the like, the non-combustible layer 10 is provided on one surface of the heat insulating layer 1. What is necessary is just to make it the refractory heat insulation board material provided with 10.

【0048】[0048]

【発明の効果】請求項1に係る発明の耐火断熱板材は、
断熱性に優れた厚さ180〜200mmの発泡硬質ウレ
タンの断熱層1の厚さ方向両面2,2に、厚さ25mm
の内側のけい酸カルシウム板11、アルミナシリケート
繊維紙13、厚さ5〜8mmの外側のけい酸カルシウム
板12、鋼板14をそれぞれ順次備えているので、その
耐火断熱板材の両面からの熱によって発泡硬質ウレタン
の断熱層1が長期間に亘って融触、引火しないから両面
からの火災に耐えることができると共に、断熱性に優れ
軽量とすることができる。したがって、外壁材、間仕切
り板など広い用途に用いることができる耐火断熱板材で
ある。
According to the first aspect of the present invention, there is provided a fire-resistant and heat-insulating plate.
25 mm thick on both sides 2 and 2 of the heat insulating layer 1 made of foamed hard urethane having a thickness of 180 to 200 mm and having excellent heat insulating properties.
, A calcium silicate plate 11, an alumina silicate fiber paper 13, an outer calcium silicate plate 12 having a thickness of 5 to 8 mm , and a steel plate 14 are sequentially provided. Since the heat insulating layer 1 made of hard urethane does not touch and ignite for a long period of time, it can withstand fire from both sides, and can have excellent heat insulating properties and be lightweight. Therefore, it is a fire-resistant and heat-insulating plate material that can be used for a wide range of applications such as an outer wall material and a partition plate.

【0049】[0049]

【0050】[0050]

【0051】[0051]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す耐火断熱板材の断面
図である。
FIG. 1 is a cross-sectional view of a fire-resistant and heat-insulating plate showing an embodiment of the present invention.

【図2】接合部のシール構造を示す断面図である。FIG. 2 is a cross-sectional view showing a seal structure of a joint.

【図3】試験体の断面図であるFIG. 3 is a sectional view of a test body.

【図4】試験体の断面図であるFIG. 4 is a sectional view of a test body.

【図5】試験体の断面図であるFIG. 5 is a sectional view of a test body.

【図6】試験体の断面図であるFIG. 6 is a sectional view of a test body.

【図7】試験体の断面図であるFIG. 7 is a sectional view of a test body.

【図8】試験体の断面図であるFIG. 8 is a sectional view of a test body.

【図9】試験体の断面図であるFIG. 9 is a sectional view of a test body.

【図10】試験体の断面図であるFIG. 10 is a sectional view of a test body.

【符号の説明】[Explanation of symbols]

1…断熱層、10…不燃層、11…内側のけい酸カルシ
ウム板、12…外側のけい酸カルシウム板、13…アル
ミナシリケート繊維紙、14…鋼板、30…ゼオライト
を主原料としたベースト状物、31…セラミックスファ
イバーブランケット、32…アクリル系シーリング材。
DESCRIPTION OF SYMBOLS 1 ... Heat insulation layer, 10 ... Noncombustible layer, 11 ... Inner calcium silicate plate, 12 ... Outer calcium silicate plate, 13 ... Alumina silicate fiber paper, 14 ... Steel plate, 30 ... Base material made mainly from zeolite , 31: ceramic fiber blanket, 32: acrylic sealing material.

フロントページの続き (56)参考文献 特開 平7−11596(JP,A) 特開 平8−114654(JP,A) 特開 昭51−56823(JP,A) 特開 昭55−122941(JP,A) 特開 昭55−15919(JP,A) 実開 昭54−131313(JP,U)Continuation of the front page (56) References JP-A-7-11596 (JP, A) JP-A-8-114654 (JP, A) JP-A-51-56823 (JP, A) JP-A-55-1222941 (JP) JP-A-55-15919 (JP, A) JP-A-54-131313 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 厚さ180〜200mmの発泡硬質ウレ
タンの断熱層1の厚さ方向両面2,2に厚さ25mmの
内側のけい酸カルシウム板11がそれぞれ設けられ、こ
の各内側のけい酸カルシウム板11にアルミナシリケー
ト繊維紙13がそれぞれ接合され、この各アルミナシリ
ケート繊維紙13に厚さ5〜8mmの外側のけい酸カル
シウム板12がそれぞれ接合され、この各外側のけい酸
カルシウム板12に鋼板14がそれぞれ接合されたこと
を特徴とする耐火断熱板材。
1. A heat insulating layer 1 made of foamed hard urethane having a thickness of 180 to 200 mm and having a thickness of 25 mm
An inner calcium silicate plate 11 is provided, an alumina silicate fiber paper 13 is bonded to each inner calcium silicate plate 11, and an outer silica silicate having a thickness of 5 to 8 mm is attached to each alumina silicate fiber paper 13. A fire-resistant and heat-insulating plate material, characterized in that the calcium plates 12 are respectively joined, and the steel plates 14 are respectively joined to the outer calcium silicate plates 12.
JP10421297A 1997-04-22 1997-04-22 Fireproof insulation board Expired - Fee Related JP3345742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10421297A JP3345742B2 (en) 1997-04-22 1997-04-22 Fireproof insulation board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10421297A JP3345742B2 (en) 1997-04-22 1997-04-22 Fireproof insulation board

Publications (2)

Publication Number Publication Date
JPH10299129A JPH10299129A (en) 1998-11-10
JP3345742B2 true JP3345742B2 (en) 2002-11-18

Family

ID=14374664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10421297A Expired - Fee Related JP3345742B2 (en) 1997-04-22 1997-04-22 Fireproof insulation board

Country Status (1)

Country Link
JP (1) JP3345742B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285647A (en) * 2003-03-20 2004-10-14 Komatsu Forklift Co Ltd Composite board material
JP5168487B2 (en) * 2008-09-04 2013-03-21 ビーエスドアー 株式会社 Wall structure of prefabricated building
CN104441819B (en) * 2014-11-11 2016-08-17 四川良木道门窗型材有限公司 A kind of fireproof heat preservation composite layer plate and preparation method thereof
JP2017160611A (en) * 2016-03-07 2017-09-14 東亜建設工業株式会社 Wall surface panel
CN114195432B (en) * 2021-12-17 2022-10-21 江苏华风新材料科技有限公司 Manufacturing method of inorganic silicon crystal plate

Also Published As

Publication number Publication date
JPH10299129A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
US4130972A (en) Panel for soundproof and fireproof inner walls
CA1042679A (en) Fire resistant joint system for concrete structures
US4099355A (en) Paneling of fireproof insulating elements for walls, floors and ceilings
US5974750A (en) Fire barrier protected dynamic joint
KR101900052B1 (en) Insulation Device Using Fire Door
JP3345742B2 (en) Fireproof insulation board
JP5398671B2 (en) Fireproof wall structure of partition wall
JP2004285647A (en) Composite board material
JP7304751B2 (en) Fireproof cladding structure for walls composed of thermal insulation panels
US4344753A (en) Method for reducing the thermal inertia of a furnace or oven wall and insulated wall produced thereby
KR20190131955A (en) Fire Door for Heat Insulation and Heat Protection
JPH0711211Y2 (en) Composite panel wall
JP2614642B2 (en) Slab penetrating steel pipe joint structure
JPH087779Y2 (en) Fireproof structure for penetration of building fireproof slab
JP2004150052A (en) Fireproof board, fire-resisting wall, fireproof column and fire-resistant coating structure of beam
EP0217875A1 (en) Fire wall panels
KR20170130186A (en) A Flame And Heat Shielding Member On A Joint Connection Between Sandwich Panels
JPH09184372A (en) Fitting structure of double glazing unit
JP2002180575A (en) Exterior wall structure, heat insulating material and building
JPS6316723Y2 (en)
JP7211583B1 (en) Exterior wall materials using fireproof furring strips
JP2003293475A (en) Bolt joint part structure with high heat shielding property
JPH08158590A (en) Architectural fireproof panel
JPH0138179Y2 (en)
JPH0874349A (en) Fireproof, heat-insulating external wall panel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees