JP3343666B2 - Temperature compensation method and device - Google Patents

Temperature compensation method and device

Info

Publication number
JP3343666B2
JP3343666B2 JP35278293A JP35278293A JP3343666B2 JP 3343666 B2 JP3343666 B2 JP 3343666B2 JP 35278293 A JP35278293 A JP 35278293A JP 35278293 A JP35278293 A JP 35278293A JP 3343666 B2 JP3343666 B2 JP 3343666B2
Authority
JP
Japan
Prior art keywords
temperature
taste
measured
value
taste sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35278293A
Other languages
Japanese (ja)
Other versions
JPH07198707A (en
Inventor
秀和 池崎
寛 駒井
潔 都甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP35278293A priority Critical patent/JP3343666B2/en
Publication of JPH07198707A publication Critical patent/JPH07198707A/en
Application granted granted Critical
Publication of JP3343666B2 publication Critical patent/JP3343666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、人間の五感の一つで
ある味覚をもつセンサを用いてする飲食物の味の違いを
検出し、測定するようにした測定技術に関する。食品、
例えば飲食に供する飲料水、酒類などの味の違い、味の
差とでもいうべきものを検出する技術であり、これらの
食品の生産工場における品質管理に応用できる技術を提
供する。とくに、この発明は、これまで出願人らが特許
出願により開示してきた技術に関係して、脂質膜を用い
た味センサの測定値に対して施すべき温度補償の方法
と、その方法の実施に用いられる装置とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measurement technique for detecting and measuring a difference in taste of food and drink using a sensor having a taste, which is one of the five senses of human beings. Food,
For example, it is a technology for detecting a difference in taste of drinking water, alcoholic beverages, and the like to be provided for eating and drinking, and a technology that can be applied to quality control in a factory for producing these foods. In particular, the present invention relates to a technique for temperature compensation to be applied to a measured value of a taste sensor using a lipid membrane, and a technique for implementing the method, in relation to the technology disclosed by the applicants in the patent application. Related to the equipment used.

【0002】[0002]

【従来の技術】味の基本要素として、塩味、甘味、苦
味、酸味、うま味があるとされており、それぞれに程度
の大小がある。ヒトの感覚は評価できるこれらの味の違
いは物理的に計測可能であることを、本願出願人らはい
くつかの特許出願により開示してきたところである。例
えば、特開平3ー54446号「味覚センサ及びその製
造方法」では、疎水性の部分と親水性の部分とをもつ分
子で成る脂質性物質の分子膜が人間の味覚に代わりうる
味覚センサとなることを示した。以後、いくつかの発見
的事実に基づいて、味の違いが例えば電位、電位差、抵
抗、電流といった電気量として物理的に計測可能な味又
は味の違いを測定できることを特許出願により開示して
きた。その一覧表を表1に掲げた。本願では、これらの
出願の開示部分については、要約を摘示するにとどめ、
記述の重複を避けるようにする。
2. Description of the Related Art Saltiness, sweetness, bitterness, sourness, and umami are said to be basic components of taste, and each of them has a different degree. Applicants have disclosed in several patent applications that these taste differences can be measured physically, where human sensation can be assessed. For example, in Japanese Patent Application Laid-Open No. 3-54446, "Taste sensor and method for producing the same", a molecular film of a lipid substance composed of a molecule having a hydrophobic portion and a hydrophilic portion becomes a taste sensor that can replace human taste. That was shown. Since then, based on some heuristic facts, it has been disclosed by patent applications that taste differences can be measured as tastes or taste differences that are physically measurable as electrical quantities such as, for example, potential, potential difference, resistance, current. The list is shown in Table 1. For the purposes of this application, for the disclosure of these applications, only the abstract will be caught,
Try to avoid duplicate descriptions.

【0003】[0003]

【表1】 [Table 1]

【0004】[0004]

【発明が解決しようとする課題】今までの出願人らの開
示の中には、測定の温度補償について触れているところ
がなかった。本願発明は脂質膜を用いた味センサ(以
下、単に味センサともいう)の測定値の温度補償を行
い、味もしくは味の違いの測定値の信頼度や精度を高め
ることを第一の目的としている。
None of the applicants' disclosures so far refer to temperature compensation for measurement. The first object of the present invention is to perform temperature compensation of a measured value of a taste sensor using a lipid membrane (hereinafter, also simply referred to as a taste sensor), and to enhance reliability and accuracy of a measured value of a taste or a difference in taste. I have.

【0005】味センサは、ヒトの味覚と同様に温度の影
響を受ける。そこで食品工場における品質管理などで、
微妙な味の差を識別する際には、測定系の厳密な温度管
理を行って、味の本質をとらえる精密な味の測定が求め
られる。とくに工場の生産、検査のラインや、屋外(人
が味覚を楽しむ多くの場所)では温度が変化し得る範囲
が広く、味センサの使用場所があまりに限定されるよう
では、味センサの実用化の上で好ましくないから、温度
補償の確実な方法が求められる。この方法を適用して、
温度差の大きい場所での使用と、異なる温度で得た測定
データの比較を可能とするような技術を提供することと
する。
[0005] Taste sensors are affected by temperature as well as human taste. So, in quality control at a food factory,
When discriminating a subtle taste difference, it is required to perform strict temperature control of the measurement system and measure the taste accurately to capture the essence of the taste. Especially in the production and inspection lines of factories and outdoors (many places where people enjoy the taste), the range in which the temperature can change is wide, and the use of taste sensors is too limited. Therefore, a reliable method for temperature compensation is required. Applying this method,
A technique is provided that enables use in a place with a large temperature difference and comparison of measurement data obtained at different temperatures.

【0006】味センサの種類によっては、測定するサン
プルにより、その温度特性が異なる場合があるから、未
知の温度特性をもつサンプルに対しても普遍的に適用で
きるような温度補償方法が求められる。味センサで例え
ば電位を物理的な計測量として捉えるタイプのものにあ
っては、測定経過時間を時、分という長期にとるとドリ
フトが大きく見られるところがあるから、この種の問題
にも対処できる方法であることが望まれる。
[0006] Depending on the type of taste sensor, the temperature characteristics may vary depending on the sample to be measured. Therefore, a temperature compensation method that can be universally applied to samples having unknown temperature characteristics is required. In the case of a taste sensor that captures electric potential as a physical measurement quantity, for example, drift can be seen significantly when the elapsed measurement time is set to hours and minutes, so this type of problem can also be addressed. A method is desired.

【0007】[0007]

【問題を解決するための手段】一般に温度補償をする技
術を考えると、測定温度付近における被測定物性の温度
変化特性を知り、多くの場合には温度係数によってその
特性を代表させて、温度差と温度係数との積に相当する
物性温度変化量を測定値に対して加減する補償方法をと
っている。ここで、補償の基幹となる温度係数を見る
と、温度関数である物性量の温度微分値、すなわち、相
異なる二つの温度における物性量の差を温度差で除した
値である。すなわち、〔被測定物理量〕を〔温度〕で除
した次元をもつ量を用いた温度補償である。これに対し
て、この発明では、脂質膜を用いた味センサのもつ固有
の特徴に対応するために、温度係数の差をよりどころと
して温度補償を行う点に特徴がある。
[Means for Solving the Problem] In general, considering a technique for compensating for temperature, a temperature change characteristic of an object to be measured near a measurement temperature is known, and in many cases, the characteristic is represented by a temperature coefficient, and a temperature difference is represented. A compensation method is used in which the amount of change in physical property temperature corresponding to the product of the temperature and the temperature coefficient is added to or subtracted from the measured value. Here, looking at the temperature coefficient that is the basis of compensation, it is the temperature differential value of the physical quantity, which is a temperature function, that is, the value obtained by dividing the difference between the physical quantities at two different temperatures by the temperature difference. That is, temperature compensation using a quantity having a dimension obtained by dividing [measured physical quantity] by [temperature]. On the other hand, the present invention is characterized in that the temperature compensation is performed by using the difference in temperature coefficient as a source in order to cope with the unique characteristics of the taste sensor using the lipid membrane.

【0008】さらに、この発明では、温度係数の差をそ
のまま補償量を算出するための演算に用いるのではな
く、温度係数を被測定物理量で正規化した値(温度係数
差正規化値)従って、〔温度〕のマイナス1乗の次元を
もつ量を用いた温度補償を行うことを特徴としている。
Further, in the present invention, the temperature coefficient difference is not used as it is in the calculation for calculating the compensation amount as it is, but the value obtained by normalizing the temperature coefficient with the physical quantity to be measured (temperature coefficient difference normalized value) It is characterized in that temperature compensation is performed using an amount having a dimension of minus one power of [temperature].

【0009】[0009]

【作用】この発明でする温度補償の仕方を数式を用いて
詳しく述べる。これまでの脂質膜を用いた味センサに関
する諸実験から次の三つの仮定が成立することが発見さ
れている。
The method of temperature compensation according to the present invention will be described in detail using mathematical expressions. It has been found that the following three assumptions are established from various experiments on taste sensors using lipid membranes.

【0010】(1)味センサは脂質膜を使用しており、
その脂質はいろいろな種類の味に応答することができる
ものであるから、厳密に味のセンサの温度補償を解析す
るときにはマトリックス代数によるべきであり、味の種
類による味センサの温度特性の差を吟味するべきことに
なる。例えば、食塩水(塩味)と、しょ糖液(甘味)と
は味の種類が全く異なるから、両者のサンプルに対する
味センサの温度特性は異なったものとなる。これはヒト
の感覚でも体験できるもので、塩味と甘味とでは温度に
よる感じ方に差があると言うべきであろう。
(1) The taste sensor uses a lipid membrane,
Since the lipid can respond to various kinds of tastes, the temperature compensation of the taste sensor should be strictly analyzed using matrix algebra, and the difference in the temperature characteristics of the taste sensor depending on the taste type should be considered. I need to examine it. For example, since saline (saltiness) and sucrose solution (sweetness) have completely different types of taste, the temperature characteristics of the taste sensor for both samples are different. This can be experienced by the human sense, and it should be said that there is a difference between salty and sweet tastes depending on the temperature.

【0011】しかし、味センサの用途の多くは、ある種
の食品工場での品質管理であるから、測定対象は単品種
例えば日本酒であり、銘柄による味の質が多少の差異が
あるとしても、所詮それは日本酒の範囲であり、味の質
の差による味センサの温度特性の差はしばらく棚上げと
して、単純なモデルで考察を進めることとする。(実
際、後述するところであるが、日本酒の実験例を見る
と、この棚上げは妥当なもので、味の質の差による味セ
ンサの温度特性の差は無視できることが判った。)従っ
て、以下の考察では、味の種類あるいは味の質による味
センサの温度特性の変化は無視することとする。言い換
えれば、味センサの出力fは、味物質の濃度Cと、温度
T〔°C〕との二つに依存する。温度補償を施すという
ことは、サンプル液及び基準液のそれぞれについての実
測値f(Cs,Ts)及びf(Cr,Tr)に温度補償
を施して、温度Toにおける計算値(推定値)f(C
s,To)及びf(Cr,To)をそれぞれ求めること
である。
However, since many uses of taste sensors are for quality control in a certain food factory, the measurement target is a single variety, such as sake, and even if the taste quality differs slightly depending on the brand, After all, it is the range of sake, and the difference in the temperature characteristics of the taste sensor due to the difference in taste quality will be put on hold for a while, and a simple model will be considered. (Actually, as will be described later, in the experimental example of sake, it has been found that this shelving is appropriate and that the difference in the temperature characteristics of the taste sensor due to the difference in taste quality can be ignored.) In the discussion, it is assumed that the change in the temperature characteristic of the taste sensor due to the taste type or taste quality is ignored. In other words, the output f of the taste sensor depends on two factors, the concentration C of the taste substance and the temperature T [° C]. To perform the temperature compensation means to perform the temperature compensation on the actually measured values f (Cs, Ts) and f (Cr, Tr) of the sample solution and the reference solution, respectively, and calculate the calculated value (estimated value) f ( C
s, To) and f (Cr, To).

【0012】(2)味センサの出力f(C,T)は、変
数が温度Tの関数であるg(T)及びh(T)を用いる
と、次のような表式で表わされるものとみてよいことが
発見された。 f(C,T)=g(T)×logC+h(T) (1) 式1の意味は、測定対象を一つの品種(日本酒)に絞る
と、そのような狭い範囲では、温度の如何によらずに
(logC)という値とともに直線的にセンサの出力が
変化することを示している。
(2) The output f (C, T) of the taste sensor is represented by the following expression using g (T) and h (T) whose variables are functions of the temperature T. It was discovered that it was good to see. f (C, T) = g (T) × logC + h (T) (1) The meaning of Equation 1 is that if the measurement target is narrowed down to one variety (sake), in such a narrow range, the temperature is not affected. It shows that the output of the sensor changes linearly with the value (logC).

【0013】(3)単純な考え方をするために、味セン
サの温度特性が温度Tに対して線形であると仮定する。
この発明の技術的思想を理解すれば、この仮定は必ずし
も必要ではないことが後に判明すると思う。味センサの
温度感度(温度係数)S〔mV/°C〕は温度Tの関数
とはならないことを意味するから、式1を温度で微分し
て得た式2では、 S=(∂f/∂T)=g’(T)×logC+h’(T) (2) のg’(T)とh’(T)とはそれぞれ定数となる。
(3) For a simple idea, it is assumed that the temperature characteristic of the taste sensor is linear with respect to the temperature T.
With the understanding of the technical idea of the present invention, it will be understood that this assumption is not always necessary. Since the temperature sensitivity (temperature coefficient) S [mV / ° C] of the taste sensor is not a function of the temperature T, in the equation 2 obtained by differentiating the equation 1 with the temperature, S = (∂f / ∂T) = g ′ (T) × log C + h ′ (T) (2) where g ′ (T) and h ′ (T) are constants.

【0014】図1はこの発明の技術思想の概念を説明す
るための図で、横軸は測定する味をもつ液体(例えば日
本酒)の温度(液温)〔°C〕を表し、縦軸はセンサの
出力電位〔mV〕を表している。図中の直線Aは、基準
液についてのある味センサの出力の温度特性を示してい
る。温度目盛上の三つの点はそれぞれ、基準温度(この
温度での味を味センサで測定して求めようとしている)
To,測定時に基準液が呈している温度Tr,被測定サ
ンプル液が呈している温度Tsである。この発明では、
先ず、基準液を測定したときの該味センサの出力値の温
度係数S(Cr)を求める。図1における直線Aの勾配
がS(Cr)である。これにより、サンプル液温度Tr
における点PA 〜PO 間の大きさを示す白矢印の量S
(Cr)(Ts−Tr)が求められる。次に、別の種類
の液体(例えば別種の日本酒)について同じ味センサの
センサ出力対液温特性を測定して、直線Bを得る。図で
は、直線Bは直線Aよりも勾配が大きい。言い換えれば
温度係数は大きいから、液温Tsで見ると、PB の値
(センサ出力値)はPA よりも大きな値をもっている。
この差をどのように見るかがこの発明の重要な点であ
る。
FIG. 1 is a diagram for explaining the concept of the technical concept of the present invention. The horizontal axis represents the temperature (liquid temperature) [° C.] of a liquid (eg, sake) having a taste to be measured, and the vertical axis represents the temperature. It represents the output potential [mV] of the sensor. The straight line A in the figure indicates the temperature characteristic of the output of a certain taste sensor for the reference liquid. Each of the three points on the temperature scale is a reference temperature (the taste at this temperature is being measured with a taste sensor).
To, the temperature Tr exhibited by the reference liquid at the time of measurement, and the temperature Ts exhibited by the sample liquid to be measured. In the present invention,
First, the temperature coefficient S (Cr) of the output value of the taste sensor when measuring the reference liquid is determined. The gradient of the straight line A in FIG. 1 is S (Cr). Thereby, the sample liquid temperature Tr
The amount S of the white arrow indicating the size between the points PA and PO at
(Cr) (Ts-Tr) is required. Next, the sensor output versus liquid temperature characteristic of the same taste sensor is measured for another type of liquid (for example, another type of sake), and a straight line B is obtained. In the figure, the straight line B has a larger gradient than the straight line A. In other words, since the temperature coefficient is large, the value of PB (sensor output value) has a larger value than PA when viewed at the liquid temperature Ts.
How to see this difference is an important point of the present invention.

【0015】基準温度Toにおける直線Bと直線Aとの
差を単位量1と仮定して、液温Tsにおける直線Bと直
線Aとの差(PB とPA との差)を表すようにすると、
(PB −PA )=(PB −P1 )+(P1 −PA )であ
る。ここで式2より S(Cs)=g’(T)logCs+h’(T) =g’(T)log(Cs/Cr)+S(Cr) ={g’(T)/g(To)} ×{f(Cs,To)−f(Cr,To)}+S(Cr) (3) g’(T)は定数であるから、g’(T)/g(To)
も定数となり、これをaと置くと、(PB −P1 )=a
(Ts−To)となり、(PB −PA )は1+a(Ts
−To)に等しいと書ける。ここでaは直線Aを得た液
と、直線Bを得た液とのそれぞれの温度係数の差を単位
量1の目盛で測定したものであるから、温度係数差を正
規化した値ということができる。
Assuming that the difference between the straight line B and the straight line A at the reference temperature To is a unit amount 1, the difference between the straight line B and the straight line A (the difference between PB and PA) at the liquid temperature Ts is expressed as follows.
(PB -PA) = (PB -P1) + (P1 -PA). Here, from equation 2, S (Cs) = g ′ (T) log Cs + h ′ (T) = g ′ (T) log (Cs / Cr) + S (Cr) = {g ′ (T) / g (To)} × {F (Cs, To) -f (Cr, To)} + S (Cr) (3) Since g '(T) is a constant, g' (T) / g (To)
Is also a constant. If this is set to a, (PB -P1) = a
(Ts−To), and (PB−PA) is 1 + a (Ts
−To). Here, a is a value obtained by measuring the difference between the temperature coefficients of the liquid from which the straight line A was obtained and the liquid from which the straight line B was obtained on a scale of 1 unit. Can be.

【0016】別な日本酒のサンプルU,Vについても、
同種の温度特性直線C,Dを得ることができる。この発
明の温度補償では、サンプル液温度でのセンサ出力値U
s,Vsから、基準温度におけるセンサ出力値Uo,V
oを推定することになる。前記の仮定(1),(2),
(3)の下では、直線AとBとの間の関係は直線C(外
挿の場合)にも、直線D(内挿の場合)にも成立すると
見ることができるから、基準液における味センサの温度
感度S(Cr)と、サンプルにおける味センサの温度感
度S(Cs)との間には次の関係が成立する。 △f(To)=f(Cs,To)−f(Cr,To) =〔{f(Cr,Ts)−f(Cr,Tr)}−S(Cr)(Ts−Tr)〕 ÷{1+a(Ts−To)} (4)
[0016] Regarding other samples of sake U and V,
The same type of temperature characteristic straight lines C and D can be obtained. In the temperature compensation of the present invention, the sensor output value U at the sample liquid temperature
s, Vs, the sensor output values Uo, V at the reference temperature
o will be estimated. Assumptions (1), (2),
Under (3), it can be seen that the relationship between the straight lines A and B holds both for the straight line C (for extrapolation) and for the straight line D (for interpolating). The following relationship is established between the temperature sensitivity S (Cr) of the sensor and the temperature sensitivity S (Cs) of the taste sensor in the sample. Δf (To) = f (Cs, To) −f (Cr, To) = [{f (Cr, Ts) −f (Cr, Tr)} − S (Cr) (Ts−Tr)] ÷ {1 + a (Ts-To)} (4)

【0017】以上の説明から類推できるところではある
が、温度係数の差の正規化値aを求めるときには、必ず
しも直線Aと直線Bとの間の関係として捉えなければな
らないというものではなく、直線A,B,C,Dのうち
少なくとも二種類の関係を利用すればよいことになる。
直線A,B,C,Dについて相互の関係の平均値を求め
ることによってもよいが、それほど面倒なことをする必
要もなく、B,C,Dのいずれかを基準液特性直線Aの
代用としてもよい。以上の説明では、簡単のために、温
度変化が直線の例について述べたが、微分概念を導入す
ればセンサ出力の温度特性が曲線のものであっても、こ
の発明の思想を適用できることは明らかであろう。
As can be inferred from the above description, when obtaining the normalized value a of the temperature coefficient difference, it is not always necessary to grasp the relationship between the straight line A and the straight line B. , B, C, and D, it is sufficient to use at least two types of relationships.
The average value of the mutual relationship between the straight lines A, B, C, and D may be obtained. However, it is not necessary to do so much trouble, and any of B, C, and D is used as a substitute for the reference liquid characteristic line A. Is also good. In the above description, the example in which the temperature change is a straight line has been described for simplicity. However, it is apparent that the concept of the present invention can be applied even if the temperature characteristic of the sensor output is a curve if the differential concept is introduced. Will.

【0018】[0018]

【実施例】【Example】

〔第一の実施例〕まず、作用の項で述べた(2)及び
(3)の仮定が正しいかどうかを確かめるために、基本
味についての実験を行った。そのうち、ここでは塩味に
対する例をあげて説明する。実験はKCl水溶液の濃度
を変えて、センサ出力の温度係数(温度感度)の変化を
見た。味センサは多チャンネルのものを用い、KCl水
溶液であるサンプル液の濃度を10,100,1000
mMとし、サンプルの温度はほぼ10°C,20°C,
30°Cとした。味センサの電位を縦軸に、基準温度か
らの温度差を横軸にとり、第1ないし第4チャネルにつ
いての結果を図2(a),(b),(c)に、第5及び
第6チャンネルについの結果を図3(a),(b),
(c)に示した。この測定結果から各チャンネルについ
ての温度係数(温度感度)対被検液のセンサ出力をほぼ
20°Cのときの値としてプロットしたものが図4
(a),(b),(c)及び図5(a),(b),
(c)に示してある。図は順に図4(a)が第1チャン
ネルに、図5(c)が第6チャンネルに対応している。
[First Embodiment] First, an experiment was conducted on the basic taste in order to confirm whether the assumptions (2) and (3) described in the section of the operation are correct. Here, an example of saltiness will be described. In the experiment, the temperature coefficient (temperature sensitivity) of the sensor output was changed by changing the concentration of the KCl aqueous solution. The taste sensor is a multi-channel type, and the concentration of the sample solution, which is an aqueous KCl solution, is 10, 100, 1000.
mM and the temperature of the sample is approximately 10 ° C, 20 ° C,
30 ° C. The potential of the taste sensor is plotted on the ordinate and the temperature difference from the reference temperature is plotted on the abscissa, and the results for the first to fourth channels are shown in FIGS. 2 (a), (b) and (c). The results for the channels are shown in FIGS.
(C). FIG. 4 is a plot of the temperature coefficient (temperature sensitivity) for each channel versus the sensor output of the test solution as a value at approximately 20 ° C.
(A), (b), (c) and FIGS. 5 (a), (b),
This is shown in (c). FIG. 4 (a) corresponds to the first channel, and FIG. 5 (c) corresponds to the sixth channel.

【0019】図2及び図3の結果を表にして示すと表2
のように表すことができる。また、図4及び図5の結果
から、被検液の濃度変化による味センサの温度感度(温
度係数)の変化率〔1/°C〕を濃度差による味センサ
の出力で正規化した値を表にしたのが表3である。
The results of FIG. 2 and FIG.
Can be expressed as 4 and 5, the value obtained by normalizing the rate of change [1 / ° C.] of the temperature sensitivity (temperature coefficient) of the taste sensor due to the change in the concentration of the test liquid with the output of the taste sensor due to the concentration difference. Table 3 shows the results.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】官能における人の識別能力を評価する指標
としてウェバー(Webber)比と呼ばれるものがあ
る。刺激の量を変化させていって、最初の刺激の何%変
化させると最初の刺激と区別がつくかを計る指標であ
る。味の世界では、刺激の強さを味物質の濃度で表して
いる。つまり、味の質は同じで強度(濃度)のみ変えた
2つの溶液(濃度Cと濃度C+c)を飲み比べて両者の
違いを識別する(但し、どちらが濃い、薄いという識別
はいらない)。この場合のウェバー比はc/C×100
%である。味に関するウェバー比は、一般の人の場合、
約20%で、工場間の差やロット間の差を識別して品質
管理を行うテイスター(パネラー)の場合、5%と言わ
れている。そこで、味センサの工業的な使用を考えると
ウェバー比5%の識別が必要となる。
There is a so-called Webber ratio as an index for evaluating a person's discrimination ability in sensuality. It is an index that measures the percentage of the initial stimulus by changing the amount of the stimulus and how different from the initial stimulus can be distinguished from the initial stimulus. In the world of taste, the intensity of stimulation is expressed by the concentration of a taste substance. That is, two solutions (concentration C and concentration C + c) having the same taste quality but different intensities (concentrations) are compared by drinking and discriminating the difference between them (however, it is not necessary to discriminate which is darker or lighter). The Weber ratio in this case is c / C × 100
%. The Weber ratio for taste is
It is said that about 20% is 5% for a taster (paneler) who performs quality control by identifying differences between factories and lots. Therefore, considering the industrial use of the taste sensor, it is necessary to identify the taste sensor at a Weber ratio of 5%.

【0023】味センサ出力は人の場合と同様に濃度の対
数(logC)に比例し、また、濃度が10倍変化する
と出力は約40mV変化するので、ウェバー比5%の濃
度差によるセンサ出力の変化は約40×log1.05
=0.85mVとなる。ウェバー比5%の識別を行うた
めには、温度の変動による誤差は0.85mVより十分
小さくなければならない。しかし、表2を見ると溶液の
温度変化1°C当たりで、ほぼ同程度の変動がある。こ
のことからすると、温度の制御は0.1°C程度の精度
で行う必要があるが、現実には非常に難しく、温度補償
は是非必要である。さらに、表2より、サンプル液が異
なると温度感度が大きく異なるため、従来の一般のサン
プル液によらない温度感度だけからの温度補償では、誤
差が大きく十分でないことが分かる。
The taste sensor output is proportional to the logarithm of the density (log C) as in the case of humans. Further, when the density changes by a factor of 10, the output changes by about 40 mV. The change is about 40 x log 1.05
= 0.85 mV. In order to identify the Weber ratio of 5%, the error due to temperature fluctuation must be sufficiently smaller than 0.85 mV. However, looking at Table 2, there is almost the same fluctuation per 1 ° C. of temperature change of the solution. From this fact, it is necessary to control the temperature with an accuracy of about 0.1 ° C., but it is actually very difficult, and temperature compensation is definitely required. Further, from Table 2, it can be seen that the temperature sensitivity is greatly different when the sample liquid is different. Therefore, it is understood that the error is not sufficient if the temperature compensation is performed only from the conventional temperature sensitivity without using the general sample liquid.

【0024】〔第二の実施例〕基本味について説明した
実施例の展開を、日本酒についても実施した。ある特定
銘柄の日本酒(京都府伏見区に工場があり、生産管理が
よく行われているある酒造会社の市販製品)を基準液と
し、それに純水を加えて希釈したり、みりんのような日
本酒に似た甘味物質を少量添加することにより、味セン
サ出力対温度の特性曲線は図1において直線群A,B,
C,Dで示したような一群の特性曲線群となる。
[Second Embodiment] The development of the embodiment described for the basic taste was also carried out for sake. A certain brand of Japanese sake (a commercial product of a sake brewing company with a factory in Fushimi-ku, Kyoto, where production is well controlled) is used as a reference solution, diluted with pure water, and diluted with sake such as mirin. By adding a small amount of a sweet substance similar to the above, the characteristic curve of the taste sensor output versus temperature can be represented by the straight line groups A, B,
A group of characteristic curves as shown by C and D is obtained.

【0025】図6は上述の特定銘柄について、四つの味
センサについてのセンサ出力電位対温度の特性曲線を示
している。図7には四種類の日本酒について、同じセン
サの出力電位対温度特性を示した。図中(a)は純米酒
と呼ばれるもの、(b)は本醸造酒と呼ばれるもの、
(c)はアルプス吟醸と呼ばれるもの、(d)は合成酒
と呼ばれているものについてのデータをそれぞれ示して
いる。図6及び図7から、いずれの種類の日本酒につい
ても、特性曲線が直線で表わされることが明確に示され
ている。これらの測定結果から、味センサ出力の温度係
数(温度感度)を味センサ出力に対してプロットし、一
応の回期直線を併記したものが図8である。作用のとこ
ろで述べた線形近似の仮定が合理的なものであることが
検証されたことになる。
FIG. 6 shows characteristic curves of sensor output potential versus temperature for four taste sensors for the above-mentioned specific brand. FIG. 7 shows the output potential versus temperature characteristics of the same sensor for four types of sake. In the figure, (a) is what is called Junmai sake, (b) is what is called Honjoshu,
(C) shows data on what is called Alps Ginjo, and (d) shows data on what is called synthetic sake. FIGS. 6 and 7 clearly show that the characteristic curve is represented by a straight line for any type of sake. From these measurement results, the temperature coefficient (temperature sensitivity) of the taste sensor output is plotted against the taste sensor output, and FIG. This proves that the assumption of the linear approximation described in the operation is reasonable.

【0026】〔第三の実施例〕第一,第二の実施例で示
した実験事実に基づいて、温度感度(温度係数)の差の
正規化値a(1/°C)を用いてする温度補償の方法の
流れは次のようなものとなる。フロー図(図9)と請求
項1とを参照されたい。この発明の脂質膜を用いた味セ
ンサの測定値の温度補償方法は次の各段階を経由する。 1°基準液を測定したときの前記味センサの出力値の温
度係数を求める。 2°基準液の求めたい温度Toにおける味センサの出力
を計算するか測定しておく。 3°基準液以外のサンプルにおける温度係数S(Cs)
を求める。 4°サンプルの求めたい温度Toにおける味センサの出
力を計算するか測定しておく。 5°1°で求めた温度係数をその一として用いてもよい
が結局は、前記味センサの出力値が異なる少なくとも2
種類の液を測定したときのそれぞれの前記味センサの出
力値の温度係数から温度係数の差の正規化値を求める。
この際、測定値にバラツキがあれば最小自乗法などの平
均値手法を演算で用いるとよい。 6°前記基準液を測定したときの前記味センサの出力値
とその基準液の温度とを求める。 7°前記被測定液を測定したときの前記味センサの出力
値とその被測定液の温度とを求める。 8°前記段階で求めた値を用いて所望温度における前記
基準液を測定したときの前記味センサの出力値と被測定
液を測定したときの前記味センサの出力値との差を演算
する。 こうして温度Toにおける味センサの出力値すなわち味
を測定する。
[Third Embodiment] Based on the experimental facts shown in the first and second embodiments, the normalized value a (1 / ° C.) of the difference in temperature sensitivity (temperature coefficient) is used. The flow of the temperature compensation method is as follows. See the flow diagram (FIG. 9) and claim 1. The temperature compensation method of the measured value of the taste sensor using the lipid membrane according to the present invention goes through the following steps. The temperature coefficient of the output value of the taste sensor when measuring the 1 ° reference liquid is determined. Calculate or measure the output of the taste sensor at the desired temperature To of the 2 ° reference liquid. Temperature coefficient S (Cs) for samples other than 3 ° reference solution
Ask for. The output of the taste sensor at the desired temperature To of the 4 ° sample is calculated or measured in advance. The temperature coefficient obtained at 5 ° 1 ° may be used as one of them, but after all, at least 2
A normalized value of the difference between the temperature coefficients is obtained from the temperature coefficient of the output value of each taste sensor when measuring the type of liquid.
At this time, if there are variations in the measured values, an average value method such as the least squares method may be used in the calculation. 6 ° The output value of the taste sensor when measuring the reference liquid and the temperature of the reference liquid are obtained. 7 ° The output value of the taste sensor when measuring the liquid to be measured and the temperature of the liquid to be measured are obtained. The difference between the output value of the taste sensor when measuring the reference liquid at a desired temperature and the output value of the taste sensor when measuring the liquid to be measured is calculated using the value obtained in the above step at 8 °. Thus, the output value of the taste sensor at the temperature To, that is, the taste is measured.

【0027】〔第四の実施例〕この発明の請求項2にあ
げた温度補償装置の要部の機能ブロック図を図10に示
した。図10の減算部11では、温度が同じとき味セン
サ出力の異なる2つのサンプル液A,B(どちらか一方
は基準液でもよい)に対し、各々のサンプル液における
味センサの温度係数を入力して、それらの温度係数の差
を計算する。正規化部12では、上記減算部11の出力
と温度Toにおける前記A液,B液に対するセンサ出力
の差とを入力して、前者を後者で割って正規化し、定数
aを算出する。演算部20は、正規化部12の出力a、
基準液における味センサの温度係数S(Cr)、被検液
と基準液の温度TsとTr、及び被検液と基準液を測定
したときの味センサ出力の差{f(Cs,Ts)−f
(Cr,Tr)}を入力して、式4の演算を行い、温度
Toにおける被検液と基準液を測定したときの味センサ
出力の差{f(Cs,To)−f(Cr,To)}を算
出する。
Fourth Embodiment FIG. 10 shows a functional block diagram of a main part of a temperature compensator according to a second embodiment of the present invention. The subtraction unit 11 in FIG. 10 inputs the temperature coefficient of the taste sensor in each sample liquid for two sample liquids A and B (one of which may be a reference liquid) having different taste sensor outputs when the temperature is the same. And calculate the difference between the temperature coefficients. The normalization unit 12 receives the output of the subtraction unit 11 and the difference between the sensor outputs for the solution A and the solution B at the temperature To, normalizes the former by dividing the former by the latter, and calculates a constant a. The calculation unit 20 outputs the output a of the normalization unit 12,
The temperature coefficient S (Cr) of the taste sensor in the reference liquid, the temperatures Ts and Tr of the test liquid and the reference liquid, and the difference Δf (Cs, Ts) between the taste sensor outputs when the test liquid and the reference liquid are measured. f
(Cr, Tr)}, the equation 4 is calculated, and the difference {f (Cs, To) −f (Cr, To) of the taste sensor output when the test solution and the reference solution are measured at the temperature To. ) Calculate}.

【0028】〔第五の実施例〕これまでの説明では、作
用の項で述べたように、発明の理解を容易にするため
に、特性曲線が線形であると仮定してきた。しかし、温
度係数が定数ではなく、微分値で表わされる温度感度と
して捉えれば、味センサ出力対温度特性が非直線の場合
にも適応することができることは自明であろう。
[Fifth Embodiment] In the above description, it has been assumed that the characteristic curve is linear for easy understanding of the invention, as described in the operation section. However, if the temperature coefficient is regarded as a temperature sensitivity represented by a differential value instead of a constant, it is obvious that the present invention can be applied to a case where the taste sensor output versus temperature characteristic is non-linear.

【0029】味センサ出力の温度特性が温度Tに対して
非線形な場合を、説明を簡単にするために、式1のg
(T)、h(T)が温度Tの2次式で近似できるとして
説明する。ただし、一般のn次式での近似でも以下の議
論は同様にできる。まず、基準液における味センサ出力
の温度特性は、温度Tの2次式で近似できるとすると、
温度の異なる少なくとも3点(ただし、3点の液温の内
の1点はToでも良い)の出力を計測すれば、温度特性
曲線は求めることができる(n次式の近似の場合、温度
の異なる少なくとも(n+1)点の出力を計測すれば良
い)。具体的には、味センサ出力の基準液における温度
特性曲線をe(T)とする。基準液において各々異なる
T0、T1、T2の温度におけるセンサ出力を計測す
る。各々の温度Tiに関し(i=0〜2) e(Ti)={f(C0、Ti)−f(C0、T0)} (5) より、e(T)を求めることができる。
In the case where the temperature characteristic of the taste sensor output is non-linear with respect to the temperature T, for the sake of simplicity, g in Equation 1 is used.
Description will be made on the assumption that (T) and h (T) can be approximated by a quadratic expression of the temperature T. However, the following discussion can be similarly performed by approximation using a general n-order expression. First, assuming that the temperature characteristic of the taste sensor output in the reference liquid can be approximated by a quadratic expression of the temperature T,
A temperature characteristic curve can be obtained by measuring the output of at least three points having different temperatures (however, one of the three liquid temperatures may be To). At least (n + 1) different outputs may be measured). Specifically, the temperature characteristic curve of the taste sensor output in the reference liquid is represented by e (T). Sensor outputs at different temperatures T0, T1, and T2 in the reference liquid are measured. For each temperature Ti (i = 0 to 2), e (T) can be obtained from e (Ti) = {f (C0, Ti) -f (C0, T0)} (5).

【0030】温度特性曲線より、任意の温度Tにおける
味センサ出力の補償値を求めることができるので、温度
Tをサンプルの液温Tsに合わせた味センサ出力の補償
値f(Cr、Ts)を実験値f(Cr、Tr)と温度T
の2次式e(T)より以下のようにして計算できる。 f(Cr、Ts)=f(Cr、Tr)−{e(Tr)−e(Ts)} (6) サンプル液の温度と基準液の温度が等しい場合、式1を
用いると f(Cs、Ts)−f(Cr、Ts)=g(Ts)×log(Cs/Cr) ={g(Ts)/g(T0)}{f(Cs、T0)−f(Cr、T0)}(7) となるので、補償値{f(Cs、T0)−f(Cr、T
0)}は、g(T)が分かれば良い。式1より、 δf(C、T)/δlogC=g(T) (8)
Since the compensation value of the taste sensor output at an arbitrary temperature T can be obtained from the temperature characteristic curve, the compensation value f (Cr, Ts) of the taste sensor output obtained by adjusting the temperature T to the liquid temperature Ts of the sample is obtained. Experimental value f (Cr, Tr) and temperature T
Can be calculated as follows from the quadratic expression e (T). f (Cr, Ts) = f (Cr, Tr) − {e (Tr) −e (Ts)} (6) When the temperature of the sample liquid is equal to the temperature of the reference liquid, using the equation 1, f (Cs, Ts) −f (Cr, Ts) = g (Ts) × log (Cs / Cr) = {g (Ts) / g (T0)} f (Cs, T0) −f (Cr, T0)} (7 ), The compensation value Δf (Cs, T0) −f (Cr, T
0)} only needs to know g (T). From equation 1, δf (C, T) / δlogC = g (T) (8)

【0031】つまり、g(T)は、味センサの濃度の対
数(logC)に対する傾きを意味している。濃度Cの
変数を持たないので、濃度の異なる少なくとも2種類の
サンプル(その2つの内の1つは基準液でも良い)にお
けるセンサ出力差(ただし、2つのサンプルの液温は同
じ)より傾きは求めることができる。g(T)は、温度
Tの2次式で近似できるとすると、液温の異なる少なく
とも3点(ただし、3点の液温の内の1点はT0でも良
い)における傾きを求めることでg(T)を特定できる
(n次式の近似の場合、温度の異なる少なくとも(n+
1)点における傾きを求めれば良い)。
That is, g (T) means the slope of the density of the taste sensor with respect to the logarithm (log C). Since there is no variable of the concentration C, the slope is smaller than the sensor output difference (the two samples have the same liquid temperature) in at least two types of samples having different concentrations (one of the two may be a reference solution). You can ask. Assuming that g (T) can be approximated by a quadratic expression of the temperature T, g is obtained by calculating the slope at at least three points having different liquid temperatures (one of the three liquid temperatures may be T0). (T) can be specified (in the case of approximation of n-th order, at least (n +
1) The inclination at the point may be obtained).

【0032】例えば、基準液に対して味の質が同じで濃
度がk倍(k≠1)の濃さのサンプル液を用意し、基準
液とサンプル液のそれぞれに関し、各々異なるT0、T
1、T2の温度におけるセンサ出力を計測する。式1よ
り各々の温度Tiに関し(i=0〜2) g(Ti)={f(kC0、Ti)−f(C0、Ti)}/log(k)(9) より、g(T)を求める。ただし、実際には、味センサ
はいろいろな味に反応し、味毎に対する感度も異なるの
で、どの味を使ってg(T)を求めるかによりg(T)
の結果が異なる。各味毎の濃度Ciとその味に対する味
センサの感度をαiとし、濃度Cが各味の濃度の総和で
表される、つまり C=Σαi*Ci とすると式8は δf(C、T)/δlogCi=αi×g(T) (10) となり、濃度を変える味毎で異なる。しかし、求めたい
のは、g(Ts)とg(T0)の比より、αiは消える
ので、問題無い。
For example, a sample solution having the same taste quality as the reference solution and having a concentration k times (k ≠ 1) is prepared, and the reference solution and the sample solution have different T0 and T0, respectively.
1. Measure the sensor output at the temperature of T2. From equation (1), for each temperature Ti, (i = 0 to 2) g (T) = {f (kC0, Ti) −f (C0, Ti)} / log (k) (9) Ask. However, in practice, the taste sensor reacts to various tastes, and the sensitivity for each taste is also different. Therefore, g (T) depends on which taste is used to obtain g (T).
Results are different. If the concentration Ci for each taste and the sensitivity of the taste sensor for that taste are αi, and the concentration C is represented by the sum of the concentrations of each taste, that is, if C = Σαi * Ci, Equation 8 is δf (C, T) / δlogCi = αi × g (T) (10), which is different for each taste for which the concentration is changed. However, there is no problem because αi disappears from the ratio of g (Ts) and g (T0).

【0033】結局、補償値{f(Cs、T0)−f(C
r、T0)}は、式6と式7より f(Cs、T0)−f(Cr、T0)={f(Cs、Ts)−f(Cr、Tr) +e(Tr)−e(Ts)}×{g(T0)/g(Ts)} (11) (ただし、e(T)とg(T)は、式5と式9で求めら
れる。)e(T)は、基準液に関する味センサの出力特
性であり、温度Tの1次の場合 e(T)=S(Cr)(T−T0) (12) となる。式4の分子の部分がそれに対応する。g(T)
は、味センサの濃度勾配であり温度Tの1次の場合、式
4のaは、g’(T)/g(T0)に相当し、式4の分
母の1+a(Ts−T0)は、g(Ts)/g(T0)
に相当する。
As a result, the compensation value Δf (Cs, T0) −f (C
From Equations 6 and 7, f (Cs, T0) -f (Cr, T0) = {f (Cs, Ts) -f (Cr, Tr) + e (Tr) -e (Ts) } × {g (T0) / g (Ts)} (11) (However, e (T) and g (T) can be obtained by Expressions 5 and 9.) e (T) is the taste of the reference liquid. This is the output characteristic of the sensor, and e (T) = S (Cr) (T−T0) (12) in the case of the first order of the temperature T. The part of the molecule of formula 4 corresponds to it. g (T)
Is the concentration gradient of the taste sensor, and in the case of the first order of the temperature T, a in Equation 4 corresponds to g ′ (T) / g (T0), and 1 + a (Ts−T0) of the denominator of Equation 4 is g (Ts) / g (T0)
Is equivalent to

【0034】[0034]

【発明の効果】この発明では脂質膜を用いた味センサの
出力値に対して温度補償を施して、測定温度とは異なる
基準温度における味の値を推定する方法及び装置を示し
た。温度補償の方法は、従来の技術のように単に温度係
数と温度差の積を測定値に加(減)するのではなく、二
つの温度係数の差をセンサの出力値で正規化した値を用
いることとした。すなわち、温度係数という二つの異な
る温度における出力値の差を温度で除した値について、
二つの種類間での差をとり、それを正規化した値を利用
することとしたから、次に挙げるような特徴が得られる
ものとなった。
According to the present invention, there has been described a method and an apparatus for estimating a taste value at a reference temperature different from a measured temperature by performing temperature compensation on an output value of a taste sensor using a lipid membrane. The method of temperature compensation is not to simply add (decrease) the product of the temperature coefficient and the temperature difference to the measured value as in the conventional technology, but to calculate the value obtained by normalizing the difference between the two temperature coefficients with the output value of the sensor. It was decided to use it. That is, for the value obtained by dividing the difference between the output values at two different temperatures, called the temperature coefficient, by the temperature,
By taking the difference between the two types and using the normalized value, the following features were obtained.

【0035】1.脂質膜を用いた味センサによる測定値
から、基準温度における味の値を求めることができるよ
うになった。 2.味の工業的な測定に、温度をパラメータとして加え
た評価ができるようになった。 3.測定値とヒトの味覚との対応を一層明確なものと
し、ウェバー比において、それが明瞭に示されるものと
した。 4.同系統の食品(例えば日本酒)について、二種類に
ついの温度特性を知ることにより、他のものについても
内挿又は外挿による温度補償を可能にした。言い換えれ
ば、差の差を補償における重要な因子としたから、温度
補償を普遍的なものとし、かつ、誤差の少ない温度補償
法を提供できた。
1. The value of taste at a reference temperature can be obtained from the value measured by a taste sensor using a lipid membrane. 2. It is now possible to evaluate the industrial measurement of taste by adding temperature as a parameter. 3. The correspondence between the measured values and the human taste was made clearer, and the Weber ratio was clearly shown. 4. By knowing the temperature characteristics of two types of foods of the same system (for example, sake), it became possible to perform temperature compensation by interpolation or extrapolation for other foods. In other words, since the difference between the differences is an important factor in the compensation, the temperature compensation can be made universal and a temperature compensation method with a small error can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の技術思想の概念を説明するための図
である。
FIG. 1 is a diagram for explaining the concept of the technical concept of the present invention.

【図2】KCl水溶液を測定したときの第1ないし第4
チャンネルの味センサ出力の温度係数を示すグラフであ
り、(a)はKCl10mMのとき、(b)はKCl1
00mMのとき、(c)はKCl1000mMのときの
グラフである。
FIG. 2 shows first to fourth measurements of a KCl aqueous solution.
It is a graph which shows the temperature coefficient of the taste sensor output of a channel, (a) is KCl10mM, (b) is KCl1.
(C) is a graph when KCl is 1000 mM when the concentration is 00 mM.

【図3】KCl水溶液を測定したときの第5及び第6チ
ャンネルの味センサ出力の温度係数を示すグラフであ
り、(a)はKCl10mMのとき、(b)はKCl1
00mMのとき、(c)はKCl1000mMのときの
グラフである。
FIGS. 3A and 3B are graphs showing temperature coefficients of the taste sensor outputs of the fifth and sixth channels when a KCl aqueous solution is measured. FIG. 3A is a graph showing KCl 10 mM, and FIG.
(C) is a graph when KCl is 1000 mM when the concentration is 00 mM.

【図4】約20°Cにおける第1ないし第3チャンネル
の温度係数対被検液のセンサ出力を示すグラフであり、
(a)は第1チャンネル、(b)は第2チャンネル、
(c)は第3チャンネルのグラフである。
FIG. 4 is a graph showing the temperature coefficient of the first to third channels at about 20 ° C. versus the sensor output of the test liquid;
(A) is the first channel, (b) is the second channel,
(C) is a graph of the third channel.

【図5】約20°Cにおける第4ないし第6チャンネル
の温度係数対被検液のセンサ出力を示すグラフであり、
(a)は第4チャンネル、(b)は第5チャンネル、
(c)は第6チャンネルのグラフである。
FIG. 5 is a graph showing the temperature coefficient of the fourth to sixth channels at about 20 ° C. versus the sensor output of the test liquid;
(A) is the fourth channel, (b) is the fifth channel,
(C) is a graph of the sixth channel.

【図6】特定銘柄の日本酒について、4つの味センサの
出力電位対温度の特性曲線を示すグラフである。
FIG. 6 is a graph showing characteristic curves of output potential versus temperature of four taste sensors for a specific brand of sake.

【図7】四種類の日本酒について、4つの味センサの出
力電位対温度の特性曲線を示すグラフである。
FIG. 7 is a graph showing characteristic curves of output potential versus temperature of four taste sensors for four types of sake.

【図8】五種類の日本酒の測定結果から、味センサ出力
対温度係数の特性曲線を示した.ラフである。
FIG. 8 shows characteristic curves of taste sensor output versus temperature coefficient from the measurement results of five types of sake. It is rough.

【図9】この発明の温度補償方法の流れを示す図であ
る。
FIG. 9 is a diagram showing the flow of the temperature compensation method of the present invention.

【図10】この発明の温度補償装置の要部の機能ブロッ
ク図である。
FIG. 10 is a functional block diagram of a main part of the temperature compensation device of the present invention.

【符号の説明】[Explanation of symbols]

10 温度係数差正規化値演算手段 11 減算部 12 正規化部 20 演算部 Reference Signs List 10 temperature coefficient difference normalized value calculation means 11 subtraction unit 12 normalization unit 20 calculation unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 都甲 潔 福岡県福岡市東区美和台2丁目8番32− 2号 (56)参考文献 特開 平3−54446(JP,A) 特開 平3−163351(JP,A) 特開 平5−232083(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/416 G01N 33/02 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kiyoshi Toko 2-8-3-2 Miwadai, Higashi-ku, Fukuoka City, Fukuoka Prefecture (56) References JP-A-3-54446 (JP, A) JP-A-3 163351 (JP, A) Japanese Patent Laid-Open No. 5-232083 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27/416 G01N 33/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 脂質膜を用いた味センサの測定値の温度
補償方法であって、 基準液を測定したときの前記味センサの出力値の温度係
数を求める段階(1)と、 前記味センサの出力値が異なる少なくとも2種類の液を
測定したときのそれぞれの前記味センサの出力値の温度
係数から温度係数の差の正規化値を求める段階(2,
3,4,5)と、 前記基準液を測定したときの前記味センサの出力値とそ
の基準液の温度とを求める段階(6)と、 前記被測定液を測定したときの前記味センサの出力値と
その被測定液の温度とを求める段階(7)と、 前記諸段階で求めた値を用いて所望温度における前記基
準液を測定したときの前記味センサの出力値と被測定液
を測定したときの前記味センサの出力値との差を演算す
る段階(8)とを含む温度補償方法。
1. A temperature compensation method for a measured value of a taste sensor using a lipid membrane, wherein a step (1) of obtaining a temperature coefficient of an output value of the taste sensor when a reference liquid is measured; Obtaining a normalized value of the difference in temperature coefficient from the temperature coefficient of the output value of each taste sensor when at least two types of liquids having different output values are measured (2,
(3, 4, 5), a step (6) of obtaining an output value of the taste sensor when the reference liquid is measured and a temperature of the reference liquid, and a step (6) of the taste sensor when the liquid to be measured is measured. (7) obtaining an output value and the temperature of the liquid to be measured; and calculating the output value of the taste sensor and the liquid to be measured when the reference liquid at a desired temperature is measured using the values obtained in the various steps. Calculating the difference between the measured value and the output value of the taste sensor (8).
【請求項2】 脂質膜を用いた味センサの出力値が異な
る少なくとも2種類の液について、それぞれの味センサ
の出力値の温度係数から温度係数の差の正規化値を演算
する温度係数差正規化値演算手段(10)を備えた味セ
ンサの温度補償装置。
2. A temperature coefficient difference normalizer for calculating a normalized value of a temperature coefficient difference from a temperature coefficient of an output value of each taste sensor for at least two types of liquids having different output values of a taste sensor using a lipid membrane. A temperature compensating device for a taste sensor, comprising a chemical value calculating means (10).
JP35278293A 1993-12-29 1993-12-29 Temperature compensation method and device Expired - Fee Related JP3343666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35278293A JP3343666B2 (en) 1993-12-29 1993-12-29 Temperature compensation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35278293A JP3343666B2 (en) 1993-12-29 1993-12-29 Temperature compensation method and device

Publications (2)

Publication Number Publication Date
JPH07198707A JPH07198707A (en) 1995-08-01
JP3343666B2 true JP3343666B2 (en) 2002-11-11

Family

ID=18426404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35278293A Expired - Fee Related JP3343666B2 (en) 1993-12-29 1993-12-29 Temperature compensation method and device

Country Status (1)

Country Link
JP (1) JP3343666B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2895958C (en) 2006-02-27 2017-09-19 Bayer Healthcare Llc Temperature adjusted analyte determination for biosensor systems
CN110220945B (en) * 2019-04-23 2021-12-07 金卡智能集团股份有限公司 Full-range temperature compensation method of semiconductor gas sensor

Also Published As

Publication number Publication date
JPH07198707A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
Vlasov et al. Nonspecific sensor arrays (" electronic tongue") for chemical analysis of liquids (IUPAC Technical Report)
Capone et al. Monitoring of rancidity of milk by means of an electronic nose and a dynamic PCA analysis
Ciosek et al. Classification of beverages using a reduced sensor array
US4770027A (en) Method of measuring concentrations of odors and a device therefor
Legin et al. Application of electronic tongue for quantitative analysis of mineral water and wine
Legin et al. The features of the electronic tongue in comparison with the characteristics of the discrete ion-selective sensors
US8179141B2 (en) Method and device for measuring the conductivity of a pure or ultrapure liquid
EP0763729B1 (en) Method of determining taste with gustatory sensor made from molecular membrane
KR20030069120A (en) Odor measuring apparatus
JPH02171647A (en) Measurement method and sensor for measuring relative density of gas or steam
Pascual et al. A voltammetric e-tongue tool for the emulation of the sensorial analysis and the discrimination of vegetal milks
CN112305035B (en) Method and measuring point for correcting two measured values from different analytical measuring devices
Maccà et al. Experimental procedures for the determination of amperometric selectivity coefficients
JP3343666B2 (en) Temperature compensation method and device
Kashwan et al. Robust electronic-nose system with temperature and humidity drift compensation for tea and spice flavour discrimination
Hitzmann et al. Evaluation of pH field effect transistor measurement signals by neural networks
CA2178627C (en) Determination of extraneous water in milk samples, or the freezing point depression of milk samples
CN112198208B (en) Formaldehyde detection method and formaldehyde detection device
JP4574828B2 (en) Taste inspection method and taste inspection apparatus
JP3143172B2 (en) Horse mackerel measurement method
Hamer Application of halide reference half cells to pH determinations
JP3302481B2 (en) Method for identification and concentration measurement of volatile compounds
DE69837965T2 (en) Method and device for concentration measurement of a chemical substance
Madrolle et al. Supervised Bayesian source separation of nonlinear mixtures for quantitative analysis of gas mixtures
JP4430255B2 (en) Aftertaste inspection method and aftertaste inspection apparatus

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070830

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130830

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees