JP3343428B2 - Hydration heat inhibitor for cement - Google Patents

Hydration heat inhibitor for cement

Info

Publication number
JP3343428B2
JP3343428B2 JP34568693A JP34568693A JP3343428B2 JP 3343428 B2 JP3343428 B2 JP 3343428B2 JP 34568693 A JP34568693 A JP 34568693A JP 34568693 A JP34568693 A JP 34568693A JP 3343428 B2 JP3343428 B2 JP 3343428B2
Authority
JP
Japan
Prior art keywords
cement
hydration
dextrin
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34568693A
Other languages
Japanese (ja)
Other versions
JPH07172892A (en
Inventor
範彦 新井
和義 土屋
俊夫 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP34568693A priority Critical patent/JP3343428B2/en
Publication of JPH07172892A publication Critical patent/JPH07172892A/en
Application granted granted Critical
Publication of JP3343428B2 publication Critical patent/JP3343428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、セメントの水和に伴う
発熱を抑制し、もって、発熱による硬化コンクリートの
ひび割れ(以下、温度ひび割れという)を防止するため
のセメントの水和発熱抑制剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an agent for suppressing heat generation due to hydration of cement for suppressing heat generation due to hydration of cement and thereby preventing cracking of hardened concrete due to heat generation (hereinafter referred to as temperature cracking). .

【0002】[0002]

【従来の技術】温度ひび割れが発生する主な理由は、セ
メントの水和発熱によってコンクリートの内部と外部の
間に温度差が生じ、この温度差に起因する応力が、硬化
コンクリートの引張強度を上回るからである。従って、
セメントの水和発熱を抑制し、コンクリート内・外部間
の温度差を小さくすることは、温度ひび割れを防止する
うえで有効な手段となる。このような考えに基づき、従
来、次の物質からなるセメントの水和発熱抑制剤が提案
されている。 a)尿素(特開昭62-223048 号公報) b)5〜60℃に融点または転移点をもつ蓄熱物質(特
開平3-69542 号公報) c)冷水可溶分5〜90重量%のデキストリン(特開昭
55-75950号公報) d)加水分解性タンニン(特開昭63-117941 号公報)
2. Description of the Related Art The main reason for the occurrence of temperature cracks is that the heat generated by the hydration of cement causes a temperature difference between the inside and outside of concrete, and the stress caused by this temperature difference exceeds the tensile strength of hardened concrete. Because. Therefore,
Suppressing the heat of hydration of cement and reducing the temperature difference between the inside and outside of concrete are effective means for preventing temperature cracking. Based on such an idea, conventionally, a hydration heat generation inhibitor for cement comprising the following substances has been proposed. a) Urea (Japanese Patent Application Laid-Open No. 62-223048) b) A heat storage substance having a melting point or a transition point at 5 to 60 ° C. (Japanese Patent Application Laid-Open No. 3-69542) c) Cold water-soluble content of dextrin of 5 to 90% by weight (JP
55-75950) d) Hydrolyzable tannin (JP-A-63-117941)

【0003】上記物質がセメントの水和発熱を抑制する
機構は次のように考えられる。すなわち、上記a,bは
物質自体の吸熱作用を利用するものであり、コンクリー
ト中で尿素は加水分解する際に熱を吸収し、また上記蓄
熱物質は融解または相転移の際に潜熱を吸収することに
より水和発熱を抑制する。一方、上記c,dはセメント
の水和反応を遅延することにより水和発熱を抑制するも
のであり、デキストリンは粉体の溶解によりデキストリ
ン分子を放出し、また、加水分解性タンニンは加水分解
によりタンニン分子を放出し、コンクリートの液相中に
放出されたこれらの物質がセメントの水和反応を遅延さ
せて水和発熱を抑制する。
The mechanism by which the above substances suppress the heat of hydration of cement is considered as follows. That is, a and b use the endothermic action of the substance itself, and urea absorbs heat when hydrolyzed in concrete, and the heat storage substance absorbs latent heat during melting or phase transition. This suppresses the heat of hydration. On the other hand, the above c and d are to suppress the heat of hydration by delaying the hydration reaction of the cement, dextrin releases dextrin molecules by dissolving the powder, and hydrolyzable tannin is hydrolyzed. These substances, which release tannin molecules and are released into the liquid phase of the concrete, delay the hydration reaction of the cement and suppress the heat of hydration.

【0004】[0004]

【発明の解決課題】しかしながら、上記尿素および蓄熱
物質は、吸熱量が添加量に依存するので、有意な効果を
得ようとするとコンクリート中にこれらの物質を多量に
添加しなければならない。ところが、コンクリート中に
尿素を多量に添加すると、加水分解により多量の炭酸お
よびアンモニアが生成し、これらがコンクリートの中性
化を促進する原因や悪臭の原因となる。また、上記蓄熱
物質は高価であり、大幅なコスト高になるなど、それぞ
れ実用上の問題を有している。一方、上記デキストリン
および加水分解性タンニンは、比較的少量の添加で水和
発熱を抑制する(以下、抑制作用という)ことができる
が、同時にセメントの水和開始時期も遅らせ(以下、遅
延作用という)、これらの作用が不可分の関係にある。
従って、特に、コンクリートが夏場のような高温度下に
置かれると、遅延作用が著しくなり、型枠の脱型時期の
延長や、ブリージング量の増大などの問題が生じ易い。
本発明は、従来のセメントの水和発熱抑制剤における、
かかる実情に鑑みてなされたもので、少量の添加でも大
きな発熱抑制効果を発揮し、かつ高温度下でも遅延作用
に起因する上記問題を生じないセメントの水和発熱抑制
剤を提供することを目的とする。
However, since the endothermic amount of the above-mentioned urea and heat storage material depends on the amount of addition, a large amount of these materials must be added to concrete in order to obtain a significant effect. However, when a large amount of urea is added to concrete, a large amount of carbonic acid and ammonia is generated by hydrolysis, and these cause the promotion of neutralization of the concrete and the odor. In addition, the heat storage materials are expensive, and have a practical problem such as a significant increase in cost. On the other hand, the dextrin and the hydrolyzable tannin can suppress the heat of hydration by adding a relatively small amount (hereinafter, referred to as a suppressing action), but at the same time, delay the hydration start time of the cement (hereinafter, referred to as a delaying action). ), These actions are inseparable.
Therefore, particularly when the concrete is placed at a high temperature such as in summer, the delay effect becomes remarkable, and problems such as prolongation of the mold release time and increase in the amount of breathing are likely to occur.
The present invention relates to a conventional cement hydration heat generation inhibitor,
In view of the above circumstances, an object of the present invention is to provide a cement hydration heat generation inhibitor that exhibits a large heat generation suppression effect even when added in a small amount and does not cause the above-mentioned problem caused by a delayed action even at a high temperature. And

【0005】[0005]

【課題の解決手段】この目的達成のため、本発明者は、
セメントの水和反応に関与する水和発熱抑制剤につい
て、さらに詳細にその機構を研究した結果、下記の知見
を得、この知見に基づいて、遅延作用に起因する問題を
生じないセメントの水和発熱抑制剤を完成するに至っ
た。一般に、セメントの水和は、接水後数時間の水和反
応が始まるまでの時期(以下、誘導期という)を経た
後、水和反応が活発な時期(以下、加速期という)に移
行することが知られている。本発明者は上記水和発熱抑
制剤から放出される遅延物質が誘導期において遅延作用
を示し、加速期において抑制作用を示すことを見出し
た。これをデキストリンについてみると、上記cの冷水
可溶分を5〜90重量%含有するデキストリンとは、温
度21℃の水150mlに、これを10g加え、温度を
20〜23℃に1時間保持した場合、水に溶解するデキ
ストリンを5〜90重量%含むものであり、これをコン
クリートに添加すると、数時間に及ぶ誘導期に、コンク
リートの液相中にデキストリン分子が溶出し、これが水
和開始時期を遅らせる。特に、コンクリートの打ち込み
温度や環境温度が高い場合、溶出するデキストリン量は
さらに多くなり、遅延作用が増大して誘導期が長くなる
ので脱型時期が大幅に遅れる。また、上記dの加水分解
性タンニンも、セメントの練り混ぜ直後から、加水分解
反応によりタンニン分子を放出し、同様の現象を示す。
上記知見に基づき、本発明に係るセメントの水和発熱抑
制剤は、遅延物質の放出時期を調整したものであって、
水和反応の誘導期においては遅延物質を殆ど放出せず、
加速期に至って遅延物質を放出する性質を有する物質を
主成分としたものである。
To achieve this object, the present inventor has proposed:
As a result of studying the mechanism of the hydration exothermic inhibitor involved in the hydration reaction of cement in more detail, the following findings were obtained, and based on this finding, hydration of cement that did not cause problems due to delayed action We have completed the heat generation inhibitor. In general, the hydration of cement goes through a period of several hours after contact with water until the hydration reaction starts (hereinafter referred to as an induction period), and then shifts to a period in which the hydration reaction is active (hereinafter referred to as an acceleration period). It is known. The present inventor has found that the delayed substance released from the hydration heat generation inhibitor exhibits a retarding action in the induction period and a suppressing action in the accelerated phase. Regarding the dextrin, dextrin containing 5 to 90% by weight of the cold water-soluble component of the above c is added to 150 ml of water at a temperature of 21 ° C., 10 g of this is added, and the temperature is kept at 20 to 23 ° C. for 1 hour. In this case, the dextrin containing 5 to 90% by weight of dextrin dissolved in water is added to the concrete. When the dextrin is added to the concrete, the dextrin molecules are eluted into the liquid phase of the concrete during the induction period of several hours. Delay. In particular, when the concrete pouring temperature or the environmental temperature is high, the amount of dextrin eluted is further increased, the delay action is increased, and the induction period is lengthened, so that the demolding time is greatly delayed. Further, the hydrolyzable tannin of d also releases tannin molecules by a hydrolysis reaction immediately after kneading of the cement, and shows the same phenomenon.
Based on the above findings, the hydration heat generation inhibitor of the cement according to the present invention, the release time of the delayed substance is adjusted,
In the induction phase of the hydration reaction, it hardly releases a retardant,
It is mainly composed of a substance having a property of releasing a delayed substance until the acceleration period.

【0006】[0006]

【発明の構成】具体的には、以下の構成からなるセメン
トの水和発熱抑制剤である。 (1) デキストリンから水に易溶性の成分を除いた非
易溶分からなる粉粒体を主成分とするセメントの水和発
熱抑制剤。 (2) デキストリンから水に易溶性の成分を除いた非
易溶分からなる粉粒体を主成分とし、弱アルカリ性下で
徐々に溶解する上記(1) のセメントの水和発熱抑制剤。 (3) 上記粉粒体の粒度が0.1〜2000μm であ
る上記(1) または(2)のセメントの水和発熱抑制剤。
Specifically, the present invention relates to a cement hydration heat generation inhibitor having the following structure. (1) An inhibitor for hydration heat generation of a cement mainly composed of a non-easily soluble component obtained by removing water-soluble components from dextrin. (2) The cement hydration heat generation inhibitor according to the above (1), which is mainly composed of a powdery material composed of insoluble components obtained by removing water-soluble components from dextrin and gradually dissolves under weak alkalinity. (3) The cement of (1) or (2), wherein the powder has a particle size of 0.1 to 2000 μm.

【0007】[0007]

【具体的な説明】原料となるデキストリンは、デンプ
ン、セルロース、ヘミセルロース、またはこれらの誘導
体から、熱分解、加水分解、あるいは酵素分解などによ
って得られるものであり、これら分解物の1種または2
種以上を混合したものを云う。またデキストリンから水
に易溶性の成分を除いた非易溶分とは、一例として、2
5〜40℃の水にデキストリンを分散させ、1〜10時
間この温度に保持した後に遠心分離、濾過またはこれら
の組合わせによって水に溶解した成分を分別し除去した
成分である。具体的には、コンクリートの打込み温度や
環境温度の上限、およびセメントの水和の誘導期の長さ
に応じて、デキストリンの溶解温度および溶解時間を上
記範囲内で選択する。デキストリンを分散させる際に用
いる水の量は、良好な分散を得るため、重量比で水/デ
キストリン比が10以上、好ましくは15以上が適当で
ある。本発明の水和発熱抑制剤は、以上のように、デキ
ストリンから水に易溶性の成分を除いた非易溶分からな
るものである。
[Detailed Description] Dextrin as a raw material is obtained from starch, cellulose, hemicellulose, or a derivative thereof by thermal decomposition, hydrolysis, enzymatic decomposition, or the like.
A mixture of more than one species. The non-soluble component obtained by removing the component soluble in water from dextrin is, for example, 2%.
A component in which dextrin is dispersed in water at 5 to 40 ° C. and kept at this temperature for 1 to 10 hours, and then components dissolved in water are separated and removed by centrifugation, filtration or a combination thereof. Specifically, the dissolution temperature and dissolution time of dextrin are selected within the above ranges according to the upper limit of the concrete pouring temperature and the environmental temperature, and the length of the induction period of hydration of cement. The amount of water used for dispersing the dextrin is suitably a water / dextrin ratio of 10 or more, preferably 15 or more by weight, in order to obtain good dispersion. As described above, the hydration heat generation inhibitor of the present invention comprises an insoluble component obtained by removing a component soluble in water from dextrin.

【0008】分離した非易溶分は、乾燥して粉砕し、ま
たは、水を加えてスラリーとした後にスプレードライに
よって粉粒体にする。その他の方法で粉粒体にしても良
い。粉粒体の粒度は0.1〜2000μm が適当であ
り、1〜1000μm が好ましい。0.1μm より小さ
いと、セメントに添加した際、水和反応の誘導期から遅
延物質の溶出が生じ易くなるので好ましくない。また粒
径が2000μm を上回ると加速期における溶出が不十
分になる。
The separated insoluble components are dried and pulverized, or made into a slurry by adding water, and then into a granular material by spray drying. The powder may be formed by other methods. The particle size of the powder is suitably from 0.1 to 2000 μm, preferably from 1 to 1000 μm. If it is smaller than 0.1 μm, it is not preferable because, when added to the cement, the elution of the retardation substance tends to occur from the induction period of the hydration reaction. On the other hand, if the particle size exceeds 2000 μm, elution during the acceleration period becomes insufficient.

【0009】上記非易溶分のセメントに対する添加量
は、セメント100重量部に対して0.05〜5重量部
が適当である。0.05重量部未満の添加では水和発熱
の抑制効果が不十分であり、添加量が5重量部を越える
と強度発現が遅くなる。添加方法は制限されず、例え
ば、セメントに乾燥状態で直接に添加するか、あるいは
コンクリートの混練時に、上記非易溶分の粉粒体を混練
水に分散させて使用する。また、使用されるセメントの
種類も制限されず、例えば、普通ポルトランドセメン
ト、中庸熱ポルトランドセメント、高炉セメント、フラ
イアッシュセメント、高ビーライトセメント、早強セメ
ント、膨脹セメントなど公知のセメントに対して使用す
ることができる。
The amount of the non-soluble component added to the cement is suitably 0.05 to 5 parts by weight based on 100 parts by weight of the cement. If the addition is less than 0.05 part by weight, the effect of suppressing the heat of hydration is insufficient, and if the addition amount exceeds 5 parts by weight, the strength development becomes slow. The method of addition is not limited, and for example, it is directly added to the cement in a dry state, or at the time of kneading concrete, the above-mentioned insoluble powder is dispersed in kneading water and used. In addition, the type of cement used is not limited, and is used for known cements such as ordinary Portland cement, moderately heated Portland cement, blast furnace cement, fly ash cement, high belite cement, early-strength cement, and expanded cement. can do.

【0010】さらに、本発明に係るセメントの水和発熱
抑制剤は、AE剤、減水剤、AE減水剤、高性能減水
剤、流動化剤、収縮低減剤、凝結促進剤、防水剤、防錆
剤などの公知のコンクリート混和剤と併用することがで
きる。
Further, the hydration heat generation inhibitor for cement according to the present invention includes an AE agent, a water reducing agent, an AE water reducing agent, a high performance water reducing agent, a fluidizing agent, a shrinkage reducing agent, a setting accelerator, a waterproofing agent, and a rust preventive. It can be used in combination with a well-known concrete admixture such as an agent.

【0011】本発明に係るセメントの水和発熱抑制剤は
セメントに添加して使用した場合、セメント中の弱アル
カリ性下で徐々に溶解するので、接水後、セメントの水
和反応開始までの誘導期には遅延物質が殆ど溶出せず、
セメントの水和発熱により温度が上昇する加速期におい
て遅延物質の溶出が進む。このため、水和反応の開始時
期を遅らせる問題がなく、他方、水和反応の加速期に
は、セメントの水和発熱により温度が上昇するので、遅
延物質の溶出量が多くなるので抑制作用が増大し、効果
的に水和発熱が抑制される。
When the hydration heat-inhibiting agent for cement according to the present invention is used by adding it to cement, it gradually dissolves under weak alkalinity in the cement. Phase hardly elutes during the period,
In the accelerated period in which the temperature rises due to the heat of hydration of the cement, the elution of the retardant proceeds. Therefore, there is no problem of delaying the start time of the hydration reaction.On the other hand, during the accelerated period of the hydration reaction, the temperature rises due to the heat generated by the hydration of the cement, and the amount of the delayed substance eluted increases, so that the inhibitory effect is reduced. It increases and the heat of hydration is effectively suppressed.

【0012】[0012]

【発明の効果】以上のように、本発明に係るセメントの
水和発熱抑制剤は、少量の添加量でもセメントの水和発
熱を効果的に抑制でき、温度ひび割れなどの問題を確実
に防止することができる。しかも高温下での施工におい
ても、水和反応の誘導期が長引かず、また長期材令にお
けるコンクリート強度に悪影響を及ぼすこともない。
As described above, the heat generation inhibitor for hydration of cement according to the present invention can effectively suppress the heat of hydration of cement even with a small amount of addition, and can surely prevent problems such as temperature cracking. be able to. In addition, even during construction at high temperatures, the induction period of the hydration reaction is not prolonged, and the concrete strength in long-term aging is not adversely affected.

【0013】[0013]

【実施例および比較例】本発明の実施例を比較例と共に
以下に示す。なお、本実施例は例示であり、本発明の範
囲を限定するものではない。 製造例 温度25℃の水1500gに、冷水可溶分 50 重量%のデキス
トリン 100gを加え、攪拌して分散させ、1時間、25℃
に保持した後に、このスラリーを遠心分離し、脱水して
非易溶分を得た。この非易溶分を吸引濾過しながら温度
25℃の水 200gで洗浄した後、80℃で乾燥し、さらに乳
鉢で粉砕し、分級して、粒度1〜 100μm の粉粒体35g
を得た。
Examples and Comparative Examples Examples of the present invention are shown below together with comparative examples. This embodiment is an exemplification, and does not limit the scope of the present invention. Production Example To 1500 g of water at a temperature of 25 ° C., 100 g of dextrin containing 50% by weight of a soluble component in cold water was added, and the mixture was stirred and dispersed.
After that, the slurry was centrifuged and dehydrated to obtain an insoluble component. While suction-filtering this insoluble component,
After washing with 200 g of water at 25 ° C., drying at 80 ° C., further pulverizing in a mortar, and classifying, 35 g of a powder having a particle size of 1 to 100 μm
I got

【0014】実施例1〜3 普通ポルトランドセメント 520g、豊浦標準砂1040g、
水 338gの JISモルタルに、製造例で得たデキストリン
非易溶分からなる粉粒体を、セメント 100重量部に対し
て、おのおの 0.3重量部(1.56g)、 0.35 重量部(1.
82g)、 0.4重量部(2.08g)加えて練り混ぜ、それぞ
れを実施例1、実施例2および実施例3として、モルタ
ルの圧縮強度および温度を測定した。圧縮強度は、モル
タルを 4×4 ×16cmに成形し、水中養生して材令 7日お
よび28日で測定した。また、温度の測定方法は、練り上
がったモルタルを全量、直径8.5cm、高さ24cmのポリエ
チレン製の袋に詰め、この袋を内径10cm、高さ28.5cmの
ステンレス製デュワー瓶内に挿入し、熱電対を通したコ
ルクで蓋をして、モルタルの中心部の温度を自動的に測
定した。上記練り混ぜ、成形、水中養生および温度測定
は全て、30℃の恒温室内で行なった。
Examples 1-3 520 g of ordinary Portland cement, 1040 g of Toyoura standard sand,
In a JIS mortar of 338 g of water, 0.3 g (1.56 g) and 0.35 g (1.
82 g) and 0.4 part by weight (2.08 g) were added and kneaded, and the compressive strength and temperature of the mortar were measured as in Example 1, Example 2 and Example 3, respectively. The compressive strength was measured on a mortar formed into 4 × 4 × 16 cm, cured in water and aged 7 and 28 days. In addition, the method of measuring the temperature is as follows.The whole kneaded mortar is packed in a polyethylene bag of 8.5 cm in diameter and 24 cm in height, and the bag is inserted into a stainless steel dewar with an inner diameter of 10 cm and a height of 28.5 cm. The temperature at the center of the mortar was automatically measured by covering with a cork through a thermocouple. The above mixing, molding, curing in water, and temperature measurement were all performed in a constant temperature room at 30 ° C.

【0015】比較例1〜2 実施例1〜3で用いた JISモルタルに、無添加のまま、
またはセメント 100重量部に対して、冷水可溶分 50 重
量%のデキストリンを 0.35 重量部(1.82g)加えて練
り混ぜ、それぞれを比較例1、比較例2として、実施例
1〜3と同一の方法および条件でモルタルの圧縮強度お
よび温度を測定した。上記実施例および比較例の圧縮強
度の測定結果を表1に示し、また温度の測定結果を図1
に示した。
Comparative Examples 1-2 The JIS mortar used in Examples 1-3 was added without addition.
Alternatively, 0.35 parts by weight (1.82 g) of dextrin having a soluble content of 50% by weight in cold water was added to 100 parts by weight of cement and kneaded, and the mixture was used as Comparative Example 1 and Comparative Example 2 in the same manner as in Examples 1 to 3. The compressive strength and temperature of the mortar were measured by the method and conditions. Table 1 shows the measurement results of the compressive strength of the above Examples and Comparative Examples, and FIG.
It was shown to.

【0016】図1に示すように、実施例1〜3のモルタ
ルの最高温度は何れも比較例1、2よりも低く、顕著な
水和発熱抑制効果を発揮していることが分かる。一方、
比較例2の従来のデキストリンを添加したものは、実施
例2と同量の添加量でも、材令30時間経過後にはモル
タルの温度が急激に上昇し、実施例1〜3を大幅に越え
る温度になる。これは、従来のデキストリンからなる抑
制剤は、水に対する可溶分の量が多く、水和反応の誘導
期にその大部分が溶出するため、加速期の水和発熱を抑
制する効果が低下するからである。また、表1に示すよ
うに、実施例1〜3のモルタルの28日材令強度は比較
例1、2よりも高く、長期材令強度に対する悪影響も全
くない。
As shown in FIG. 1, the maximum temperatures of the mortars of Examples 1 to 3 are lower than those of Comparative Examples 1 and 2, and it can be seen that the mortar has a remarkable effect of suppressing hydration heat generation. on the other hand,
Even when the conventional dextrin of Comparative Example 2 was added, the temperature of the mortar rapidly increased after 30 hours of the material age even at the same amount of addition as in Example 2, and the temperature significantly exceeded that of Examples 1 to 3. become. This is because conventional dextrin inhibitors have a large amount of water-soluble components, and most of them are eluted during the induction period of the hydration reaction. Because. Further, as shown in Table 1, the mortars of Examples 1 to 3 had a 28-day material strength higher than those of Comparative Examples 1 and 2, and had no adverse effect on the long-term material strength.

【0017】[0017]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例および比較例におけるモルタル温度の経
時変化を示すグラフ。
FIG. 1 is a graph showing the change over time in mortar temperature in Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−305799(JP,A) 特開 昭55−75950(JP,A) 特開 平1−305838(JP,A) 特開 平4−139047(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 24/38 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-305799 (JP, A) JP-A-55-75950 (JP, A) JP-A-1-3055838 (JP, A) JP-A-4- 139047 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 24/38

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 デキストリンから水に易溶性の成分を除
いた非易溶分からなる粉粒体を主成分とするセメントの
水和発熱抑制剤。
1. A hydration heat-inhibiting agent for cement, comprising as a main component a powdery material comprising a non-soluble component obtained by removing a component soluble in water from dextrin.
【請求項2】 デキストリンから水に易溶性の成分を除
いた非易溶分からなる粉粒体を主成分とし、弱アルカリ
性下で徐々に溶解する請求項1のセメントの水和発熱抑
制剤。
2. The hydration heat-inhibiting agent for cement according to claim 1, wherein the agent is mainly composed of a powdery material composed of insoluble components obtained by removing water-soluble components from dextrin and gradually dissolves under weak alkalinity.
【請求項3】 上記粉粒体の粒度が0.1〜2000μ
m である請求項1または2のセメントの水和発熱抑制
剤。
3. The particle size of the powdery granules is 0.1 to 2000 μm.
m.
JP34568693A 1993-12-22 1993-12-22 Hydration heat inhibitor for cement Expired - Fee Related JP3343428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34568693A JP3343428B2 (en) 1993-12-22 1993-12-22 Hydration heat inhibitor for cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34568693A JP3343428B2 (en) 1993-12-22 1993-12-22 Hydration heat inhibitor for cement

Publications (2)

Publication Number Publication Date
JPH07172892A JPH07172892A (en) 1995-07-11
JP3343428B2 true JP3343428B2 (en) 2002-11-11

Family

ID=18378283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34568693A Expired - Fee Related JP3343428B2 (en) 1993-12-22 1993-12-22 Hydration heat inhibitor for cement

Country Status (1)

Country Link
JP (1) JP3343428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710131B (en) * 2015-02-05 2017-02-22 江苏苏博特新材料股份有限公司 Cement hydration rate regulation material, and preparation method and application thereof

Also Published As

Publication number Publication date
JPH07172892A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
JP5209873B2 (en) Powdery building material composition
US4464200A (en) Plastic soil stabilizer composition and method of use
JP3346007B2 (en) Hydration heat inhibitor for cement
JP3343428B2 (en) Hydration heat inhibitor for cement
US4245054A (en) Process for the manufacture of a dry mixture for insulating stucco or plaster
JP3657721B2 (en) Lightweight concrete
TW383293B (en) Process for producing a concrete product
JP6289897B2 (en) Swelling composition and hydraulic composition
US3503767A (en) Cementitious compositions having inhibited shrinkage and method for producing same
JP6345569B2 (en) Expansion material composition for preventing pop-out
JPH0542383B2 (en)
JPH02188457A (en) Additive for reducing heat of hydration of concrete
JP2000054036A (en) Binder and pellet
JPS5951505B2 (en) Low heat cement shrinkage reducing material
JPS6191051A (en) Manufacture of centrifugally molded body
JP4086328B2 (en) Noro reducing material, centrifugal force molded body using the same, and method for producing the same
JPS59111955A (en) Expandable cement composition
JP4615669B2 (en) Admixture and binder for heavy grout mortar and heavy grout mortar
JPH0220579B2 (en)
JPS62207747A (en) Manufacture of underwater concrete
JP3537179B2 (en) Slag reduction material, centrifugal force molded article using the same, and method of manufacturing the same
SU1597350A1 (en) Method of producing ash aggregate for concrete
JPS5849650A (en) Preparation of concrete-in-water
JP4446501B2 (en) Slump loss reducing material and cement composition using the same
JPH0832580B2 (en) Admixture for cement

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees