JP3342925B2 - Composite material of vapor grown carbon fiber - Google Patents

Composite material of vapor grown carbon fiber

Info

Publication number
JP3342925B2
JP3342925B2 JP17925493A JP17925493A JP3342925B2 JP 3342925 B2 JP3342925 B2 JP 3342925B2 JP 17925493 A JP17925493 A JP 17925493A JP 17925493 A JP17925493 A JP 17925493A JP 3342925 B2 JP3342925 B2 JP 3342925B2
Authority
JP
Japan
Prior art keywords
carbon fiber
grown carbon
vapor
composite material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17925493A
Other languages
Japanese (ja)
Other versions
JPH0741564A (en
Inventor
直樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26474722&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3342925(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP17925493A priority Critical patent/JP3342925B2/en
Publication of JPH0741564A publication Critical patent/JPH0741564A/en
Application granted granted Critical
Publication of JP3342925B2 publication Critical patent/JP3342925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は長繊維複合材料に関し、
さらに詳細には気相成長炭素繊維と樹脂マトリックスと
に基づく長繊維複合材料の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long fiber composite material,
More specifically, the present invention relates to improvement of a long fiber composite material based on a vapor grown carbon fiber and a resin matrix.

【0002】[0002]

【従来の技術】従来、長繊維を、例えばプラスチック、
メタル、ゴム、セメント等のマトリックスに対し、充填
材として分散させた長繊維複合材料が、種々の分野で使
用され、あるいは開発されつつある。長繊維複合材料
は、FRP、FRM、FRR、FRC等として知られ、
その機械的強度、耐熱性、耐摩耗性等に極めて優れてい
ることも知られている。
2. Description of the Related Art Conventionally, long fibers, for example, plastics,
Long fiber composite materials dispersed as a filler in a matrix of metal, rubber, cement, or the like have been used or developed in various fields. Long fiber composite materials are known as FRP, FRM, FRR, FRC, etc.
It is also known that their mechanical strength, heat resistance, wear resistance and the like are extremely excellent.

【0003】本出願人は、先に気相法による創生微細炭
素繊維につき、特開昭61−70014号として特許出
願を行った。また、前記特開昭61−70014号によ
る創生微細炭素繊維は、直径が0.01〜1.0μmと
いう極めて細い直径を有することから、これを充填剤と
した複合材料を直径の大きい連続繊維に対し、母材とし
て複合化させれば強度の高い複合材料が得られることを
突き止め、特公平4−30972号として特許出願し
た。
[0003] The applicant of the present invention has previously filed a patent application for fine carbon fibers produced by the gas phase method as Japanese Patent Application Laid-Open No. 61-70014. Moreover, since the fine carbon fibers created according to JP-A-61-70014 have a very small diameter of 0.01 to 1.0 μm, a composite material using this as a filler is used as a continuous fiber having a large diameter. On the other hand, it was found that a composite material having a high strength could be obtained by forming a composite as a base material, and a patent application was filed as Japanese Patent Publication No. Hei 4-30972.

【0004】[0004]

【発明が解決しようとする課題】本出願人が先に開発し
た特公平4−30972号で得られる創生微細炭素繊維
は、アスペクト比2〜200が好ましいとされている
が、実際には長さが極めて長い繊維も含まれるため、こ
れらの繊維が本発明のように長繊維の複合材料の樹脂中
に混合して使用すると、その複合材料の機械的性質に悪
影響を与える難点があった。
It is said that the newly created fine carbon fiber obtained in Japanese Patent Publication No. Hei 4-30972, which was previously developed by the present applicant, preferably has an aspect ratio of 2-200. Since these fibers include extremely long fibers, when these fibers are mixed and used in a resin of a long fiber composite material as in the present invention, there is a problem that the mechanical properties of the composite material are adversely affected.

【0005】そこで、本発明者は鋭意研究を重ねた結
果、0.01〜3.0μmの直径を有する気相法炭素繊
維を、均一に混合できる長さにまで粉砕することによ
り、少量の気相成長炭素繊維により、複合材料としての
優れた効果を発揮し得ることを突き止めた。さらに、こ
の気相成長炭素繊維を充填材とした複合材料を母材とし
て長繊維と複合化させれば、母材は既に強化されている
ために、特に90°方向曲げ強度、衝撃強度、層間剪断
強度も著しく改善されることを突止めた。
[0005] The inventors of the present invention have conducted intensive studies, and as a result, have found that a small amount of vapor-grown carbon fiber having a diameter of 0.01 to 3.0 µm is pulverized to a length that can be uniformly mixed. It has been found that the phase-grown carbon fiber can exert an excellent effect as a composite material. Furthermore, if the composite material using the vapor-grown carbon fiber as a filler is composited with a long fiber as a base material, since the base material is already reinforced, the 90 ° bending strength, impact strength, interlayer The shear strength was also found to be significantly improved.

【0006】そこで、本発明の目的は、90°方向曲げ
強度、衝撃強度、層間剪断強度などの機械的強度に極め
て優れた長繊維複合材料を提供することにある。
Accordingly, it is an object of the present invention to provide a long fiber composite material having extremely excellent mechanical strength such as 90 ° bending strength, impact strength, and interlaminar shear strength.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明の長繊維強化複合材料は、直径0.01〜
3.0μmかつ平均アスペクト比2〜100で、アスペ
クト比200以上のものを実質的に含まない気相成長炭
素繊維を、樹脂母材中に1〜10重量%充填してなる樹
脂複合材料の母材と、長繊維とからなることを特徴とす
る。
In order to achieve the above object, the long fiber reinforced composite material of the present invention has a diameter of 0.01 to 0.01 mm.
A mother of a resin composite material obtained by filling a resin matrix with 1 to 10% by weight of a vapor-grown carbon fiber having a thickness of 3.0 μm, an average aspect ratio of 2 to 100 and substantially not having an aspect ratio of 200 or more. And a long fiber.

【0008】この場合、前記長繊維としては、炭素繊維
を好適に使用することができる。
In this case, carbon fibers can be suitably used as the long fibers.

【0009】[0009]

【作用】本発明の気相成長炭素繊維の複合材料におい
て、気相成長炭素繊維の複合量は1〜10重量%、好ま
しくは1〜7重量%、最も好ましいのは3〜5重量%で
ある。複合量が10重量%以上になると90°方向の曲
げ強度が低下し、1%以下では気相成長炭素繊維複合の
効果が現れない。
In the composite material of vapor-grown carbon fiber of the present invention, the composite amount of vapor-grown carbon fiber is 1 to 10% by weight, preferably 1 to 7% by weight, and most preferably 3 to 5% by weight. . When the composite amount is 10% by weight or more, the bending strength in the 90 ° direction decreases, and when it is 1% or less, the effect of the vapor-grown carbon fiber composite does not appear.

【0010】また、気相成長炭素繊維としては、その結
晶構造は熱処理温度によって異なり、002面の面間隔
が0.335nm〜0.355nmのものが得られる
が、そのいずれも使用できる。樹脂との接着性の点では
面間隔が0.345nm〜0.355nmのものが好ま
しい。
The crystal structure of the vapor grown carbon fiber is different depending on the heat treatment temperature, and a 002 plane spacing of 0.335 nm to 0.355 nm can be obtained, and any of them can be used. From the viewpoint of adhesiveness to the resin, those having a surface spacing of 0.345 nm to 0.355 nm are preferable.

【0011】本発明において、長繊維としては、炭素、
ガラス、アルミナ、炭化ケイ素、ボロンなど、どのよう
な材料でも良いが、その内でも炭素繊維が特に好まし
い。炭素繊維としては、PAN系、ピッチ系どちらでも
良い。また、繊維径、強度、弾性率、伸度は問わない。
In the present invention, the long fibers include carbon,
Any material such as glass, alumina, silicon carbide, and boron may be used, and among them, carbon fiber is particularly preferable. As the carbon fiber, either a PAN type or a pitch type may be used. The fiber diameter, strength, elastic modulus, and elongation are not limited.

【0012】本発明において、複合材料の充填材として
使用する気相成長炭素繊維の製造は、前記特開昭61−
70014号公報におけると同様に行うことができる。
In the present invention, the production of vapor-grown carbon fiber used as a filler for a composite material is described in
This can be performed in the same manner as in JP-A-70014.

【0013】アスペクト比が大きくなると、繊維同士の
凝集が発生し易くなり、多くのフロックを形成して、繊
維の均一分散が困難になる。したがって、気相成長炭素
繊維を樹脂と混合するに当たって、予め気相成長炭素繊
維を切断しておくべきことは知られている。しかし、長
繊維と樹脂と気相成長炭素繊維との複合材料において、
気相成長炭素繊維をそのまま使用すれば、0°方向引張
強度と90°方向引張強度と0°曲げ強度は改善される
が、90°方向曲げ強度、層間剪断強度、圧縮強度、衝
撃強度などは改善されず、予め気相成長炭素繊維を粉砕
し、添加量を少量とすることによってそれらが改善され
ることは驚くことであり、その理由は不明である。
[0013] When the aspect ratio is large, the fibers tend to agglomerate with each other, forming many flocs and making it difficult to uniformly disperse the fibers. Therefore, it is known that the vapor grown carbon fiber should be cut in advance before mixing the vapor grown carbon fiber with the resin. However, in the composite material of long fiber, resin, and vapor grown carbon fiber,
If the vapor grown carbon fiber is used as it is, the 0 ° direction tensile strength, 90 ° direction tensile strength and 0 ° bending strength can be improved, but the 90 ° direction bending strength, interlaminar shear strength, compression strength, impact strength, etc. It is surprising that they are not improved but are improved by pulverizing the vapor-grown carbon fibers in advance and adding a small amount thereof, and the reason is unknown.

【0014】これらの特性は構造材料には重要な項目で
あり、本発明によりCFRPのかかる用途へめざましく
応用されるようになることが予想される。
These properties are important items for structural materials, and it is expected that the present invention will have remarkable applications in such applications of CFRP.

【0015】分散の難易度を考慮すると、気相成長炭素
繊維としては、直径0.01〜3μmで、アスペクト比
が平均2〜100、好ましくは直径0.1〜2μm、平
均アスペクト比が3〜50、更に好ましくは直径0.1
〜1μm、平均アスペクト比が5〜20であるのが良
い。ここに示すアスペクト比は平均値であるが、アスペ
クト比が200を越えるような気相成長炭素繊維が少量
でも含まれることは好ましくない。
Considering the difficulty of dispersion, the vapor grown carbon fiber has a diameter of 0.01 to 3 μm, an average aspect ratio of 2 to 100, preferably 0.1 to 2 μm, and an average aspect ratio of 3 to 100 μm. 50, more preferably 0.1 diameter
It is preferable that the average aspect ratio is 5 to 20 .mu.m. Although the aspect ratio shown here is an average value, it is not preferable that even a small amount of vapor grown carbon fiber having an aspect ratio exceeding 200 is contained.

【0016】また、アスペクト比のバラツキの少ない気
相成長炭素繊維を得るには、特公昭62−49363号
で示される方法で得られた創生微細炭素繊維を適当な粉
砕手段により粉砕するのが好ましい。粉砕手段としては
限定はないが、小球体と共に攪拌するアクアマイザー
(登録商標)やボールミル、ジェットミルでもよいが、
気流中で激しく攪拌して、繊維と攪拌羽根や壁と、また
繊維同士を衝突させて粉砕するハイブリダイザー(登録
商標)に気相成長炭素繊維単独を装填し、処理する高衝
撃処理が好ましい。気相成長炭素繊維のハイブリダイザ
ー中における滞在時間、攪拌羽根の回転数により繊維直
径方向を破断することなく、繊維長さを調整することが
できるので、特にハイブリダイザーが好ましい。なお、
ハイブリダイザーは、その周速を120〜60m/s、
好ましくは90〜70m/sの範囲とする。
In order to obtain a vapor grown carbon fiber having a small variation in the aspect ratio, it is necessary to pulverize the newly produced fine carbon fiber obtained by the method disclosed in Japanese Patent Publication No. 62-49363 by a suitable pulverizing means. preferable. Although there is no limitation on the pulverizing means, there may be used an Aquamizer (registered trademark), a ball mill, and a jet mill, which are stirred together with small spheres.
A high impact treatment is preferred, in which the vapor-grown carbon fiber alone is loaded into a hybridizer (registered trademark) that vigorously stirs in an air stream to collide and crush the fibers with the stirring blades and walls, and between the fibers, thereby treating the fibers. The length of the fiber can be adjusted without breaking the fiber diameter direction by the residence time of the vapor-grown carbon fiber in the hybridizer and the number of revolutions of the stirring blade, so that the hybridizer is particularly preferable. In addition,
The hybridizer has a peripheral speed of 120 to 60 m / s,
Preferably, it is in the range of 90 to 70 m / s.

【0017】また、粉砕しない場合は、繊維生成条件で
平均アスペクト比を小さくしても、かなりの大アスペク
ト比繊維を含んでおり、本発明の効果を得ることができ
ない。
In the case where pulverization is not carried out, even if the average aspect ratio is reduced under fiber production conditions, the fibers contain a considerably large aspect ratio, and the effects of the present invention cannot be obtained.

【0018】本発明において、気相成長炭素繊維を充填
する母材として、特にエポキシ樹脂を挙げることができ
る。エポキシ樹脂は、各種変性させたり、あるいは改質
のための添加剤(気相成長炭素繊維以外の物質:ゴム状
粒子、熱可塑性樹脂粒子、カーボンブラック等)を加え
ても良い。エポキシ樹脂以外には、フェノール樹脂、ポ
リイミド樹脂といったエポキシ樹脂と同様の熱硬化性樹
脂、Nylon、PPS、PEEKといった熱可塑性樹
脂も使用することはむろん可能である。
In the present invention, as a base material for filling the vapor grown carbon fiber, an epoxy resin can be particularly mentioned. The epoxy resin may be modified in various ways, or may be added with additives for modification (substances other than vapor-grown carbon fiber: rubber-like particles, thermoplastic resin particles, carbon black, etc.). In addition to the epoxy resin, it is of course possible to use a thermosetting resin similar to the epoxy resin such as a phenol resin or a polyimide resin, or a thermoplastic resin such as Nylon, PPS, or PEEK.

【0019】本発明によれば、連続繊維を使った複合材
料で、マトリックスに気相成長炭素繊維を予め混合して
おくことで、90°方向曲げ強度、層間剪断強度、衝撃
強度等を向上させることが可能である。更に熱伝導を従
来の1/2にすることが可能である。また、ここで述べ
ている90°方向曲げ強度とは、一般に繊維軸が、長繊
維の配向方向に対して90°方向の曲げ強度のことであ
る。それに対し、長繊維が配向している方向を0°方向
という。
According to the present invention, a 90 ° bending strength, an interlaminar shear strength, an impact strength, and the like are improved by mixing a vapor-grown carbon fiber in a matrix in advance in a composite material using continuous fibers. It is possible. Further, it is possible to reduce the heat conduction to half of the conventional one. In addition, the 90 ° bending strength described herein is generally a bending strength of a fiber axis in a 90 ° direction with respect to the orientation direction of long fibers. On the other hand, the direction in which the long fibers are oriented is called a 0 ° direction.

【0020】かかる効果は、プリプレグが織物プリプレ
グではなく、一方向プリプレグの場合に特に顕著であ
る。
Such an effect is particularly remarkable when the prepreg is not a textile prepreg but a unidirectional prepreg.

【0021】[0021]

【実施例】次に、本発明の実施例につき説明する。Next, embodiments of the present invention will be described.

【0022】気相成長炭素繊維の製造 ベンゼンとフェロセンとをそれぞれ別々の容器中で加熱
ガス化させ、水素ボンベと窒素ボンベとからそれぞれガ
スを導出させて、水素:窒素:ベンゼン:フェロセンの
比を82.7:7.5:8.6:1.2とし、かつ総流
量を665ml/min(0℃、1atm換算)とし、
この混合ガスを内径52mmかつ1070℃の均熱部3
00mmの円筒状反応管に連続的に流動通過させた。そ
の結果、直径0.8μmかつ平均長さ180μmである
炭素繊維が得られた。
Production of vapor-grown carbon fiber Benzene and ferrocene are heated and gasified in separate vessels, respectively, and gases are led out of a hydrogen cylinder and a nitrogen cylinder, respectively, to obtain a hydrogen: nitrogen: benzene: ferrocene ratio. 82.7: 7.5: 8.6: 1.2, and the total flow rate was 665 ml / min (0 ° C., 1 atm conversion),
This mixed gas was heated to a soaking part 3 having an inner diameter of 52 mm and a temperature of 1070 ° C.
It was continuously passed through a 00 mm cylindrical reaction tube. As a result, a carbon fiber having a diameter of 0.8 μm and an average length of 180 μm was obtained.

【0023】上記で得られた気相成長炭素繊維を、ハイ
ブリダイザーにて8000回転で2分間粉砕することに
より、平均直径0.8μmかつ平均長さ12μm(アス
ペクト比15)からなる本発明に供する気相成長炭素繊
維を得た。
The above-obtained vapor-grown carbon fiber is pulverized with a hybridizer at 8000 rpm for 2 minutes to provide the present invention having an average diameter of 0.8 μm and an average length of 12 μm (aspect ratio 15). A vapor-grown carbon fiber was obtained.

【0024】また、ハイブリダイザーの回転数を変えて
平均アスペクト比の異なる気相成長炭素繊維を作成し
た。その時のハイブリダイザー条件と平均アスペクト比
の関係を表1に示す。
In addition, vapor-grown carbon fibers having different average aspect ratios were prepared by changing the number of revolutions of the hybridizer. Table 1 shows the relationship between the hybridizer conditions and the average aspect ratio at that time.

【0025】複合材料の製造 実施例1 硬化材としてジシアンジアミドを反応当量分含むエポキ
シ樹脂(シェル化学(株)製エピコート828相当)
に、上記で得られた直径0.8μmかつ平均長さ12μ
mの気相成長炭素繊維を5重量%加え、これを真空脱泡
しながら混練した。この気相成長炭素繊維入り樹脂を直
径7μm、強度350kg/mm2 、弾性率24ton
/mm2 のPAN系炭素繊維を一方向に配列させたシー
トに塗布して一方向プリプレグを作成した。このプリプ
レグを一方向に積層し、オートクレーブ中、130℃、
3kg/cm2 、2時間にて成形して、厚さ3.0mm
の平板を作成した。この平板につき、90°方向の曲げ
強度試験を行った結果は、表2に示す通りである。ま
た、前記平板についての衝撃強度および層間剪断力を測
定した結果は、表3に示す通りである。
Production of Composite Material Example 1 Epoxy resin containing a reaction equivalent of dicyandiamide as a curing agent (equivalent to Epicoat 828 manufactured by Shell Chemical Co., Ltd.)
In addition, the diameter 0.8 μm obtained above and the average length 12 μm
m of vapor-grown carbon fiber was added at 5% by weight, and kneaded while defoaming in vacuum. The resin containing the vapor-grown carbon fiber is 7 μm in diameter, 350 kg / mm 2 in strength, and the elastic modulus is 24 ton.
/ Mm 2 of PAN-based carbon fiber was applied to a sheet arranged in one direction to prepare a unidirectional prepreg. This prepreg is laminated in one direction, and in an autoclave, 130 ° C.
And molded at 3kg / cm 2, 2 hours, thickness 3.0mm
Was made. Table 2 shows the results of a 90 ° bending strength test performed on the flat plate. Table 3 shows the results of measuring the impact strength and interlayer shear force of the flat plate.

【0026】比較例1 表1に示されるハイブリダイザー無処理気相成長炭素繊
維を使用して、上記と全く同様にして成形体を作成し、
上記と同様に測定した90°方向の曲げ強度は、表2に
示す通りである。
COMPARATIVE EXAMPLE 1 A molded article was prepared in exactly the same manner as described above using the untreated vapor-grown carbon fibers of the hybridizer shown in Table 1.
The bending strength in the 90 ° direction measured in the same manner as described above is as shown in Table 2.

【0027】実施例2 表1の6000rpm、2minの条件でハイブリダイ
ザー処理した直径0.8μm、長さ15μm、平均アス
ペクト比19の気相成長炭素繊維を使用して、上記と全
く同様にして成形体を作成し、上記と同様に測定した9
0°方向の曲げ強度は、10.1kg/mm2 であっ
た。
Example 2 Molding was performed in exactly the same manner as described above, using a vapor grown carbon fiber having a diameter of 0.8 μm, a length of 15 μm, and an average aspect ratio of 19, which was hybridized under the conditions of 6000 rpm and 2 minutes shown in Table 1. A body was prepared and measured as above 9
The bending strength in the 0 ° direction was 10.1 kg / mm 2 .

【0028】実施例3 表1の5000rpm、2minの条件でハイブリダイ
ザー処理した直径0.8μm、長さ20μm、平均アス
ペクト比25の気相成長炭素繊維を使用して、上記と全
く同様にして成形体を作成し、上記と同様に測定した9
0°方向の曲げ強度は、10.0kg/mm2 であっ
た。
Example 3 Molding was performed in exactly the same manner as described above, using vapor-grown carbon fibers having a diameter of 0.8 μm, a length of 20 μm, and an average aspect ratio of 25, which were hybridized under the conditions of 5000 rpm and 2 min shown in Table 1. A body was prepared and measured as above 9
The bending strength in the 0 ° direction was 10.0 kg / mm 2 .

【0029】実施例4 硬化材としてジシアンジアミドを反応当量分含むエポキ
シ樹脂(シェル化学(株)製エピコート828相当)
に、上記で得られた直径0.8μmかつ平均長さ12μ
mの気相成長炭素繊維を3重量%加え、これを真空脱泡
しながら混練した。この気相成長炭素繊維入り樹脂を直
径7μm、強度350kg/mm2 、弾性率24ton
/mm2 のPAN系炭素繊維に塗布して一方向プリプレ
グを作成した。このプリプレグを一方向に積層し、オー
トクレーブ中、130℃、3kg/cm2 、2時間にて
成形して、厚さ3.0mmの平板を作成した。この平板
につき、90°方向の曲げ強度試験を行った結果は、表
2に示す通りである。また、前記平板についての衝撃強
度および層間剪断力を測定した結果は、表3に示す通り
である。
Example 4 Epoxy resin containing a reaction equivalent of dicyandiamide as a curing agent (equivalent to Epicoat 828 manufactured by Shell Chemical Co., Ltd.)
In addition, the diameter 0.8 μm obtained above and the average length 12 μm
m of vapor grown carbon fiber was added by 3% by weight, and kneaded while vacuum degassing. The resin containing the vapor-grown carbon fiber is 7 μm in diameter, 350 kg / mm 2 in strength, and the elastic modulus is 24 ton.
/ Mm 2 of PAN-based carbon fiber to prepare a unidirectional prepreg. The prepregs were laminated in one direction, and molded in an autoclave at 130 ° C., 3 kg / cm 2 for 2 hours to prepare a flat plate having a thickness of 3.0 mm. Table 2 shows the results of a 90 ° bending strength test performed on this flat plate. Table 3 shows the results of measuring the impact strength and the interlayer shear force of the flat plate.

【0030】比較例2 前記気相成長炭素繊維の含まれていない炭素繊維プリプ
レグから、上記と全く同様にして成形体を作成し、上記
と同様に測定した90°方向の曲げ強度は、表2に示す
通りであり、また衝撃強度および層間剪断力を測定した
結果は、表3に示す通りである。
Comparative Example 2 From the carbon fiber prepreg containing no vapor-grown carbon fiber, a molded article was prepared in exactly the same manner as above, and the bending strength in the 90 ° direction measured in the same manner as above was obtained. And the results of measuring the impact strength and the interlaminar shear force are as shown in Table 3.

【0031】比較例3 硬化材としてジシアンジアミドを反応当量分含むエポキ
シ樹脂(シェル化学(株)製エピコート828相当)
に、上記で得られた直径0.8μmかつ平均長さ12μ
mの気相成長炭素繊維を20重量%加え、これを真空脱
泡しながら混練した。この気相成長炭素繊維入り樹脂を
直径7μm、強度350kg/mm2 、弾性率24to
n/mm2 のPAN系炭素繊維に塗布して一方向プリプ
レグを作成した。このプリプレグを一方向に積層し、オ
ートクレーブ中、130℃、3kg/cm2 、2時間に
て成形して、厚さ3.0mmの平板を作成した。この平
板につき、90°方向の曲げ強度試験を行った結果は、
表2に示す通りである。また、前記平板についての衝撃
強度および層間剪断力を測定した結果は、表3に示す通
りである。
Comparative Example 3 Epoxy resin containing a reaction equivalent of dicyandiamide as a curing agent (equivalent to Epicoat 828 manufactured by Shell Chemical Co., Ltd.)
In addition, the diameter 0.8 μm obtained above and the average length 12 μm
m of vapor grown carbon fiber was added by 20% by weight, and kneaded while vacuum degassing. This vapor-grown carbon fiber-containing resin is 7 μm in diameter, 350 kg / mm 2 in strength, and elasticity is 24 to.
It was applied to PAN-based carbon fiber of n / mm 2 to prepare a unidirectional prepreg. The prepregs were laminated in one direction, and molded in an autoclave at 130 ° C., 3 kg / cm 2 for 2 hours to prepare a flat plate having a thickness of 3.0 mm. The result of conducting a 90 ° bending strength test on this flat plate is as follows:
It is as shown in Table 2. Table 3 shows the results of measuring the impact strength and the interlayer shear force of the flat plate.

【0032】実施例5 直径0.8μm、長さ130μmの創生微細炭素繊維
を、5000rpm、2minの条件でハイブリダイザ
ーで粉砕して平均アスペクト比25の気相成長炭素繊維
を得た。次に、反応性希釈剤と混合されたビスマレイミ
ド樹脂(米国、HEXCEL社製F650)95重量%
と上記で作成した気相成長炭素繊維5重量%を混合して
母材樹脂を作成した。この母材樹脂を使用して実施例1
と同様に一方向プリブレグを作成した。このプリブレグ
を積層し、177℃、6kg/cm2 、の条件下で6h
r硬化反応をおこさせ複合材料を得た。そのときの90
°方向の曲げ強度は12.6kg/mm2 、層間剪断強
度は11.9kg/mm2 であった。比較のため、気相
成長炭素繊維の含まれていない炭素繊維プリブレグか
ら、上記と同様にして成形体を作成し、同様に測定を行
った。そのときの90°方向の曲げ強度は11.6kg
/mm2 、層間剪断強度は10.5kg/mm2であっ
た。
Example 5 A newly prepared fine carbon fiber having a diameter of 0.8 μm and a length of 130 μm was pulverized with a hybridizer under the conditions of 5000 rpm and 2 min to obtain a vapor-grown carbon fiber having an average aspect ratio of 25. Next, 95% by weight of a bismaleimide resin (F650, manufactured by HEXCEL, USA) mixed with a reactive diluent
And 5% by weight of the vapor grown carbon fiber prepared above were mixed to prepare a base resin. Example 1 using this base resin
A one-way prepreg was created as in. This prepreg was laminated, and the conditions were set at 177 ° C. and 6 kg / cm 2 for 6 hours.
An r curing reaction was caused to obtain a composite material. 90 at that time
The bending strength in the ° direction was 12.6 kg / mm 2 , and the interlaminar shear strength was 11.9 kg / mm 2 . For comparison, a compact was prepared in the same manner as described above from a carbon fiber prepreg containing no vapor-grown carbon fiber, and the measurement was similarly performed. The bending strength in the 90 ° direction at that time is 11.6 kg.
/ Mm 2 , and the interlayer shear strength was 10.5 kg / mm 2 .

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】以上、本発明の好適な実施例につき説明し
たが、本発明はこれらの実施例に限定されることなく、
当業界で知られたその他のマトリックス材料に適応する
ことができる等、本発明の思想および範囲内において種
々の設計変更をなし得ることが了解されよう。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments.
It will be appreciated that various design changes may be made within the spirit and scope of the invention, such as being adaptable to other matrix materials known in the art.

【0037】[0037]

【発明の効果】本発明によれば、大アスペクト比の繊維
を含まない気相成長炭素繊維を樹脂母材中に充填してな
る樹脂複合材料の母材とし、これに長繊維を複合化させ
ているため、90°方向曲げ強度、層間剪断強度、衝撃
強度等の諸物性が改善された長繊維強化複合材料が得ら
れる。
According to the present invention, a base material of a resin composite material obtained by filling a vapor-grown carbon fiber containing no large aspect ratio fiber into a resin base material, and a long fiber is compounded with the base material. Accordingly, a long fiber reinforced composite material having improved properties such as 90 ° bending strength, interlayer shear strength, and impact strength can be obtained.

【0038】長繊維が一方向に配列された長繊維強化複
合材料にとって、90°方向曲げ強度が向上することは
驚くべき効果であり、今後の用途に期待される。
For a long-fiber reinforced composite material in which long fibers are arranged in one direction, the improvement in 90 ° bending strength is a surprising effect, and is expected for future applications.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直径0.01〜3.0μmかつ平均アス
ペクト比2〜100で、アスペクト比が200以上のも
のを実質的に含まない気相成長炭素繊維を、樹脂母材中
に1〜10重量%充填してなる樹脂複合材料の母材と、
長繊維とからなることを特徴とする長繊維強化複合材
料。
A vapor-grown carbon fiber having a diameter of 0.01 to 3.0 μm, an average aspect ratio of 2 to 100 and substantially no aspect ratio of 200 or more is contained in a resin matrix in an amount of 1 to 10%. A base material of a resin composite material filled by weight%,
A long fiber reinforced composite material comprising a long fiber.
【請求項2】 長繊維が炭素繊維である請求項1記載の
複合材料。
2. The composite material according to claim 1, wherein the long fibers are carbon fibers.
【請求項3】 長繊維が一方向に配列された請求項1記
載の複合材料。
3. The composite material according to claim 1, wherein the long fibers are arranged in one direction.
JP17925493A 1993-05-21 1993-07-20 Composite material of vapor grown carbon fiber Expired - Lifetime JP3342925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17925493A JP3342925B2 (en) 1993-05-21 1993-07-20 Composite material of vapor grown carbon fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-142840 1993-05-21
JP14284093 1993-05-21
JP17925493A JP3342925B2 (en) 1993-05-21 1993-07-20 Composite material of vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JPH0741564A JPH0741564A (en) 1995-02-10
JP3342925B2 true JP3342925B2 (en) 2002-11-11

Family

ID=26474722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17925493A Expired - Lifetime JP3342925B2 (en) 1993-05-21 1993-07-20 Composite material of vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP3342925B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5581109B2 (en) * 2010-04-30 2014-08-27 ウイスカ株式会社 Resin composites and adhesives
JP6471377B2 (en) * 2014-06-20 2019-02-20 学校法人同志社 Prepreg laminate
JPWO2020255786A1 (en) * 2019-06-18 2020-12-24

Also Published As

Publication number Publication date
JPH0741564A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
US5445327A (en) Process for preparing composite structures
US20100280151A1 (en) Toughened fiber reinforced polymer composite with core-shell particles
DE69232851T2 (en) Hardened, fiber-reinforced curable resin matrix prepregs and composites thereof
Chou et al. Preparation of CFRP with modified MWCNT to improve the mechanical properties and torsional fatigue of epoxy/polybenzoxazine copolymer
EP0484447A1 (en) Composites and methods for making same
WO2010011234A1 (en) Carbon nanotube-reinforced nanocomposites
JPH0694515B2 (en) Prepreg
JP2010202727A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
JP2012149237A (en) Thermosetting resin composition, prepreg and fiber-reinforced composite material
Saharudin et al. Synergistic effects of halloysite and carbon nanotubes (HNTs+ CNTs) on the mechanical properties of epoxy nanocomposites.
JPS63170428A (en) Production of prepreg
Sun et al. Effects of the treatment of attapulgite and filler contents on tensile properties of PTFE and attapulgite reinforced fabric composites
JP3342925B2 (en) Composite material of vapor grown carbon fiber
JP2016199681A (en) Fiber-reinforced composite material
JP3065686B2 (en) Prepreg
Li et al. Toughness improvement of epoxy by incorporating carbon nanotubes into the resin.
JP2021116404A (en) Tow-preg
JP2010174073A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same
Ultrasonik Properties enhancement of TPNR-MWNTs-OMMT hybrid nanocomposites by using ultrasonic treatment
JP2007169374A (en) Fullerenes-containing dispersion liquid
US5403655A (en) Toughened thermosetting resin composites and process
JP2010100696A (en) Epoxy resin composition
JPH0430972B2 (en)
JP2021116403A (en) Tow-preg
JPH0365814B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

EXPY Cancellation because of completion of term