JP3342518B2 - Method for producing tetrahydroxybenzyl alcohol - Google Patents

Method for producing tetrahydroxybenzyl alcohol

Info

Publication number
JP3342518B2
JP3342518B2 JP32821392A JP32821392A JP3342518B2 JP 3342518 B2 JP3342518 B2 JP 3342518B2 JP 32821392 A JP32821392 A JP 32821392A JP 32821392 A JP32821392 A JP 32821392A JP 3342518 B2 JP3342518 B2 JP 3342518B2
Authority
JP
Japan
Prior art keywords
reaction
alcohol
catalyst
butadiene
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32821392A
Other languages
Japanese (ja)
Other versions
JPH06172238A (en
Inventor
康隆 田中
義一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP32821392A priority Critical patent/JP3342518B2/en
Publication of JPH06172238A publication Critical patent/JPH06172238A/en
Application granted granted Critical
Publication of JP3342518B2 publication Critical patent/JP3342518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、合成樹脂等の中間原料
として有用なテトラヒドロベンジルアルコール(以下T
HBAと略す)またはビニルシクロヘキセンの製造法に
関するものである。
The present invention relates to tetrahydrobenzyl alcohol (hereinafter referred to as T) which is useful as an intermediate material for synthetic resins and the like.
HBA) or vinylcyclohexene.

【0002】[0002]

【従来の技術】THBAの製法としては従来、ブタジエ
ンとアクロレインとのディールスアルダー反応で得たテ
トラヒドロベンズアルデヒドのアルデヒド基の選択的水
素化によるものが知られている(例えば、Chem. Ber.98
(6), 1928 (1965), 特開昭 63-275538号等)。
2. Description of the Related Art As a process for producing THBA, there has been known a process for selectively hydrogenating an aldehyde group of tetrahydrobenzaldehyde obtained by a Diels-Alder reaction between butadiene and acrolein (for example, Chem. Ber. 98) .
(6), 1928 (1965), JP-A-63-275538, etc.).

【0003】しかしながら、上記の方法を工業的に実施
する上では、アクロレインが極めて不安定、有毒な化合
物であるため、工業的規模での使用および輸送に制約が
あること、アルデヒド基のみを水素化し、炭素二重結合
をそのまま残すためには、通常の水素化に使用されるラ
ネーニッケルや白金族等の高活性触媒が使用できず、銅
クロマイト触媒による高圧高温水素化ないしは、量論量
のイソプロピルアルコールを消費するメールワイン・ポ
ンドルフ還元等、工業的には不利な方法を使用せざるを
得ないという問題点がある。
However, acrolein is an extremely unstable and toxic compound in the industrial practice of the above method, so that its use and transportation on an industrial scale are restricted, and only the aldehyde group is hydrogenated. In order to leave the carbon double bond intact, a high-activity catalyst such as Raney nickel or platinum group used for normal hydrogenation cannot be used, and high-pressure high-temperature hydrogenation with a copper chromite catalyst or a stoichiometric amount of isopropyl alcohol There is a problem that an industrially disadvantageous method has to be used, such as reduction of e-mail wine and pond ruf, which consumes.

【0004】[0004]

【発明が解決しようとする課題】上記の問題点は、原料
のアクロレインの代りにアリルアルコールを使い、ブタ
ジエンとのディールスアルダー反応により、一段階反応
でTHBAの製造が可能であれば解消されるが、公知文
献によれば(米国特許2,557,136)アクロレイ
ンに比べアリルアルコールの反応性が低いため、低い収
率でしかTHBAが得られないという困難性があった。
The above problems can be solved by using allyl alcohol instead of acrolein as a raw material and performing a Diels-Alder reaction with butadiene to produce THBA in a one-step reaction. According to the known literature (US Pat. No. 2,557,136), the reactivity of allyl alcohol is lower than that of acrolein.

【0005】本発明者らは、かかる従来技術の問題点を
解決すべく、まず、一般にディールスアルダー反応にお
ける触媒として有効とされる(例えば、「新実験化学講
座」14巻、有機化合物の合成と反応[I]p.21
0)AlCl3、BF3等のルイス酸の使用を検討したが効果が
なく(後記比較例2、3)、意外にも、ルイス酸として
の効果は極めて弱いテトラブトキシチタンなどの金属ア
ルコキシドが良好な触媒活性を示すことを見出した。
[0005] In order to solve the problems of the prior art, the inventors of the present invention generally use the catalyst as a catalyst in the Diels-Alder reaction (for example, "Shin Jikken Kagaku Koza", Vol. 14, Synthesizing Organic Compounds). Reaction [I] p.21
0) The use of Lewis acids such as AlCl 3 and BF 3 was examined, but there was no effect (Comparative Examples 2 and 3 described later). Surprisingly, metal alkoxides such as tetrabutoxytitanium having a very weak effect as Lewis acids were good. It has been found that the catalyst exhibits excellent catalytic activity.

【0006】さらに、本触媒の使用により、原料のロス
となるブタジエン重合物の副生が減少し、THBAと同
様に合成樹脂等の中間原料として有用な、ブタジエン2
分子のディールスアルダー付加物であるビニルシクロヘ
キセン(以下VCHと略す)の収率が増加することも判
明した。
Further, the use of this catalyst reduces butadiene polymer by-product, which is a loss of raw material, and makes it possible to use butadiene 2 useful as an intermediate raw material for synthetic resins and the like, similar to THBA.
It has also been found that the yield of vinylcyclohexene (hereinafter abbreviated as VCH), which is a Diels-Alder adduct of a molecule, is increased.

【0007】さらに本発明者らは、一層のTHBA収率
の向上に努めた結果、反応時の気相部圧力を5 kg/cm2
以上に上げることで、さらにTHBAの収率が向上する
ことを見出し、本発明の完成に至ったものである。
Further, the present inventors have tried to further improve the THBA yield, and as a result, the pressure in the gas phase during the reaction has been reduced to 5 kg / cm 2.
It has been found that by raising the above, the THBA yield is further improved, and the present invention has been completed.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明の第1
は、ブタジエンとアリルアルコールとを、出発原料に対
0.05以上、1.0重量%未満のチタンアルコキシドまた
はアルミニウムアルコキシドの共存下に、反応圧を原料
のブタジエンおよびアリルアルコール自身の蒸気圧を超
えて高めるように予め加圧して、ディールスアルダー反
応させることを特徴とするテトラヒドロベンジルアルコ
ールの製造方法を提供する。本発明の第2は、触媒がチ
タンアルコキシドであることを特徴とする本発明の第1
に記載のテトラヒドロベンジルアルコールの製造方法を
提供する。本発明の第3は、反応温度が50〜350℃
であることを特徴とする本発明の第1又は2に記載のテ
トラヒドロベンジルアルコールの製造方法を提供する。
本発明の第4は、ビニルシクロヘキセンを併産すること
を特徴とする本発明の第1〜3のいずれかに記載のテト
ラヒドロベンジルアルコールの製造方法を提供する。
That is, the first aspect of the present invention is as follows.
Is to increase the reaction pressure above the vapor pressure of butadiene and allyl alcohol itself in the presence of butadiene and allyl alcohol in the coexistence of 0.05 or less and less than 1.0% by weight of titanium alkoxide or aluminum alkoxide with respect to the starting material. Provided is a method for producing tetrahydrobenzyl alcohol, which is characterized in that a Diels-Alder reaction is performed by applying pressure in advance. A second aspect of the present invention is the first aspect, wherein the catalyst is a titanium alkoxide.
And a method for producing tetrahydrobenzyl alcohol described in (1). The third aspect of the present invention is that the reaction temperature is 50 to 350 ° C.
A method for producing tetrahydrobenzyl alcohol according to the first or second aspect of the present invention, characterized in that:
A fourth aspect of the present invention provides the method for producing tetrahydrobenzyl alcohol according to any one of the first to third aspects of the present invention, wherein vinylcyclohexene is co-produced.

【0009】以下に本発明を詳細に説明する。本発明を
構成する反応には、原料物質として、ブタジエンおよび
アリルアルコールを使用する。
Hereinafter, the present invention will be described in detail. In the reaction constituting the present invention, butadiene and allyl alcohol are used as raw materials.

【0010】原料の仕込モル比としては、量論比よりも
アリルアルコール過剰とした方が、好ましい結果を与
え、具体的にはアリルアルコール/ブタジエンのモル比
で1から10、より好ましくは2〜4程度が有利であ
る。
As for the molar ratio of the raw materials, an excess of allyl alcohol gives a more preferable result than the stoichiometric ratio. Specifically, the molar ratio of allyl alcohol / butadiene is 1 to 10, more preferably 2 to 10. About 4 is advantageous.

【0011】アリルアルコール/ブタジエンのモル比が
1未満の場合、ブタジエンの重合によるロスが増加し、
収率が低下するので好ましくない。
When the molar ratio of allyl alcohol / butadiene is less than 1, the loss due to polymerization of butadiene increases,
It is not preferable because the yield decreases.

【0012】逆にモル比が10を越える場合、収率および
未反応アリルアルコールの回収の点で好ましくない。
Conversely, if the molar ratio exceeds 10, it is not preferable in terms of yield and recovery of unreacted allyl alcohol.

【0013】反応は無溶媒でもよく、あるいは、ベンゼ
ン、ヘキサン等の溶媒を使用することも、重合等の副反
応を抑制する意味で有効である。本発明は、触媒として
金属アルコキシドを使用する事が特徴の1つである。
The reaction may be carried out without a solvent, or the use of a solvent such as benzene or hexane is effective in suppressing side reactions such as polymerization. One of the features of the present invention is to use a metal alkoxide as a catalyst.

【0014】金属アルコキシドの具体例としては、チタ
ンテトラメトキシド、チタンテトラエトキシド、チタン
テトラプロポキシド、チタンテトラブトキシド等のチタ
ンアルコキシド、アルミニウムトリメトキシド、アルミ
ニウムトリエトキシド、アルミニウムトリプロポキシ
ド、アルミニウムトリブトキシド等のアルミニウムアル
コキシド等が一般的であるが、特にチタンアルコキシド
が好ましい結果を与える。 触媒濃度は出発原料に対し
1.0%未満であることが必須であるが、好ましくは
0.05〜0.5重量%である。
Specific examples of metal alkoxides include titanium alkoxides such as titanium tetramethoxide, titanium tetraethoxide, titanium tetrapropoxide, titanium tetrabutoxide, aluminum trimethoxide, aluminum triethoxide, aluminum tripropoxide, and aluminum Aluminum alkoxides such as tributoxide are generally used, and titanium alkoxides particularly give preferable results. It is essential that the catalyst concentration is less than 1.0% based on the starting material, but it is preferably 0.05-0.5% by weight.

【0015】触媒濃度が出発原料に対し0.05%未満
であると反応速度が低下するため、工業的に不利であ
り、逆に触媒濃度が出発原料に対し1.0%を超えると
重合等の副反応による収率の低下をもたらすので好まし
くない。
If the catalyst concentration is less than 0.05% based on the starting material, the reaction rate is reduced, which is industrially disadvantageous. Conversely, if the catalyst concentration exceeds 1.0% based on the starting material, polymerization etc. It is not preferable because the yield is reduced by the side reaction of

【0016】反応を行なう温度は50℃〜350℃の範
囲、より好ましくは、100℃〜250℃の範囲から選
ばれる。
[0016] The temperature at which the reaction is carried out is selected from the range of 50 ° C to 350 ° C, more preferably the range of 100 ° C to 250 ° C.

【0017】反応温度が50℃未満であると反応速度が
低下するため工業的に不利であり、逆に350℃を超え
ると原料の重合、生成物や触媒の分解等により収率が低
下するので好ましくない。
If the reaction temperature is lower than 50 ° C., the reaction rate is lowered, which is industrially disadvantageous. On the other hand, if the reaction temperature is higher than 350 ° C., the yield is reduced due to polymerization of raw materials, decomposition of products and catalysts, etc. Not preferred.

【0018】本発明は、反応圧を原料のブタジエンおよ
びアリルアルコール自身の蒸気圧による圧力以上に高め
ること、具体的には5 kg/cm2以上に高めることが必須
であるが、圧力の上限は100 kg/cm2程度である。
In the present invention, it is essential to increase the reaction pressure to a pressure higher than the vapor pressure of butadiene and allyl alcohol as raw materials, specifically, to 5 kg / cm 2 or more. It is about 100 kg / cm 2 .

【0019】反応圧力を100 kg/cm2以上にしてもそ
れ程効果は向上しない。
Even if the reaction pressure is set to 100 kg / cm 2 or more, the effect is not so improved.

【0020】反応圧力が5 kg/cm2未満の場合、加圧に
よる効果はほとんど見られなくなるので加圧する意味が
なくなる。
When the reaction pressure is less than 5 kg / cm 2 , the effect of the pressurization is hardly observed, and the pressurization is meaningless.

【0021】反応させる際、圧力を高める手段として
は、窒素、アルゴン等の不活性ガスを反応系中に導入す
る方法が一般的である。
As a means for increasing the pressure during the reaction, a method of introducing an inert gas such as nitrogen or argon into the reaction system is generally used.

【0022】又、原料の重合によるロスを低減するた
め、ハイドロキノン、フェノチアジン等の公知の重合禁
止剤を添加することも有効であるが、必ずしも必須条件
ではない。
It is also effective to add a known polymerization inhibitor such as hydroquinone or phenothiazine to reduce the loss due to polymerization of the raw materials, but this is not always an essential condition.

【0023】[0023]

【発明の効果】以下に実施例により本発明をさらに具体
的に説明する。
The present invention will be described in more detail with reference to the following examples.

【0024】(参考例1) 容量500ミリリットルのステンレス製オートクレーブ
に原料のアリルアルコール108.3g、およびブタジ
エン28.0g、触媒としてチタンテトラブトキシド
0.14gを封入した後、200℃に昇温し、そのまま
8時間保持した。冷却後、内容物の組成をガスクロマト
グラフィーにより分析した。結果を表1に示す。
Reference Example 1 A stainless steel autoclave having a capacity of 500 ml was charged with 108.3 g of allyl alcohol as a raw material, 28.0 g of butadiene, and 0.14 g of titanium tetrabutoxide as a catalyst, and heated to 200 ° C. It was kept as it was for 8 hours. After cooling, the composition of the contents was analyzed by gas chromatography. Table 1 shows the results.

【0025】(実施例1) 原料、触媒と共に、窒素ガス20kg/cm2(室温時、ゲー
ジ圧)を圧入した以外は、参考例1に準じて反応を行な
った。結果を表1に示す。
Example 1 A reaction was carried out in the same manner as in Reference Example 1 except that 20 kg / cm 2 of nitrogen gas (at room temperature, gauge pressure) was injected together with the raw materials and the catalyst. Table 1 shows the results.

【0026】(参考例2) 原料と共に、窒素ガス20kg/cm2(室温時、ゲージ圧)
を圧入し、触媒を使用せずに反応させた。反応手順は
例1に準じた。結果を表1に示す。
( Reference Example 2 ) Nitrogen gas 20 kg / cm 2 (at room temperature, gauge pressure) together with raw materials
, And reacted without using a catalyst. Reaction procedure San
Conforming to the considered Example 1. Table 1 shows the results.

【0027】(比較例1) 触媒を使用せず以外は、参考例1に準じて反応を行なっ
たので、窒素ガスによる加圧を行なわなかった。結果を
表1に示す。
Comparative Example 1 The reaction was carried out in the same manner as in Reference Example 1 except that no catalyst was used.
Therefore, pressurization with nitrogen gas was not performed . Table 1 shows the results.

【0028】(比較例2) 触媒として、三塩化アルミニウム0.14gを使用した
以外は、参考例1に準じて反応を行なった。結果を表1
に示す。
Comparative Example 2 The reaction was carried out in the same manner as in Reference Example 1 except that 0.14 g of aluminum trichloride was used as a catalyst. Table 1 shows the results
Shown in

【0029】(比較例3) 触媒として三ふっ化ほう素−エーテル錯体0.30gを
使用した以外は、参考例1に準じて反応を行なった。結
果を表1に示す。
Comparative Example 3 A reaction was carried out in the same manner as in Reference Example 1, except that 0.30 g of a boron trifluoride-ether complex was used as a catalyst. Table 1 shows the results.

【0030】 [0030]

【0031】A:アリルアルコール(g) B:ブタジエン(g) C:触媒(g) D:N2加圧 (kg/cm2・ゲージ) E:ブタジエン転化率(%) F:テトラヒドロベンジルアルコ−ル G:ビニルシクロヘキセン TTB:テトラブトキシチタンA: Allyl alcohol (g) B: Butadiene (g) C: Catalyst (g) D: N 2 pressurization (kg / cm 2 · gauge) E: Butadiene conversion (%) F: Tetrahydrobenzyl alcohol Le G: Vinylcyclohexene TTB: Tetrabutoxytitanium

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // C07B 61/00 300 C07B 61/00 300 (56)参考文献 特開 昭63−275538(JP,A) 特開 昭57−120528(JP,A) 特開 昭49−102643(JP,A) 特公 昭50−16790(JP,B1) 特公 昭49−47737(JP,B1) 特公 昭45−7295(JP,B1) 特公 昭42−14622(JP,B1) 特公 昭49−48537(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C07C 33/14 C07C 2/52 C07C 13/20 C07C 29/46 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI // C07B 61/00 300 C07B 61/00 300 (56) References JP-A-63-275538 (JP, A) JP-A-57 JP-A-120528 (JP, A) JP-A-49-102643 (JP, A) JP-B-50-16790 (JP, B1) JP-B-49-47737 (JP, B1) JP-B-45-7295 (JP, B1) Japanese Patent Publication No. Sho 42-14622 (JP, B1) Japanese Patent Publication No. Sho 49-48537 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 33/14 C07C 2/52 C07C 13 / 20 C07C 29/46

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ブタジエンとアリルアルコールとを、出
発原料に対し0.05以上、1.0重量%未満のチタンアルコ
キシドまたはアルミニウムアルコキシドの共存下に、反
応圧を原料のブタジエンおよびアリルアルコール自身の
蒸気圧を超えて高めるように予め加圧して、ディールス
アルダー反応させることを特徴とするテトラヒドロベン
ジルアルコールの製造方法。
1. The reaction pressure exceeds the vapor pressure of butadiene and allyl alcohol itself in the presence of butadiene and allyl alcohol in the presence of titanium alkoxide or aluminum alkoxide in an amount of 0.05 to 1.0% by weight based on the starting material. A process for producing tetrahydrobenzyl alcohol, wherein a Diels-Alder reaction is preliminarily performed to increase the pressure.
【請求項2】 触媒がチタンアルコキシドであることを
特徴とする請求項1に記載のテトラヒドロベンジルアル
コールの製造方法。
2. The method for producing tetrahydrobenzyl alcohol according to claim 1, wherein the catalyst is a titanium alkoxide.
【請求項3】 反応温度が50〜350℃であることを
特徴とする請求項1又は2に記載のテトラヒドロベンジ
ルアルコールの製造方法。
3. The method for producing tetrahydrobenzyl alcohol according to claim 1, wherein the reaction temperature is 50 to 350 ° C.
【請求項4】 ビニルシクロヘキセンを併産することを
特徴とする請求項1〜3のいずれかに記載のテトラヒド
ロベンジルアルコールの製造方法。
4. The method for producing tetrahydrobenzyl alcohol according to claim 1, wherein vinylcyclohexene is co-produced.
JP32821392A 1992-12-08 1992-12-08 Method for producing tetrahydroxybenzyl alcohol Expired - Fee Related JP3342518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32821392A JP3342518B2 (en) 1992-12-08 1992-12-08 Method for producing tetrahydroxybenzyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32821392A JP3342518B2 (en) 1992-12-08 1992-12-08 Method for producing tetrahydroxybenzyl alcohol

Publications (2)

Publication Number Publication Date
JPH06172238A JPH06172238A (en) 1994-06-21
JP3342518B2 true JP3342518B2 (en) 2002-11-11

Family

ID=18207717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32821392A Expired - Fee Related JP3342518B2 (en) 1992-12-08 1992-12-08 Method for producing tetrahydroxybenzyl alcohol

Country Status (1)

Country Link
JP (1) JP3342518B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836706B2 (en) * 1995-05-25 1998-12-14 クンホ セオキュ ホアハク ジュシクヘサ Method for producing ethylbenzene from 4-vinylcyclohexene

Also Published As

Publication number Publication date
JPH06172238A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
US4482741A (en) Preparation of xylylenediamine
EP0653406A1 (en) Use of supported rhodium catalysts in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide
JP3342518B2 (en) Method for producing tetrahydroxybenzyl alcohol
EP0653407B1 (en) Conjoint production of ditertiary butyl peroxide and tertiary butyl alcohol from tertiary butyl hydroperoxide
US5455376A (en) Process for the preparation of aliphatic omega-difluorocarboxyl compounds
KR100632153B1 (en) Cyclohexanedimethanol compound and preparation method of the intermediate
US5030792A (en) Process for preparing 1-octene
JP2002539083A (en) Method for producing cyclohexanecarboxylic acid using [2 + 4] Diels-Alder reaction
EP0653403B1 (en) Use of titania or zirconia in the preparation of tertiary butyl alcohol from tertiary butyl alcohol from tertiary butyl hydroperoxide
JP3217538B2 (en) Method for producing 1,6-hexanediol
JP3579923B2 (en) Method for producing alicyclic diketone compound
EP1125934B1 (en) Method of producing an epoxycyclododecane compound
EP0653401B1 (en) Use of supported palladium and gold catalysts in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide
EP0653402B1 (en) Use of supported lead oxide catalyst in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide
JP3089672B2 (en) Diol compound having cyclohexane ring and method for producing diol compound having cyclohexane ring
EP0653404B1 (en) Use of supported chromium catalyst in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide
GB2054578A (en) Preparation of 3- and 4-formyl-tricyclo-(5,2,1,0)-decene-8
JPS5929170B2 (en) Method for producing β-phenylethyl alcohol and β-phenylethyl acetate
CA2010325C (en) Process for preparing 1-octene
JPH0331696B2 (en)
EP0653405B1 (en) Use of supported palladium/platinum catalysts in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide
JPH0653691B2 (en) Process for producing β-methyl-δ-valerolactone and 3-methylpentane-1,5-diol
JPH0662481B2 (en) Process for producing E, Z-9-alkenyl-1-aldehyde
JP2998377B2 (en) Method for producing methacrylamide
EP0182256B1 (en) Process for producing indoles

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees