JP3340571B2 - Method for producing polycarbonate resin granules - Google Patents

Method for producing polycarbonate resin granules

Info

Publication number
JP3340571B2
JP3340571B2 JP21457994A JP21457994A JP3340571B2 JP 3340571 B2 JP3340571 B2 JP 3340571B2 JP 21457994 A JP21457994 A JP 21457994A JP 21457994 A JP21457994 A JP 21457994A JP 3340571 B2 JP3340571 B2 JP 3340571B2
Authority
JP
Japan
Prior art keywords
solid
crushing
polycarbonate resin
solution
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21457994A
Other languages
Japanese (ja)
Other versions
JPH0873605A (en
Inventor
将夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP21457994A priority Critical patent/JP3340571B2/en
Publication of JPH0873605A publication Critical patent/JPH0873605A/en
Application granted granted Critical
Publication of JP3340571B2 publication Critical patent/JP3340571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明法は、ポリカーボネート樹
脂(以降PCと略称することがある)を粒状化して固体
として得る方法に関する。更に詳しくは、PCと有機溶
剤との溶液から、PCを粒状化した固体として取得し
て、有機溶媒へ再溶解して使用・又は再溶融して成型す
るに適したPC粒状体を製造する方法を提供することに
ある。近年、液晶ディスプレーが注目をあびており、P
Cはすぐれた機械的特性、電気的特性及び透明性などの
点から、その種々の部材として利用が拡大しており、本
発明はそれらの製造に適したPC粒状体を提供すること
を目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of granulating a polycarbonate resin (hereinafter sometimes abbreviated as PC) to obtain a solid. More specifically, a method of obtaining PC as a granulated solid from a solution of PC and an organic solvent, and re-dissolving in an organic solvent for use or re-melting to produce a PC granule suitable for molding Is to provide. In recent years, liquid crystal displays have attracted attention,
C is widely used as various members because of its excellent mechanical properties, electrical properties and transparency, and the present invention aims to provide PC granules suitable for the production thereof. I do.

【0002】[0002]

【従来の技術】ポリカーボネート樹脂は、特に透明性が
要求される液晶ディスプレーの部材、例えば、偏光板の
基材、導電性ガラスの代替、カラーフィルターの基材、
位相差フイルムなどに、利用が拡大しつつあり、それら
に使用するPCは高度の光学特性が要求されてきてい
る。加えて、部材として加工する際に、より加工しやす
い二次転位点温度の高いPCが求められている。しか
し、このような用途に使用するための分子量が高く高度
の光学特性を有するPCの粒状化した固体の取得は困難
であった。
2. Description of the Related Art Polycarbonate resins are particularly required for members of liquid crystal displays that require transparency, for example, substrates for polarizing plates, substitutes for conductive glass, substrates for color filters,
Applications for retardation films and the like are expanding, and PCs used for them are required to have high optical characteristics. In addition, there is a demand for a PC having a high secondary dislocation temperature, which is easier to process when processing as a member. However, it has been difficult to obtain a granular solid of PC having a high molecular weight and high optical properties for use in such applications.

【0003】このような再溶融、溶剤溶解用のPCを得
るために、従来種々の方法が提案されているがそれぞれ
以下のような問題点がある。例えば、メタノール等の貧
溶媒とPCの有機溶剤溶液を接触させる方法(特開昭4
8―89956号公報、特開昭53―137297号公
報等)は、得られるPCがパルプ状である為、かさ密度
が極端に小さく、貯蔵、輸送に大きな設備を要するだけ
でなく、再溶融又は再溶解が極めてやりにくい問題があ
る。
In order to obtain such a PC for re-melting and dissolving the solvent, various methods have been conventionally proposed, but each has the following problems. For example, a method of contacting a poor solvent such as methanol with an organic solvent solution of PC (Japanese Patent Laid-Open No.
JP-A-8-89956, JP-A-53-137297, etc.) show that since the obtained PC is in the form of pulp, the bulk density is extremely small, and not only large equipment is required for storage and transportation, but also re-melting or There is a problem that re-dissolution is extremely difficult.

【0004】また、PCの有機溶剤溶液を加熱水中へ噴
霧してスラリー化する方法(特開昭59―133228
号公報、特開平5―32793号公報等)は、加熱水へ
噴霧した場合、一旦粉状体となるも直ちに溶着してしま
いスラリーが得にくい欠点がある。
Further, a method of spraying an organic solvent solution of PC into heated water to form a slurry (JP-A-59-133228)
JP-A-5-32793, etc.) has a drawback that when sprayed into heated water, the powder once forms a powder, but is immediately welded, making it difficult to obtain a slurry.

【0005】更に、PCの有機溶剤溶液をノズルよりス
チームと一緒に、空気中又は不溶性ガス中へ噴霧する方
法(特公平2―6521号公報、特開昭54―1223
93号公報等)は、高分子量のPCを使用すると粒状化
が極めて困難である。
Further, a method of spraying an organic solvent solution of PC together with steam from a nozzle into the air or an insoluble gas (Japanese Patent Publication No. 2-65221, JP-A-54-1223)
No. 93) is extremely difficult to granulate when high molecular weight PC is used.

【0006】また、PCの有機溶剤溶液を2軸の撹拌機
を備えた槽中で多量の加温水と一緒に、スチーム等を導
入して処理しながら、もち状になったPCを破砕しなが
ら粒状化し乾燥する方法(例えば、特公昭38―224
97号公報、特公昭40―12379号公報)がある。
この方法で高分子量のPCを、破砕する為には、撹拌機
に多大な動力を要し、得られたPCは結晶化が進行して
いるため、塩化メチレン等にPCを再溶解した場合に結
晶化した一部のPCの未溶解物が残存する白濁した溶液
となり、それらから製造されたPCフイルム等は、ヘー
ズが高く液晶ディスプレーの部材としては到底使用出来
るものではない。
In addition, while the organic solvent solution of PC is treated by introducing steam or the like together with a large amount of heated water in a tank equipped with a twin-screw stirrer, while the PC that has become sticky is crushed. A method of granulating and drying (for example, Japanese Patent Publication No. 38-224)
No. 97, Japanese Patent Publication No. 40-12379).
In order to crush high molecular weight PC by this method, a large amount of power is required for the stirrer, and the obtained PC is being crystallized. A crystallized cloudy solution in which undissolved PC remains remains, and PC films and the like produced therefrom have high haze and cannot be used as liquid crystal display members at all.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の如き
欠点を解決し、結晶ディスプレーの部材等の製造に適し
たPC粒状体を工業的に容易に取得することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and to easily and industrially obtain PC granules suitable for producing crystal display members and the like.

【0008】[0008]

【課題を解決するための手段】上記目的は、PCと有機
溶剤との溶液から、PCの粒状体を製造するに際し、該
溶液を実質的に水の非存在下において20〜100℃で
濃縮して固形物となし、該固形物中のPCを35〜80
重量%とし、得られた固形物をそのまま又は破砕して乾
燥することを特徴とするPCの粒状体の製造法により達
成される。
SUMMARY OF THE INVENTION The object of the present invention is to prepare PC granules from a solution of PC and an organic solvent, and to prepare the solution at 20 to 100 ° C. in the substantially absence of water. Concentrate to a solid and reduce the PC in the solid to 35-80.
% By weight, and obtained by crushing and drying the obtained solid as it is or by crushing the solid.

【0009】以下本発明法について詳述する。Hereinafter, the method of the present invention will be described in detail.

【0010】本発明法で対象となるPCは、芳香族PC
であればいかなる方法で製造されたものでもよい。例え
ば、界面重合法、ピリジン法、エステル交換法等が知ら
れており、それいずれのPCも適用できる。 芳香族ポ
リカーボネート樹脂は、種々のジヒドロキシジアリール
化合物とホスゲンとを反応させるホスゲン法、またはジ
ヒドロキシジアリール化合物とジフェニルカーボネート
などの炭酸エステルとを反応させるエステル交換法によ
って得られる重合体または共重合体であり、代表的なも
のとしては、2,2―ビス(4―ヒドロキシフェニル)
プロパン(ビスフェノールA)から製造されたポリカー
ボネート樹脂があげられる。
The target PC in the method of the present invention is an aromatic PC
As long as it is manufactured, any method may be used. For example, an interfacial polymerization method, a pyridine method, a transesterification method and the like are known, and any of them can be applied. Aromatic polycarbonate resin is a polymer or copolymer obtained by a phosgene method of reacting various dihydroxydiaryl compounds with phosgene, or a transesterification method of reacting a dihydroxydiaryl compound with a carbonate such as diphenyl carbonate, A typical example is 2,2-bis (4-hydroxyphenyl)
Polycarbonate resins produced from propane (bisphenol A) are mentioned.

【0011】上記ジヒドロキシジアリール化合物として
は、ビスフェノールAの他、ビス(4―ヒドロキシフェ
ニル)メタンのようなビス(ヒドロキシアリール)アル
カン類、1,1―ビス(4―ヒドロキシフェニル)シク
ロペンタンのようなビス(ヒドロキシアリール)シクロ
アルカン類、4,4―ジヒドロキシジフェニルエーテル
のようなジヒドロキシジアリールエーテル類、4,4′
―ジヒドロキシジフェニルスルフィドのようなジヒドロ
キシジアリールスルフィドのようなジヒドロキシジアリ
ールスルホキシド類、4,4′―ジヒドロキシジフェニ
ルスルホンのようなジヒドロキシジアリールスルホン類
等があげられる。
Examples of the dihydroxydiaryl compounds include bisphenol A, bis (hydroxyaryl) alkanes such as bis (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) cyclopentane. Bis (hydroxyaryl) cycloalkanes, dihydroxydiarylethers such as 4,4-dihydroxydiphenylether, 4,4 '
-Dihydroxydiarylsulfoxides such as dihydroxydiarylsulfides such as dihydroxydiphenylsulfide, and dihydroxydiarylsulfones such as 4,4'-dihydroxydiphenylsulfone.

【0012】これらは単独でまたは2種以上混合して使
用される。
These may be used alone or in combination of two or more.

【0013】本発明法は、これらのポリカーボネート樹
脂のうち特に平均分子量が4万以上の場合に有利に実施
しうる。分子量が高くなると、PCと有機溶剤との溶液
粘度が高まり、従来法では粒状化がむずかしくなり多大
なエネルギーを要するからである。
The method of the present invention can be advantageously carried out particularly when these polycarbonate resins have an average molecular weight of 40,000 or more. If the molecular weight is high, the solution viscosity of PC and the organic solvent is high, and it is difficult to granulate in the conventional method, requiring a large amount of energy.

【0014】本発明に供されるPCと有機溶剤との溶液
は、従来公知の方法により得られた、例えば、水と分離
された反応生成物でもよい。1重量%以下の水が含まれ
ていても、本発明実施中に留去されて、固形物生成過程
では実質的に水の非存在下に実施しうる。また、PCを
一旦有機溶剤に溶解した溶液でも実施出来る。通常溶液
中のPC含量は2〜25重量%、好ましくは5〜20重
量%である。
The solution of PC and the organic solvent used in the present invention may be, for example, a reaction product obtained by a conventionally known method and separated from water. Even if less than 1% by weight of water is included, it is distilled off during the practice of the present invention and can be carried out in the substantial absence of water in the process of producing solids. Further, it can be carried out with a solution in which PC is once dissolved in an organic solvent. Usually, the PC content in the solution is 2 to 25% by weight, preferably 5 to 20% by weight.

【0015】PCを溶かす有機溶剤としては、1,1,
2,2―四塩化エタン、塩化メチレン、1,2―二塩化
エチレン、クロロホルム、1,1,2―三塩化エタン、
1,2―二塩化エタン、チオフェン、ジオキサン、テト
ラヒドロフラン、ジオキソラン等を使用することができ
る。好ましくは、塩化メチレンが使用される。
The organic solvents for dissolving PC include 1,1,
2,2-tetrachloroethane, methylene chloride, 1,2-dichloroethylene, chloroform, 1,1,2-trichloroethane,
1,2-dichloroethane, thiophene, dioxane, tetrahydrofuran, dioxolane and the like can be used. Preferably, methylene chloride is used.

【0016】本発明においては、まず、上記のPC溶液
から有機溶剤を留去し固形物をうる。有機溶剤の留去
は、真空及び/又は加熱等の公知の方法を採用すること
ができる。その際の固形物中のPC含量を35〜80重
量%とする。好ましくは35〜70重量%とする。
In the present invention, first, an organic solvent is distilled off from the PC solution to obtain a solid. A known method such as vacuum and / or heating can be employed for distilling off the organic solvent. At that time, the PC content in the solid is 35 to 80% by weight. Preferably, it is 35 to 70% by weight.

【0017】上記PC含量が上限を越えると、次の工程
に於ける破砕に要するエネルギー(後述する破砕圧力)
が過大となり過大な設備を要し経済的でない。
When the PC content exceeds the upper limit, the energy required for crushing in the next step (crushing pressure described later)
However, it is too economical because it requires excessive equipment.

【0018】また、上限を越えるとPCの結晶化がより
進行して、例えば得られたPC粒子を塩化メチレン等に
溶解した場合、溶液が白濁になり、それにより得られた
液晶ディスプレー部材が透明性を損う等の問題が生じ
る。
If the upper limit is exceeded, the crystallization of PC proceeds further. For example, when the obtained PC particles are dissolved in methylene chloride or the like, the solution becomes cloudy and the resulting liquid crystal display member becomes transparent. This causes problems such as impairing the performance.

【0019】一方、下限未満では、破砕のエネルギー
(圧力)は低くなるが、破砕された固形物から得られる
粒状化物の粒径が著しく小さくなり、後工程でのハンド
リングがやりにくくなる等の問題が起きる。
On the other hand, below the lower limit, the energy (pressure) of the crushing is low, but the particle size of the granulated material obtained from the crushed solid material is extremely small, which makes it difficult to handle in a subsequent step. Happens.

【0020】濃縮の温度は、通常20〜100℃であ
り、30〜80℃が好ましい。あまり高温度で実施され
ると、PCの結晶化を進行させるので好ましくない。濃
縮する際の系内の圧力は常圧、減圧、加圧下いづれでも
よい。常圧で充分な場合が多い。濃縮に要する時間は、
通常5分〜3時間で行なわれるが、結晶化の進行を極力
抑えるために、10分〜2時間で好ましく実施される。
濃縮は回分又は連続のどちらで行ってもよい。
The concentration temperature is usually from 20 to 100 ° C., preferably from 30 to 80 ° C. It is not preferable to carry out the treatment at an excessively high temperature because crystallization of PC proceeds. The pressure in the system at the time of concentration may be any of normal pressure, reduced pressure, and increased pressure. Normal pressure is often sufficient. The time required for concentration is
Usually, the reaction is performed for 5 minutes to 3 hours, but is preferably performed for 10 minutes to 2 hours in order to minimize the progress of crystallization.
Concentration may be performed either batchwise or continuously.

【0021】濃縮は、従来公知の装置を使用して行うこ
とができる。例えば撹拌機又はかき取り翼のついた撹拌
槽、かき取り翼のついた薄膜式蒸発機、2軸のニーダ等
が挙げられる。これらの装置により濃縮処理を行うと濃
縮と破砕を同時に行うことができる。必要に応じて濃縮
処理後にさらに破砕してもよい。
The concentration can be performed using a conventionally known device. For example, a stirrer or a stirring tank with a scraping blade, a thin-film evaporator with a scraping blade, a two-axis kneader, and the like can be given. Concentration and crushing can be performed at the same time by performing the concentration treatment with these devices. If necessary, it may be further crushed after the concentration treatment.

【0022】濃縮は、実質的に水の非存在下で行う。水
が存在すると得られる固形物が、もち状の固形物となる
ために、破砕が実質的に困難となり、破砕する為のエネ
ルギーが著しく過大となるからである。
The concentration is performed substantially in the absence of water. This is because, in the presence of water, the obtained solid becomes a sticky solid, so that crushing is substantially difficult, and the energy for crushing is extremely large.

【0023】得られた固形物は、低エネルギーで破砕す
ることができる。そのエネルギーは次の方法で測定でき
る。即ち、破砕圧力は、台秤の上に、粒径約8〜10m
mで、形状が概略角状又は円柱状の固形物を1個置き、
その上に10mm×10mm×厚さ1mmのステンレス
製板をのせ、その上から力を加え、該固形物形状がくづ
れ、平均粒径5mm以下に破砕した時の台秤の目盛を読
むことにより行う。
The obtained solid can be crushed with low energy. The energy can be measured by the following method. That is, the crushing pressure is about 8 to 10 m on a platform scale.
m, place one solid object of approximately square or cylindrical shape,
A 10 mm × 10 mm × 1 mm thick stainless steel plate is placed on the plate, and a force is applied from above to read the scale on the platform scale when the solid material is broken and crushed to an average particle size of 5 mm or less.

【0024】破砕は、固形物に対して、0.1〜20k
g好ましくは、0.5〜10kgの破砕圧力をかけて行
う。上記下限未満では充分な破砕は行なわれず、一方上
限を越えると微粒子へ破砕されるだけでなく、破砕の際
のエネルギーまたは粒子間のまさつ熱により、結晶化が
進行するので好ましくない。破砕圧力は固形物中のPC
含量により異なり、PC含量が低い程低圧力で破砕し、
PC含量が高い程高い圧力を要するので、PC含量に応
じて破砕圧力が選定される。
The crushing is performed on a solid material in an amount of 0.1 to 20 k.
g Preferably, a crushing pressure of 0.5 to 10 kg is applied. If the amount is less than the above lower limit, sufficient crushing is not performed. On the other hand, if the amount exceeds the upper limit, not only crushing into fine particles, but also crystallization proceeds due to energy at the time of crushing or rapid heat between particles, which is not preferable. Crushing pressure is PC in solid matter
Depending on the content, the lower the PC content, the lower the pressure,
Since a higher pressure is required as the PC content is higher, the crushing pressure is selected according to the PC content.

【0025】かくして破砕されることにより、粒径が
0.5〜3mmのものが容易に得られる。
By the crushing, particles having a particle size of 0.5 to 3 mm can be easily obtained.

【0026】次いで、破砕した固形物の乾燥を行う。乾
燥は一段、必要に応じて二段以上の従来公知の乾燥機に
より行うことが好ましい。乾燥の温度は、結晶化の進行
を抑えるため、20〜150℃、好ましくは30〜13
0℃の常圧、減圧下でそのまま又は不活性ガス導入にて
行なわれる。乾燥時間は、破砕した固形物中のPC含量
(有機溶剤残量)、乾燥温度により異なるが、10分〜
20時間、好ましくは20〜10時間で行なう。要は結
晶化の進行を極力抑える様に乾燥条件を選定する必要が
ある。
Next, the crushed solid is dried. Drying is preferably performed by a conventionally known dryer having one stage and, if necessary, two or more stages. The drying temperature is 20 to 150 ° C., preferably 30 to 13 ° C. in order to suppress the progress of crystallization.
It is carried out as it is under a normal pressure and a reduced pressure of 0 ° C. or by introducing an inert gas. The drying time varies depending on the PC content (remaining amount of the organic solvent) in the crushed solid and the drying temperature.
The reaction is performed for 20 hours, preferably for 20 to 10 hours. In short, it is necessary to select drying conditions so as to minimize the progress of crystallization.

【0027】[0027]

【実施例】以下に実施例を述べるが、本発明法はなんら
これら限定されるものではない。
EXAMPLES Examples will be described below, but the method of the present invention is not limited to these examples.

【0028】[実施例1、2及び3]ポリカーボネート
樹脂(平均分子量6.2万)10重量部を塩化メチレン
90重量部に溶解してポリカーボネート樹脂溶液を調製
した。
Examples 1, 2 and 3 10 parts by weight of a polycarbonate resin (average molecular weight 62,000) were dissolved in 90 parts by weight of methylene chloride to prepare a polycarbonate resin solution.

【0029】上記の溶液を500ccフラスコに仕込
み、50℃の温水浴中で加熱しながら、析出した固形物
中のポリカーボネート樹脂含量が表1に示すようになる
まで常圧で塩化メチレンを留去濃縮した。
The above solution was charged into a 500 cc flask, and heated and heated in a warm water bath at 50 ° C., and methylene chloride was distilled off at normal pressure and concentrated until the content of the polycarbonate resin in the precipitated solid became as shown in Table 1. did.

【0030】得られた固形物の一部の破砕を行い破砕圧
力を測定した。破砕圧力は、台秤の上に、粒径約8〜1
0mmで、形状が概略角状又は円柱状の固形物を1個置
き、その上に10mm×20mm×厚さ1mmのステン
レス製板をのせ、その上から指、又は手で力を加え、該
固形物形状がくづれ、平均粒径5mm以下に破砕する瞬
間の台秤の目盛を測定することにより行なった。結果を
表1に示す。次に、残りの該固形物を乳鉢に入れ破砕し
た。その後、破砕して得られた固形物を80℃に保持し
た熱風乾燥機中で8時間乾燥してPCの粒状化物を得
た。実施例1、2、3ともに得られた粒状体の粒径は顕
微鏡による目視で0.5〜3mmであり、かさ密度はメ
スシリンダー法で測定し0.41〜0.50g/cm3
であった。
A part of the obtained solid was crushed and the crushing pressure was measured. The crushing pressure is about 8 to 1 on a platform scale.
0 mm, place a single solid having a roughly square or cylindrical shape, place a 10 mm × 20 mm × 1 mm thick stainless steel plate on it, and apply a force from above with a finger or hand to apply the solid. The measurement was carried out by measuring the scale of the platform scale at the moment when the shape of the product was broken and crushed to an average particle size of 5 mm or less. Table 1 shows the results. Next, the remaining solid was placed in a mortar and crushed. Thereafter, the solid obtained by crushing was dried in a hot-air dryer maintained at 80 ° C. for 8 hours to obtain a granulated PC. The particle size of the granular material obtained in each of Examples 1, 2, and 3 was 0.5 to 3 mm visually with a microscope, and the bulk density was 0.41 to 0.50 g / cm 3 measured by a measuring cylinder method.
Met.

【0031】この粒状体を再度塩化メチレンに溶かしポ
リカーボネートの含量が15重量%になるまで溶解する
のに要した時間は、20℃の温度に於いて、実施例1、
2、3で得られた粒状体について、それぞれ50分、6
0分、75分を要した。
The time required for dissolving the granules again in methylene chloride until the polycarbonate content was reduced to 15% by weight was determined at 20 ° C. in Example 1,
The granular materials obtained in steps 2 and 3 were treated for 50 minutes and 6 minutes, respectively.
It took 0 minutes and 75 minutes.

【0032】尚、実施例1の濃縮処理に用いた出発原料
たるポリカーボネート樹脂の溶解時間は30分であっ
た。本発明によれば著しく再溶解に要する時間が短縮さ
れ、再溶解が良好であった。
The dissolving time of the polycarbonate resin as the starting material used in the concentration treatment of Example 1 was 30 minutes. According to the present invention, the time required for re-dissolution was remarkably reduced, and re-dissolution was excellent.

【0033】このように得られた溶液をフェロ板の上に
成膜し、乾燥して100μmのフイルムを得た。乾燥後
のフイルムのヘーズは、それぞれ0.4〜0.6%であ
った。
The solution thus obtained was formed into a film on a ferro-plate and dried to obtain a 100 μm film. The haze of the dried film was 0.4 to 0.6%.

【0034】[0034]

【表1】 [Table 1]

【0035】[比較例1及び2]実施例1と同様に操作
し固形物中のPC含量が表1に示すようになるまで留去
濃縮を行った。得られた固形物の破砕圧力は表1の様で
あった。
[Comparative Examples 1 and 2] The same operation as in Example 1 was carried out, and the solvent was concentrated by distillation until the PC content in the solid became as shown in Table 1. The crushing pressure of the obtained solid was as shown in Table 1.

【0036】一部を乳鉢に入れ、破砕を行ったが破砕す
るのが極めて難しく時間を費した。破砕された固形物を
実施例1と同様に乾燥して得られた粒状体の粒径は、
0.1〜4mmであり粒径分布は広かった。
A portion was placed in a mortar and crushed, but crushing was extremely difficult and time-consuming. The particle size of the granular material obtained by drying the crushed solid in the same manner as in Example 1 is as follows:
It was 0.1 to 4 mm, and the particle size distribution was wide.

【0037】かかる粒状体を実施例1と同様に塩化メチ
レンに溶解し、PC含量が15重量%になるまで溶解す
るのに要した時間を測定したところ、比較例1、2の粒
状体はそれぞれ180分、300分であり、比較例1の
粒状体を溶解した溶液はかすかに白濁しており、比較例
2のそれは白濁していた。この溶液より実施例1と同様
に成膜して得られたフイルムのヘーズは、それぞれ1.
9%、5.7%であった。
The granules were dissolved in methylene chloride in the same manner as in Example 1, and the time required for dissolution until the PC content became 15% by weight was measured. It was 180 minutes and 300 minutes, and the solution in which the granular material of Comparative Example 1 was dissolved was slightly cloudy, and that of Comparative Example 2 was cloudy. The haze of the film obtained by forming a film from this solution in the same manner as in Example 1 was 1.
9% and 5.7%.

【0038】[比較例3]実施例1で調製したPC溶液
100重量部へ水10重量部加え、塩化メチレン留去中
に水のみを系内へ還流させながら、PC:塩化メチレン
=50:50(重量比)になる様に濃縮した。もち状の
固形物が得られ、圧力を加えてもち状に広がるだけで破
砕することは出来なかった。
Comparative Example 3 To 100 parts by weight of the PC solution prepared in Example 1 was added 10 parts by weight of water, and PC: methylene chloride = 50: 50 while refluxing only water into the system during the distillation of methylene chloride. (Weight ratio). A sticky solid was obtained, which could not be crushed only by applying pressure to spread the sticky shape.

【0039】[0039]

【発明の効果】本発明法によれば、再溶解性、再溶融性
等にすぐれたPCの粒状化物が、工業的に容易に製造す
ることが出来る。かかる粒状物は、高度な光学特性が要
求される液晶ディスプレー部材の製造に使用できる。ま
た本発明は、濃縮処理、破砕した粒状物の乾燥を、実質
的に水の存在下で行うことができるので塩化メチレンと
水から塩酸が生成する反応が起こらず、装置の材質はチ
タン等の高度な材質を要せず工業的に安価な設備で実施
することができる。
According to the method of the present invention, a granular product of PC excellent in resolubility, remeltability and the like can be easily produced industrially. Such a granular material can be used for manufacturing a liquid crystal display member requiring high optical characteristics. In addition, the present invention can perform the concentration treatment and the drying of the crushed granules substantially in the presence of water, so that the reaction of generating hydrochloric acid from methylene chloride and water does not occur, and the material of the apparatus is titanium or the like. It can be implemented with industrially inexpensive equipment without requiring advanced materials.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリカーボネート樹脂と有機溶剤との溶
液からポリカーボネート樹脂の粒状体を製造するに際
し、該溶液を実質的に水の非存在下において20〜10
0℃で濃縮して固形物となし、該固形物中のポリカーボ
ネート樹脂を35〜80重量%とし、得られた固形物を
そのまま又は破砕して乾燥することを特徴とするポリカ
ーボネート樹脂粒状体の製造法。
In producing a granular material of a polycarbonate resin from a solution of a polycarbonate resin and an organic solvent, the solution is prepared in the absence of water in the presence of 20 to 10 g.
A process for producing polycarbonate resin granules , comprising concentrating at 0 ° C. to form a solid, making the polycarbonate resin in the solid 35 to 80% by weight, and drying the obtained solid as it is or by crushing it. Law.
【請求項2】 固形物を0.1〜20kgの破砕圧力で
破砕することを特徴とする請求項1記載の方法。(ここ
で、破砕圧力は、台秤の上に、粒径約8〜10mmで、
形状が概略角状又は円柱状の固形物を1個置き、その上
に10mm×20mm×厚さ1mmのステンレス製板を
のせ、その上から力を加え、該固形物形状がくづれ、平
均粒径5mm以下に破砕する瞬間の台秤の目盛のことを
いう。)
2. The method according to claim 1, wherein the solid is crushed at a crushing pressure of 0.1 to 20 kg. (Here, the crushing pressure is about 8 to 10 mm on a platform scale,
A solid material having a roughly square or columnar shape is placed, and a stainless steel plate of 10 mm × 20 mm × 1 mm thickness is placed on the solid material, and a force is applied from above on the stainless steel plate. It refers to the scale of the platform scale at the moment of crushing to 5 mm or less. )
JP21457994A 1994-09-08 1994-09-08 Method for producing polycarbonate resin granules Expired - Fee Related JP3340571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21457994A JP3340571B2 (en) 1994-09-08 1994-09-08 Method for producing polycarbonate resin granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21457994A JP3340571B2 (en) 1994-09-08 1994-09-08 Method for producing polycarbonate resin granules

Publications (2)

Publication Number Publication Date
JPH0873605A JPH0873605A (en) 1996-03-19
JP3340571B2 true JP3340571B2 (en) 2002-11-05

Family

ID=16658059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21457994A Expired - Fee Related JP3340571B2 (en) 1994-09-08 1994-09-08 Method for producing polycarbonate resin granules

Country Status (1)

Country Link
JP (1) JP3340571B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647223B2 (en) * 2004-03-29 2011-03-09 京セラケミカル株式会社 Manufacturing method and manufacturing apparatus of semiconductor sealing material
JP4651326B2 (en) * 2004-08-09 2011-03-16 出光興産株式会社 Method for producing polycarbonate powder

Also Published As

Publication number Publication date
JPH0873605A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
US5204377A (en) Porous, crystallized, aromatic polycarbonate prepolymer, a porous, crystallized aromatic polycarbonate, and production methods
US5214073A (en) Porous, crystallized, aromatic polycarbonate prepolymer, a porous, crystallized aromatic polycarbonate, and production methods
JPH0553815B2 (en)
JPS6155118A (en) Separation of thermoplastic polycarbonate from solution
KR20030076331A (en) Micro powder and method for producing the same
EP0011416A1 (en) Recovery process for polyesters
JP3340571B2 (en) Method for producing polycarbonate resin granules
JPH04292628A (en) Uniformly distributed polycarbonate pellet
US20070100080A1 (en) Method and apparatus for production of polyvinyl alcohol with high degree of polymerization
JP3222905B2 (en) Method for producing aromatic polycarbonate powder
EP1245607A1 (en) Method of crystallizing low-molecular polycarbonate and process for producing polycarbonate resin from the same
JPH08245782A (en) Production of polycarbonate
US3322724A (en) Recovery process for polycarbonates
JPH03223330A (en) Porous polycarbonate prepolymer, its production, and production of aromatic polycarbonate by using the same
JPH07268092A (en) Production of polycarbonate
WO2003010221A1 (en) Process for the preparation of crystalline polycarbonate oligomers
JPH07205154A (en) Treating method for optical disk
JP4272123B2 (en) Method for obtaining an alkaline aqueous solution of a purified aromatic dihydroxy compound from waste aromatic polycarbonate
JP3334494B2 (en) Method of converting epoxy resin into granular products
JP3056290B2 (en) Method for continuously precipitating aromatic polycarbonate from CH2Cl2 solution in partially crystallized form
JPH0592422A (en) Manufacture of molding material for optical molded product
JP3995544B2 (en) Method for producing aromatic polycarbonate powder
JPH09316183A (en) Polybutylene terephthalate and its production
US3509094A (en) Process for making polycarbonates
JPH06107801A (en) Production of granular polycarbonate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees